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Dilepton emission in high-energy heavy-ion collisions with viscous hydrodynamics
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The invariant mass spectrum and the elliptic flow of lepton pairs produced in relativistic heavy-ion collisions
at RHIC are studied with viscous hydrodynamics. The effects of viscous corrections on dilepton observables are
explored. The lepton pairs originating from charm quarks evolving in the viscous background are seen to be a
good probe of quark energy loss and gain, as quantified by the dilepton spectrum and by the dilepton elliptic flow.
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I. INTRODUCTION

The collision of large nuclei at relativistic energies con-
stitutes the only practical way to heat and compress nuclear
matter in the laboratory. Therefore, a vibrant experimental
program that aims to elucidate the bulk properties of hot
and dense strongly interacting matter is being pursed at
several accelerator facilities around the world, notably at
the Relativistic Heavy Ion Collider (RHIC, at Brookhaven
National Laboratory) and at the Large Hadron Collider (LHC,
at CERN). This enterprise has several ambitious goals, but
two of them are to map out of the phase diagram of
quantum chromodynamics (QCD, the theory of the strong
interaction) and to determine the transport coefficients of
QCD, which regulate departures from equilibrium. From the
volume of data acquired over the past 30 years, together
with the theoretical approaches used to interpret them, a
“standard picture” is emerging: The nuclear initial states
interact strongly, leading to rapid apparent thermalization,
followed by a period of quasi-ideal hydrodynamic evolution,
which lasts until kinetic freeze-out. The details of this scenario
may differ according to approaches—and such details will
have empirical consequences—but it is fair to write that the
global picture currently appears robust. The endurance of this
conceptual framework owes much to the modeling success of
relativistic hydrodynamics [1].

Much of the data measured at RHIC and at the LHC
consist of hadronic particles which mostly reflect the final
stages of the interacting system. Electromagnetic probes, on
the other hand, have the potential to provide an unambiguous
measurement of the interior dynamics in heavy-ion collisions,
owing to the facts that their interaction is dictated by αEM

(the electromagnetic fine-structure constant) and that αEM �
αs (where αs = g2/4π , with g being the strong interaction
coupling constant). The photons—real and virtual—produced
in the hot and dense medium are thus penetrating probes
essentially impervious to final-state interactions and as such
can reveal details of the underlying particle distributions,
including the degree of departure from thermal equilibrium.
It is important, however, that precise measurements be ac-
companied by equally precise modeling. Indeed, the past few
years have seen much progress in the simulation of heavy-ion

collisions with relativistic hydrodynamics. More specifically,
three- plus one-dimensional (3 + 1D) relativistic viscous
hydrodynamics models are available and have been used to
characterize the matter formed in the relativistic collisions
of large nuclei. The current standard input to those simulation
tools are hydrodynamic equations derived up to second order in
flow velocity gradients for conformal and nonconformal fluids
[2,3]. This degree of theoretical and modeling sophistication,
together with progress in the quantitative description of the
initial states, has brought closer one of the goals described
earlier: the extraction of a shear viscosity coefficient for QCD
[4].

Going back to electromagnetic radiation, the real photon
spectrum has also shown sensitivity to a finite shear viscosity
coefficient, as well as to the morphology of the initial states
[5–7]. They are therefore observables capable of carrying
information from the earliest moments of the collision.
The drawback is that, as photons and leptons are emitted
throughout the space-time history of the nuclear collision,
precise knowledge of the emission rates and the spatial
and temporal evolution is required to interpret the measured
signal. Dileptons offer the same penetrating advantages as real
photons, but their production is suppressed by an extra factor
of αEM. However, lepton pairs have an additional degree of
freedom, as the pair’s invariant mass and three-momentum are
independent.

The goal of this article is to explore the sensitivity of the
virtual photon spectrum—through its conversion to lepton
pairs—to a nonzero value of the shear viscosity to entropy
density ratio, η/s. As is the case for photons, a good
knowledge of the different sources of dileptons is required
in order to extract meaningful quantitative information. We
concentrate on dileptons produced in nuclear collisions at
full RHIC energy,

√
s = 200 A GeV. There, dileptons from

high-temperature QCD processes, dileptons from the hot
hadronic medium, and dileptons from charm decays are each
expected to dominate in different ranges of invariant mass. We
include these sources and study the effect of viscosity on the
final lepton pair spectrum, which includes the coefficient of
elliptic flow, v2.

In Sec. II, we first discuss a formulation of relativistic
hydrodynamics that incorporates a nonzero coefficient of
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shear viscosity, and we highlight the differences between the
inviscid and viscous evolutions. Then, the derivation of ideal
rates and their viscous corrections for both the quark-gluon
plasma phase and the hadronic phase are summarized. The
contribution to the dilepton yields in the intermediate mass
range from charm decays and its modification in a heavy-ion
collision are discussed in Sec. III. The dilepton production in
the low- and intermediate-mass regions is discussed in detail
in Sec. IV, with emphasis on how viscous corrections change
observables. After a complete hydrodynamic simulation of
the Au-Au collisions, we compare our yields against recent
experimental data from the STAR Collaboration at RHIC.
Finally, we conclude in Sec. V.

II. IDEAL THERMAL RATES AND THEIR
VISCOUS CORRECTIONS

A. Viscous relativistic fluid dynamics

Before deriving the viscous correction to the emission rates
of electromagnetic radiation, it is appropriate to summarize the
effect of shear viscosity on the bulk dynamics. In this paper,
we consider no other transport coefficients. As reviews can
be found in the recent literature [1,8,9], this summary may
be brief. In the conformal Israel-Stewart formalism [10], the
stress-energy tensor is usually expressed as

T μν = T
μν

ideal + πμν, (1)

where T
μν

ideal = (ε + P)uμuν − Pgμν is the part of the stress-
energy tensor that is unaffected by viscous corrections. The
metric tensor is gμν = gμν = diag(1, − 1, − 1, − 1) and the
flow velocity is uμ = (γ,γ v), which reduces to uμ = (1,0,0,0)
in the fluid rest frame. The quantities ε and P are the energy
density and the pressure, respectively. To second order in flow
velocity gradients, the equations that dictate the hydrodynamic
evolution are

∂μT μν = 0,

	μ
α	ν

βuσ ∂σπαβ = − 1

τπ

(πμν − Sμν) − 4

3
πμν(∂αuα). (2)

The viscous part of the stress-energy tensor to first order in
flow velocity gradients (the Navier-Stokes limit) is Sμν =
η(∇μuν + ∇νuμ − 2

3	μν∇αuα) and τπ is the shear relaxation
time. The local three-metric and spatial derivative are 	μν =
gμν − uμuν and ∇μ = 	μν∂ν , respectively, and η is the
coefficient of shear viscosity.

The dynamics of relativistic heavy-ion collisions make
it especially advantageous to work in so-called hyper-
bolic coordinates, such that the coordinate transformation is
xμ = (t,x,y,z) → (τ,x,y,ηs), with τ = √

t2 − z2 and ηs =
(1/2) ln[(t + z)/(t − z)]: the space-time rapidity. In addition,
it is straightforward to show that t = τ cosh ηs , z = τ sinh ηs ,
and gμν = diag(1, − 1, − 1, − τ 2). The equations of motion
[Eq. (2)] are integrated forward in time with the help of
the equation of state, P(ε), which is obtained from lattice
QCD analyses.1 The code which realizes this is MUSIC [11],

1See the discussion in Ref. [1] and references therein.

a 3 + 1D numerical hydrodynamics simulation which relies
on the Kurganov-Tadmor algorithm [12]. In this work, the
hydrodynamic evolution is done as in Ref. [11], with the
hydroparameters specified in the last line of Table I there.
The viscous evolution here uses a value of η/s = 1/4π and
requires the initial energy density, ε0, to be 90% of the value
in the inviscid case in order to account for entropy buildup by
the dissipative dynamics. The hydrodynamic initial state here
is free of fluctuations: A quantitative study of these effects will
be done in an upcoming work.

B. Dilepton rates from perturbative QCD at high temperature

The production rate of dileptons depends on the local
temperature. For massless quarks and antiquarks annihilating
into lepton pairs, the (four-momentum-integrated) rate will go
as R ∼ T 4 [13]. Most hydrodynamical simulation models used
at RHIC energies require initial and kinematical freeze-out
temperatures such that the net dilepton signal should originate
from temperatures both above and below the range where
lattice simulations predict a transition from hadronic degrees of
freedom to a phase known as the quark-gluon plasma (QGP). In
the limit of zero net baryon density, lattice calculations do not
show a first- or even second-order phase transition but instead
a smooth crossover centered at about 175 MeV (for a recent
review, see, e.g., Ref. [14]). The dilepton contribution from
the QGP phase will be the most visible for invariant masses
above 1 GeV, where the mass scale is large compared to both
QCD and T . For this channel, quark-antiquark annihilation
at leading order (the Born approximation, for which the cross
section actually does not depend on αs) is often used as an
approximation to the production rate at high temperature.
At lower invariant mass, processes other than the Born term
will contribute. Those may be parametrically of higher order
in αs but typically contain collinear divergences that, when
correctly resummed, produce a final result complete to leading
order in the strong coupling. Those hard thermal loop (HTL)
augmented rates rise over the Born result as the invariant
mass is lowered but are still only available either in the
zero momentum (q = 0 [15]) or large energy (q0 � T [16])
limits. Recently, the vector current correlation function has
also been evaluated on the lattice, enabling the extraction of
a thermal dilepton production rate at a given temperature and
vanishing pair three-momentum [17]. The Born rate is used in
this work, in part because of the kinematical restrictions still
associated with the newer dilepton production rates but mostly
because the rates from the confined hadronic sector of QCD
will produce a dominant contribution at the invariant masses
considered here (and for conditions prevalent at RHIC) [18].
In addition, this formulation is readily amenable to a viscous
correction, as is discussed in the next section.

We start with high temperatures and use perturbative QCD.
The cross section for qq̄ → �+�− is, neglecting quark and
lepton masses,

σ =
16πα2

EM

( ∑
q ′ e2

q ′

)
Nc

3q2
, (3)
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where the index q ′ runs over quark flavors and q is the
four-momentum of the virtual photon. The rate of dilepton
production in the Born approximation is related to the cross
section through

d4R

d4q
=

∫
d3p1d

3p2

(2π )6p0
1p

0
2

nF (p1)nF (p2)
q2

2
σδ4(q − p1 − p2),

(4)

where p1 and p2 label the momenta of the incoming quarks
and nF is the Fermi-Dirac distribution. Integrating gives

d4R

d4q
= α2

EM

6π4

1

exp(βq0) − 1

{
1 − 2

β|q| ln

[
n−
n+

]}
, (5)

where n− = 1 + exp[−β(q0−|q|)
2 ], n+ = 1 + exp[−β(q0+|q|)

2 ],
β = 1/T , |q| is the norm of the three-momentum of the virtual
photon, q0 is its energy, and we used q ′ = u,d,s.

When gradients of the flow or the temperature exist in
a viscous fluid, departures from thermal equilibrium must
occur, and those will modify the distribution functions. These
departures should be reflected in the traces taken over the
density matrix to determine what were previously thermal
averages: neq(p) → neq(p) + δn(p). Various ansatzes for the
form of δn(p) were examined in Ref. [19]. In this work we use

δn(p) = C

2
n(p)[1 ± n(p)]

pαpβ

T 2

παβ

ε + P
, (6)

where C is at this point an undetermined proportionality
constant. Calculating T μν with this expression and matching
this to T

μν
ideal + πμν (defined in the previous section) gives

Cq = 7π4

675ζ (5) ≈ 0.97 for the Fermi-Dirac distribution of a
single-component massless quark fluid.

We modify the thermal average with this change in the
Fermi-Dirac distribution where it appears, as was done in
Ref. [20]. The details of this derivation are presented in
Appendix A. This yields a viscous correction to dilepton
production dependent on πμν :

d4R

d4q
= d4R0

d4q
+ d4δR

d4q
,

d4R0

d4q
= q2

2

σ

(2π )5

1

exp(βq0) − 1

{
1 − 2

β|q| ln

[
n−
n+

]}
,

d4δR

d4q
= q2

2

σ

(2π )5
Cq

qαqβ

T 2

παβ

ε + P

1

2|q|5

×
∫

dE1n(E1)n(q0 − E1)[1 − n(E1)]D,

D =
[(

3q2
0 − |q|2)E2

1 − 3q0E1q
2 + 3

4
q4

]
. (7)

The rates now depend on accurate calculation of the non-
ideal corrections to the energy-momentum tensor and therefore
require viscous hydrodynamical simulation at RHIC and the
LHC, such as MUSIC. In Sec. IV, the implications of the viscous
correction on observables are explored.

C. Rates from a hadronic medium

Most of the thermal production of dileptons from a hadronic
medium (HM) are produced by low-mass vector mesons
V (V = ρ, ω, φ). In fact the majority of the the emission
below M < 1.2 GeV is of hadronic origin. A description
for this production requires an accurate effective coupling
between the electromagnetic field and the hadrons, which are
composite particles and have, in general, complicated and
mostly unknown electromagnetic form factors. The vector
meson dominance model (VMD), first proposed by Sakurai
[21], successfully describes dilepton production [22,23]. The
effective coupling in this model is given by

L = LQED −
∑

V =ρ,ω,φ

[√
4παEM

gV

m2
V V μAμ + 1

4
F

μν
V FV

μν

]
,

(8)

where F
μν
V = (∂μV ν − ∂νV μ) andLQED = ψ̄�(i 	∂ − m�)ψ� −√

4παEM ψ̄�γ
μψ�Aμ − 1

4FμνFμν . The coupling constants gV

are determined by measuring the vacuum decay rate of vector
mesons to dileptons. The thermal rate of dilepton production
for each low-mass vector meson V is then

d4RV

d4q
= −α2

EM

π3

L(M)

M2

m4
V

g2
V

[
Im DR

V

eβq0 − 1

]
, (9)

where L(M) = (1 + 2m2
�

M2 )
√

1 − 4m2
�

M2 , and the imaginary part

of the retarded vector propagator, Im DR
V = 1

3 ImDμR
μ , was

obtained using the Kubo-Martin-Schwinger (KMS) relation
and VMD [22]. From here on, we set the lepton mass m� to
zero.

Viscous effects will modify the retarded self-energy and
any averages that were originally thermal. To estimate these
changes, we need to determine the viscous corrections to the
thermal emission rate, Eq. (9). In a kinetic theory formulation
of the dilepton production, the microscopic equilibrium dis-
tribution functions can be replaced with their nonequilibrium
counterparts, and the net rates can then be recalculated in
the different hadronic channels, as was done for real photons
[5], and for the Born contribution of the previous section. Note
that an empirically successful modeling of the electromagnetic
current-current correlator for an interacting ensemble of
baryons and mesons is achieved through hadronic many-body
theory [24] and builds on Eq. (9). At this point, the viscous
corrections to dilepton rates resulting from this approach have
yet to be derived, and the nonperturbative extension of the
KMS relation to the nonequilibrium realm is still a topic in
development. Therefore, in this work a formalism based on
experimental data is adopted and the consequences of shear
viscous corrections to the self-energy are explored as detailed
below.

The total vector meson self-energy is given by [25]

�tot
V (M,|p|,T ) = �vac

V (M) + �T
V (M,|p|,T )

+ δ�T
V (M,|p|,T ). (10)

The vacuum self-energy depends only on invariant mass M =√
E2 − |p|2, while the finite temperature contributions depend

on E and |p| (or M and |p|) as do the viscous corrections to

034904-3



VUJANOVIC, YOUNG, SCHENKE, RAPP, JEON, AND GALE PHYSICAL REVIEW C 89, 034904 (2014)

the self-energy. Here, as in Ref. [25], �T
V is evaluated on the

mass shell of V .
The calculations of �vac

V are present in Refs. [25–27]; there,
terms in the Lagrangian describe all interactions contributing
to �vac

V . We make Eq. (10) more explicit by writing �T
V a and

relating it to the vacuum forward scattering amplitude fV a(s)
as in [25,28]:

�T
V a = −4π

∫
d3k

(2π )3
na(u · k)

√
s

ω
fV a(s), (11)

where V represents the vector meson and a is the particle with
which the vector meson interacts. Also, na is a Fermi-Dirac
or Bose-Einstein distribution function of the particle of type
a, kμ is its four-momentum, while uμ is the velocity of the
fluid cell. The work by Eletsky et al. [25] describes how to
obtain the thermal correction to the vacuum self-energy of
the vector meson V using fV a(s) and Eq. (11). For a more
in-depth derivation of the viscous correction to the self-energy,
the reader is referred to Appendix B.

Using the relation between the self-energy and fV a , and
modifying the thermal average with viscous corrections, gives
an expression for δ�T

V a that is dependent on the nonideal
correction to T μν . Quoting from Appendix B, the result is

�tot
V (M,|p|)

= �vac
V (M) −

∑
a=N,N̄,π

mV maT

π |p|

×
∫ ∞

ma

dω′ ln

[
1 ± exp(−ω+/T )

1 ± exp(−ω−/T )

]
f a′s rest

V a

(
mV

ma

ω′
)

+
∑

a=N,N̄,π

CaB2,V a

pα
V p

β
V

T 2

παβ

ε + P
, (12)

where Eq. (B8) gives an expression for B2,V a . Unlike the case
of the QGP, where considering a single-component fluid was
sufficient to compute Cq , the hadronic medium is a mixture of
many particle species. Simplifying assumptions were made:
Ca is particle independent [29] and ∀a : Ca = 1. Also, this
work is done in the limit where the self-energies arising from
interactions with antinucleons and nucleons are the same.

Physics relevant to interacting hadrons now enters this
expression through fV a , which receives contributions at both
low and high energies; fV a at low energy has both resonance
and pomeron contributions. In the center-of-mass (c.m.)
frame [25]

f c.m.
V a (s) = 1

2qc.m.

∑
R

WR
V a

�R→V a

MR − √
s − 1

2 i�R

− qcm

4πs

1 + exp(−iπαP )

sin(παP )
rP
V as

αP . (13)

The center-of-mass momentum is qc.m., which can be ex-
pressed in terms of the Mandelstam variable s. Here the
sum ranges over resonances R that decay into the vector
meson V and the particle a, which is either a nucleon or
a pion. The spin and isospin are averaged, leading to the
factor WR

V a = (2sR+1)
(2sV +1)(2sa+1)

(2tR+1)
(2tV +1)(2ta+1) , with si being the spin

of particle i, and ti , its isospin. �R→V a is an effective width of

the decay of the resonance R into V a. Its internal structure, and
the types of resonances contributing to fV a , are all discussed
in detail in [25–27]. The values of the Regge residues rV a ,
intercept αP , and the resonances included in fV a are all given
there. The transformation of the distribution function from the
rest frame of a [as used in Eq. (12)] to the c.m. frame of
particles V and a [Eq. (13)] is straightforward [22].

The high-energy limit of fV a is described by a Regge
parametrization [25–27]:

f c.m.
V a (s) = −qc.m.

4πs

∑
i

[
1 + exp(−iπαi)

sin(παi)

]
ri
V as

αi . (14)

The low-energy and the high-energy pieces are then matched
onto one another at EV − mV ∼ 4 GeV for pions and EV −
mV ∼ 1 GeV for nucleons, where EV is evaluated in the rest
frame of pions and nucleons respectively. To verify that the
matching does not introduce violations of the Kramers-Kronig
relations, a dispersion integral formula relating the real part of
fV a to a principal value integral over its imaginary part [25,27]
is used:

Re[fV a(EV )]

= Re[fV a(0)] + 2E2
V

π
P

∫ ∞

mV

Im[fV a(E′)]dE′

E′(E′ + EV )(E′ − EV )

(15)

Indeed, as was shown in Refs. [25–27], the effect of the
matching procedure on the shape of the forward-scattering
amplitude is not significant. The dilepton rates derived in
Secs. II B and II C have been used previously in an
interpretation of NA60 data [30], taken at the CERN SPS.

III. LEPTON PAIRS FROM CHARM DECAYS

Dileptons originate not only from electromagnetic tran-
sitions but also from weak decays: A charm quark decays
semileptonically into an electron with a branching fraction
of approximately 10%. In a proton-proton collisions with
center-of-mass energies of 200 GeV, dileptons produced from
pairs of charm quarks dominate the yield in the intermediate
mass range (from 1.2 to 2.5 GeV) [31]. Therefore, the analysis
of the dilepton spectrum provides a measurement of the charm
cross section. In this work, however, the emphasis is placed
on the interaction (energy loss and gain, angular deflection) of
heavy quarks with the hot and dense viscous matter, and how
this will reflect itself in the dilepton spectrum. The production
of heavy quarks in relativistic nuclear collisions—and their
interaction with the hot and dense medium—is a topic that has
received much attention over recent years [32–34].

The mass of a charm quark pair is much greater than the
temperature reached in any model of the heavy-ion collisions
at RHIC or the LHC; thermal production is negligible in com-
parison with the partonic annihilation in the initial collision.
The mass of a charm quark pair is also significantly larger
than QCD, and the production can be treated perturbatively.
For proton-proton collisions, fixed-order next-to-leading-log
(FONLL) calculations [35] fit the available experimental
data well by including both next-to-leading order results at
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FIG. 1. (Color online) Left panel (a): Dilepton yield from the hadronic medium (HM) only, in the 0–10% centrality class and fixed invariant
mass M = mρ . The contributions from (i) ideal hydroevolution (dashed line), (ii) viscous hydroevolution alone (solid line), and (iii) viscous
hydroevolution including viscous corrections to ideal dilepton rates are shown (square dots). Right panel (b): Dilepton yield from the QGP
only, in the same centrality class, and for M = 1.5 GeV.

low momenta and terms proportional to αs log(p/m) and
α2

s [log(p/m)]2, and by treating the heavy quarks as effectively
massless at large pT . In heavy-ion collisions, the initial
production of charm (and anticharm) is affected by changes
in the parton distribution functions: There can be—depending
on the energy scale—shadowing and antishadowing of the
parton distribution functions as well as isospin dependence
of the heavy quark cross sections. The measured nuclear
parton distribution functions can be evolved to different
values of Q with the Dokshitzer-Gribov-Lipatov-Altarelli-
Parisi (DGLAP) equations. Then, one needs to calculate the
effect of the in-medium evolution of heavy quarks in heavy-ion
collisions. The transport coefficients for heavy quarks have
proven to be difficult to estimate reliably with hard-thermal-
loop effective theory [36]; however, for heavy quark momenta
both less than and on the order of the heavy quark mass, the
evolution of heavy quarks can be approximated to be diffusive
and relativistic Langevin equations describe their dynamics
[34], allowing the heavy quark diffusion coefficient to be
estimated phenomenologically.

We use PYTHIA8 to generate events with heavy quarks.
We also use EKS98 to determine the initial parton distribution
functions in the nuclei. Then, using the same hydrodynamical
description as was used to determine the thermal dilepton
production, the heavy quarks are evolved using relativistic
Langevin dynamics and the heavy quark spatial diffusion
coefficient Dc = 3/(2πT ). The heavy quarks then hadronize
according to Peterson fragmentation [37] into D, D̄, D∗, and
c particles that then decay semileptonically. The quantitative
results of our modeling are reported in Sec. IV C.

IV. RESULTS

A. Thermal dilepton yield: the transverse momentum and
invariant mass dependence

The yield of lepton pairs is obtained in our approach by
integrating the production rates over the space-time history of
the collision, using relativistic hydrodynamics to simulate the

time- and space-dependent background fields. It is instructive
to compare the transverse momentum spectra associated with
different values of the dilepton invariant mass. In order to
highlight in turn the hadronic and QGP thermal contributions,
two values chosen can be associated with the “low-mass
region” (M = mρ), and the “intermediate-mass region” (M =
1.5 GeV), respectively. We first consider the effect of viscous
corrections only on the dileptons originating from the hadronic
matter phase. In Fig. 1 (left panel), the dilepton yields as
functions of pT for the 0–10% centrality at a fixed invariant
mass M = mρ are plotted, considering in turn three cases:
that of inviscid hydrodynamics, then allowing for viscous
corrections to the bulk evolution but not to the rates, and then
finally correcting both the rates and the bulk evolution. The
viscous effects on the bulk evolution in the hadronic phase
raise the yield slightly (∼60%) at momenta from 3 to 4 GeV,
as the viscous evolution slows down the temperature drop in
the high-T portion of the hadronic phase [5,38]. We also notice,
on the scale of the plot in the left panel of Fig. 1, that viscous
corrections to the hadronic emission rates have basically no
effect over that of the viscous evolution. The physical reason
explaining the irrelevance of δn corrections on the yield arises
from the fact that dileptons from the hadronic phase are
mostly emitted late (τ � 4 fm/c) at which time πμν is small
(see the left panel of Fig. 2). Note that this explanation is
somewhat qualitative as many cells with different temperatures
contribute to the net dilepton yield. The statement is verified
by a direct calculation, and viscous photon yields exhibit the
same behavior [5]. Turning to dileptons from the QGP phase
only, this receives further support from the dilepton transverse
momentum spectrum for M = 1.5 GeV, shown on the right
panel of Fig. 1. Correcting the bulk evolution only leads to a
slight decrease of the yield at transverse momentum values of
pT ∼ 2–4 GeV. This is because the initial temperature in the
viscous case is lower than that in the inviscid case, owing to
entropy generation:2 Recall that the entropy in the final state is

2See, for example, Fig. 1 in Ref. [5].

034904-5



VUJANOVIC, YOUNG, SCHENKE, RAPP, JEON, AND GALE PHYSICAL REVIEW C 89, 034904 (2014)

0 2 4 6 8 10
τ-τ

0
 (fm/c)

-0.1

-0.08

-0.06

-0.04

-0.02

0

0.02

0.04

0.06

0.08

0.1

πμν
/(

ε+
P

)

πxx

πxy

πxz

πyy

πyz

πzz

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
p

T
 (GeV)

10
-8

10
-7

10
-6

10
-5

10
-4

10
-3

10
-2

10
-1

dN
/d

M
p T

dp
T
dy

 a
t y

=
0 

(G
eV

-3
)

Ideal (0-10%) M=mρ
Viscous (0-10%) M=mρ
Ideal (0-10%) M=1.5GeV
Viscous (0-10%) M=1.5 GeV

(b)

FIG. 2. (Color online) Left panel (a): Shear stress tensor in the local rest frame of the cell located at x = y = 8/3 fm z = 0 fm in the 0–10%
centrality class. Right panel (b): Total thermal dilepton yield (HM + QGP) as a function of pT and at two different invariant masses: M = mρ

and M = 1.5 GeV.

directly related to the observed particle multiplicity. Unlike the
case of the hadron medium, the δn correction does influence
the net dilepton yield as the emission occurs at early times
when the temperature is high, which coincides with the proper
time interval where the magnitude of the shear pressure tensor
is maximal.

The right panel of Fig. 2 displays the net thermal dilepton
yield (including both HM and QGP contributions) as a function
of transverse momentum in the 0–10% centrality class, for
two values of invariant mass. For invariant masses in the low-
mass region, the higher momentum yield’s sensitivity to the
shear viscosity coefficient manifests itself almost exclusively
through that of the bulk evolution. On the other hand, the
thermal yield at higher invariant masses shows that the initial
conditions (here, mainly Ti , the initial hydrotemperature), the
hydroevolution, and the viscous corrections to the distribution
functions all have an effect. While the different ingredients
invoked here leave a quantitative imprint on the dilepton
transverse momentum spectrum that is still quantitatively
modest, these findings do confirm the power and the potential
of lepton pairs as both a precise thermometer and viscometer.
We leave the search for the specific conditions (e.g., centrality
classes, different initial state conditions, beam energy scans,
etc.) that will accentuate and perhaps even maximize those
differences to an upcoming study.

The effect of viscous corrections to the dilepton invariant
mass distribution is now investigated. It is straightforward to
show that, owing to defining symmetry properties of the shear
pressure tensor (uμπμν = uνπ

μν = 0 in the fluid rest frame
and πμ

μ = 0), the viscous corrections to the QGP and HM
dilepton rates as a function of the invariant mass M vanish:
d δR/dM = 0. Hence, the differences between the invariant
mass profiles in the inviscid and viscous cases entirely stem
from the different time evolutions. For the conditions in this
study, those appropriate for RHIC, the viscous evolution has an
effect on the thermal dilepton spectrum that is essentially indis-
tinguishable for that of the ideal hydrodynamic evolution: Only
the viscous case is plotted in Fig. 3. The dilepton yield itself
is therefore a poor viscometer. The spectrum asymmetry—as
quantified by the elliptic flow—is now investigated.

B. Thermal dilepton elliptic flow

Regarding the shear viscosity and its experimental signature
in relativistic heavy-ion collisions, flow coefficients, for
example, that of elliptic flow, are more sensitive to the presence
of viscosity than any particle spectra. Penetrating probes such
as photons and dileptons are ideal to study viscosity, as
they are influenced by the entire evolution of the medium
[39–41]. Hadrons, on the other hand, will reflect properties
that prevailed at the point of their last scattering.

The elliptic flow of thermal lepton pairs is quantified
through v2, a Fourier coefficient of the azimuthal angle
expansion of the yield spectrum with respect to the reaction
plane

dN

dMpT dpT dφdy
= 1

2π

dN

dMpT dpT dy

×
{

1 +
∞∑

n=1

2vn cos[n(φ − ψr )]

}
. (16)
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FIG. 3. (Color online) Dilepton yield from hadronic medium and
QGP as a function of invariant mass, in the 0–10% centrality class.

034904-6



DILEPTON EMISSION IN HIGH-ENERGY HEAVY-ION . . . PHYSICAL REVIEW C 89, 034904 (2014)

0 0.5 1 1.5 2 2.5 3 3.5 4
p

T
 (GeV)

0

0.05

0.1

0.15

v 2(p
T
,M

=
m

ρ,y
=

0)

Ideal HM (0-10%)
Viscous HM (0-10%)
Ideal QGP (0-10%)
Viscous QGP (0-10%)
Ideal HM+QGP (0-10%)
Viscous HM+QGP (0-10%)

(a)

0 0.5 1 1.5 2 2.5 3 3.5 4
p

T
 (GeV)

0

0.005

0.01

0.015

v 2(p
T
,M

=
1.

5G
eV

,y
=

0)

Ideal HM x 0.1 (0-10%)
Viscous HM x 0.1 (0-10%)
Ideal QGP (0-10%)
Viscous QGP (0-10%)
Ideal HM+QGP (0-10%)
Viscous HM+QGP (0-10%)

(b)

FIG. 4. (Color online) Dilepton v2 from the hadronic medium and QGP as a function of pT for two invariant masses. The panel on the left
(a) is for M = mρ , whereas the one on the right (b) is for M = 1.5 GeV (note the scaling applied to the HM v2). The calculations shown here
are for the 0–10% centrality class.

With the averaged initial conditions used in this study, ψr is
set to zero.

Shear viscosity introduces friction between adjacent fluid
layers, thus coupling faster moving fluid layers to slower
moving ones, which ultimately isotropizes the angular velocity
distribution of the medium and slows down its expansion. As
is the case for hadrons, the elliptic flow (v2) of dileptons as a
function of invariant mass is modified by the presence of shear
viscosity. Following a sequence similar to that of the previous
section, we start by presenting our v2 results as a function of
pT at fixed invariant masses [39] in Fig. 4.

At all invariant masses, the effect of viscosity is to reduce
v2 of dileptons. This can be seen by comparing the red (light
gray; ideal) and blue (dark gray; viscous) curves in Fig. 4.
Importantly, when several sources of dileptons contribute to
the net dilepton yield, the final v2 is a weighted average of
the different elliptic flows, with the weight being the dilepton
yield. This makes the interpretation of both panels of Fig. 4
clear: In the low-mass region, where the HM thermal dileptons
outshine those from the QGP, one observes the net v2 to follow
more closely that of the HM. At higher invariant masses (M =
1.5 GeV) where the QGP yield dominates that of the HM, the
final thermal dilepton v2 is close to that of the dileptons from
the QGP, even though vHM

2 > v
QGP
2 . Therefore, monitoring the

thermal dileptons as a function of their invariant mass should
help to map out the transition from a HM-dominated regime
to that of a QGP. Together with a model for the time-evolution
of the colliding system, such measurements could turn into
a measurement of the effective temperature of the different
phases. In addition, as is more clearly observed for the QGP
dilepton distribution, the viscous corrections reduce the peak
of v2 by 45% and shifts it to higher momenta, mainly because
of the momentum dependence of δn. The results shown here
consistently include the effects of viscosity, of using a medium-
dependent vector spectral density, and of using a 3 + 1D
hydrodynamics simulation.

The distribution of v2 as a function of invariant mass is
given in Fig. 5. There, one can clearly see that the peaks
related to the ρ − ω complex and to the φ are present in the
v2 spectrum—also noticed in Ref. [39]. Unlike the invariant

mass distribution of the yield, the v2 distribution is actually
sensitive to the presence of viscosity: It is decreased compared
to its value in the inviscid case (see Fig. 5). One also notices
that ρ − ω complex is made slightly broader by the viscous
dynamics, owing to the different temperature and flow profiles.

The study of thermal dileptons is challenging experi-
mentally, as competing sources have to be removed. In the
intermediate mass region, the most important of these sources
is charm and beauty hadrons.3 Charmed and beauty hadrons
require precise c- and b-quark tagging before they can be
removed. However, the physics of heavy flavor dileptons is
interesting in and of itself, as it opens a “clean” window to
study heavy quark energy loss and gain mechanisms. Thus,
Sec. IV C of this paper is precisely dedicated to heavy quarks,
more specifically to charmed quarks.

3One reaction producing dileptons that was not included here is
4π → e+e−. This channel was found to be subdominant at SPS
energies [30], but will be considered in the future.
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FIG. 5. (Color online) The thermal dilepton v2 as a function of M

for both ideal hydrodynamics (top curve) and viscous hydrodynamics
(bottom curve).
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FIG. 6. (Color online) Left panel (a): Dilepton invariant mass yields compared with experimental data at 0–10% centrality: importance
of Langevin dynamics. Right panel (b): Dilepton invariant mass yields compared with experimental data at 0–10% centrality: importance of
thermal radiation. The experimental acceptance cuts are indicated on the figures.

C. Including the dilepton contribution from charm decays

In order to make comparisons with experimental results for
dilepton yields for invariant masses up to—and including—the
“intermediate mass region,” the contribution from semilep-
tonic decays of charm to dileptons must be included. As
discussed in Sec. III, the dynamics of heavy quarks whose
velocity γ v � 1 is approximated accurately with a relativistic
Langevin equation for its momentum. We use MARTINI [42,43]
as an event generator for charm quarks in heavy-ion collisions:
The momenta of pairs of charm quarks are sampled using
PYTHIA8 and the geometry in the transverse plane is sampled
with the Glauber model, the Langevin equation is solved using
the same calculations with MUSIC (including shear viscosity)
that determined the thermal dilepton rates, and finally the
species of charmed hadrons, and their decays, are sampled.

The total contribution to dN/dM is shown in Fig. 6 (left
panel), representing the comparison of all our results with
preliminary data from the STAR Collaboration [44] for the
dilepton yields in gold-gold collisions at RHIC in the 0–10%
centrality class. Note that the STAR acceptance requires the
electron candidates to have |ηe| < 1 and pe

T > 0.2 GeV, and
dileptons to have |yee| < 1. Many ω, ρ, and φ mesons are
produced in these collisions and decay into dileptons; the data
from STAR includes thermal dileptons as well as dileptons
from the decays of the many hadrons produced in heavy-ion
collisions. For this reason, we include the “cocktail” yield, as
evaluated by the experimental collaboration: An extrapolation
of hadron yields decaying to dilepton yields. The solid green
(gray) line represents the sum of the thermal rates, the cocktail,
and the contribution of charm without evolution in the medium,
while the solid purple (gray) line represents the sum of the
thermal rates and the cocktail with the charm contribution after
evolving according to relativistic Langevin dynamics. The
energy exchange of charm quarks with the medium leads to a
depletion in dN/dM at large M , and the charm contribution
alone can differ by an order of magnitude at M = 2.1 GeV,
depending on whether Langevin evolution is considered. The
data have a slight preference for Langevin evolution, but the

size of the error precludes a stronger conclusion at this point.
However, the inclusion—or not—of the possibility of charm
energy variation will affect any determination of the cross sec-
tions using data for dilepton yields. At lower invariant masses,
the STAR data seem compatible with this theoretical calcula-
tion. However, it is clear that acceptance-corrected data will
make a much more compelling case for model compatibility.

The right panel of Fig. 6 investigates the importance of
thermal radiation to describe the STAR data. In the low invari-
ant mass region, the cocktail systematically underestimates the
data and including charmed hadrons (with Langevin dynamics)
is not enough to raise the calculation to the level of the
measurements: The inclusion of thermal radiation is crucial.
For intermediate dilepton invariant masses, the situation is
less clear, given STAR’s current experimental uncertainties.
However, the trend does suggest that thermal radiation from
the QGP is present and must participate in the interpretation
of the data.

The STAR Collaboration also has preliminary measure-
ments of minimum bias v2(M) of dileptons (albeit with still
large error bars) over a large momentum range, and this
also includes the dileptons produced by semileptonic decays
of charmed mesons. A comparison with these data requires
knowledge of the elliptic flow of the hadronic cocktail, which
we leave for a future work. The theoretical results for this
observable are shown in Fig. 7, not including the contribution
of the cocktail. Including the charm contribution to v2 has two
important effects: First, it reduces the v2 in the 0- to 1-GeV
invariant mass range by about a factor of two, and it increases
the v2 in the 1.5- to 2-GeV invariant mass range where the
charm contribution dominates the dilepton yields. The flow of
the charm contribution is smaller than the flow of the hadronic
matter contribution and it is larger than the flow of the QGP
contribution, but also bear in mind that the net elliptic flow is
a weighted average of its individual components. Notably, the
absolute magnitude of the final elliptic flow is small. Let it be
made clear again: No efforts have been made here to search for
conditions that will maximize this signal, such as going to a
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FIG. 7. (Color online) Dilepton invariant mass v2 including ther-
mal and charm contributions at 0–10% centrality.

higher centrality class, including fluctuating initial states, etc.
This is left for a future systematic investigation of these effects.

Before leaving this section on results and moving to
a conclusion, it is pertinent to recall that electromagnetic
radiation samples the entire space-time history of the colliding
system, not just the freeze-out stage. The validity for all times
of the viscosity correction linear in the viscous pressure tensor
[see Eq. (6)] to the thermal distribution functions can then be
questioned. This investigation was performed in Ref. [5]; those
results still hold and will not be repeated here. Suffice it to say
that improved versions of δn will be explored in an upcoming
work.

V. CONCLUSION

In this paper, we have conducted a systematic study of
viscosity effects on dilepton spectra in heavy-ion collisions
(a) in the microscopic emission rates, (b) in the macroscopic
evolution, and (c) in the semileptonic contribution. Viscosity
affects the net thermal dilepton spectrum by first inducing
a correction to the hadronic distribution functions. These
corrections will mostly be seen in the part of the signal
that is attributable to the QGP, as the shear pressure tensor
πμν is maximal in this phase. After describing the dilepton
radiation in a hadronic ensemble gas and in a quark-gluon
plasma and the viscous effects on the rates, those have been
integrated with MUSIC in order to consistently investigate how
the viscous dynamics affects the dilepton yield and elliptic
flow. Note that viscosity will also affect the cooling rate
of the hydrodynamic medium, which in turn will influence
both the QGP and HM thermal dileptons. For essentially all
conditions considered here, the effects of the viscous dynamics
are numerically not large but are non-negligible. Moreover,
and importantly, the viscous corrections are required to ensure
theoretical consistency.

For the purpose of comparison with recent experimental
data, the calculations presented in this work include a Langevin
evolution of charmed quark distributions in a viscous hydro-
dynamics background. The dilepton signal originating from
the charm decays was then added to that of thermal sources.
These results compared well with preliminary data on Au-Au

collisions from the STAR Collaboration at RHIC, suggesting
that the data are consistent with the viscous corrections on
both microscopic rates and macroscopic dynamics. As argued
previously by many authors, the intermediate invariant mass
region opens the possibility of measuring the energy shift of
heavy quarks that interact with the hot and dense evolving
medium, and the results shown here also support this assertion.
Our calculations also suggest that it should be possible
to access the QGP dilepton radiation in the intermediate
mass region—from 1.2 to 2.5 GeV—provided that precise
experimental tagging of heavy flavor exists. In that case, it
may be experimentally possible to remove the lepton pairs
originating from open charm and beauty decays, thus exposing
direct radiation from the QGP. A simultaneous analysis of yield
and v2 of the high-mass lepton pairs, coupled with a removal
of nonphotonic electrons, would produce a clear picture of the
early stages of the nuclear collision. As written earlier in this
paper, future work will include a study of varying the initial
states existing prior to the hydrodynamical evolution, as well
as an exploration of the effects of the different QCD transport
coefficients. In what concerns measurements, the program at
RHIC together with dilepton measurements at the LHC will
produce the necessary beacons of the QCD phase diagram.
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APPENDIX A: VISCOUS CORRECTIONS TO QGP RATES

The ansatz for the form of the viscous correction that
we chose to utilize for the QGP was previously explored
in Ref. [20]. This ansatz originates from the continuity
requirement of the the stress-energy tensor (or the Cooper-Frye
formula) across the freeze-out surface. At freeze-out, the
stress-energy tensor from the hydrodynamical simulation must
be matched to the one from kinetic theory. That is,

T
μν

ideal + πμν =
∫

d3p

(2π )3p0
pμpν[n(p · u) + δn(p · u)]. (A1)

Requiring that the stress-energy tensor be continuous during
the entire hydrosimulation implies that the viscous correction
to the equilibrium distribution function must be present in
dileton production rates. For the extension to the thermal
distribution, we use

ntotal(p · u) = n(p · u) + δn(p · u)

= n(p · u) + C

2T 2(ε+P )
n(p · u)[1 ± n(p · u)]pαpβπαβ

= n(p · u) + C

2
n(p · u)[1 ± n(p · u)]

pα

T

pβ

T

παβ

ε + P
,

(A2)

where pα is the four-momentum of one of the incoming quarks,
ε + P is the local energy density and pressure respectively, T
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is the temperature, and παβ is the shear-stress tensor of the
fluid. Substituting Eq. (A2) into Eq. (A1) yields

πμν =
[
C

2

∫
d3p

(2π )3p0
n(p · u)[1 ± n(p · u)]pμpν pα

T

pβ

T

]

× παβ

ε + P
, (A3)

C is a proportionality constant that relates the hydrodynamical
shear-stress tensor to its kinetic theory counterpart. In the
context of a single component ensemble, C can be determined
via [45]

η = C

15T 3

∫
d3p

(2π )3p0
n(p · u)[1 ± n(p · u)][p2 − (u · p)2]2.

(A4)

One can solve for C in Eq. (A4) by expressing T 3 in terms of
entropy density:

s = 4

3

ε

T
, (A5)

ε = T 4g

2π2

∫ ∞

y

x3
√

1 − (y/x)2dx

ex ± 1
, (A6)

where ε is the average energy density of a Fermi or Bose
gas with distribution n, x = (p · u)/T , y =

√
p2/T , g is the

spin degeneracy factor, and p2 is the four-momentum squared.
Finally solving for C is simplest in the rest frame of the fluid:

C = 4ã

3b̃
,

ã = 1

2π2

∫ ∞

y

dx
x3

√
1 − (y/x)2

ex ∓ 1
, (A7)

b̃ = 1

30π2

∫ ∞

y

dx
x5[1 − (y/x)2]5/2

ex ∓ 1

{
1 ± 1

ex ∓ 1

}
.

For the specific case of the QGP, in the approximation of a
single-component fluid of massless quarks, C can be evaluated
analytically and is Cq = 7π4

675ζ (5) ≈ 0.97.
The modification of the distribution functions owing to

viscosity have a nontrivial effect on the viscous rates of QGP
dileptons. Since we will be including viscous effects on the
hadronic dilepton rates, it is instructive to carefully explore
the manner in which the simpler Born QGP rates get modified.
Indeed, we use the same procedure for the HM case.

In the massless quark limit,

d4R

d4q
=

∫
d3p1d

3p2

(2π )6p0
1p

0
2

n(p1 · u)n(p2 · u)
q2

2
σδ4(q − p1 − p2) (A8)

+
∫

d3p1d
3p2

(2π )6p0
1p

0
2

n(p1 · u)n(p2 · u)[1 − n(p1 · u)]
q2

2
σδ4(q − p1 − p2)Cq

pα
1

T

p
β
1

T

παβ

ε + P
,

d4R

d4q
= d4Rideal

d4q
+ Cq

J αβ

T 2

παβ

ε + P
,

where we decomposed the rate into its ideal and viscous contributions, ignoring all viscous corrections of order (δn)2. Performing
this integral is nontrivial. However, we know that the tensor J αβ of viscous correction to the rate must solely depend on the
momentum of the virtual photon qα , the flow uα , and the metric gαβ . Hence,

J αβ = b0g
αβ + b1u

αuβ + b2q
αqβ + b3(uαqβ + uβqα) + b4(uαqβ − uβqα). (A9)

This is the most general form one can write down for J αβ . However, since J αβ is contracted with παβ—which must be a
symmetric tensor (as part of T αβ); any antisymmetric piece of J αβ must not contribute to this calculation as shown below. The
coefficients b0 through b4 are obtained as⎡

⎢⎢⎢⎢⎢⎢⎣

gαβJαβ

uαuβJαβ

qαqβJαβ

(uαqβ + uβqα)Jαβ

(uαqβ − uβqα)Jαβ

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎣

4 1 q2 2(u · q) 0

1 1 (u · q)2 2(u · q) 0

q2 (u · q)2 q4 2q2(u · q) 0

2(u · q) 2(u · q) 2q2(u · q) 2(q2 + (u · q)2) 0

0 0 0 0 2q2

⎤
⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2

b3

b4

⎤
⎥⎥⎥⎥⎥⎥⎦

, (A10)

whose solution is

⎡
⎢⎢⎢⎢⎢⎢⎣

b0

b1

b2

b3

b4

⎤
⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1
2 − 1

2
q2

q2−(u·q)2 − 1
2

1
q2−(u·q)2

1
2

u·q
q2−(u·q)2 0

− 1
2

q2

q2−(u·q)2
3
2

[
q2

q2−(u·q)2

]2
1
2

q2+2(u·q)2

[q2−(u·q)2]2 − 3
2

q2(u·q)

[q2−(u·q)2]2 0

− 1
2

1
q2−(u·q)2

1
2

q2+2(u·q)2

[q2−(u·q)2]2
3
2

1

[q2−(u·q)2]2 − 3
2

u·q
[q2−(u·q)2]2 0

1
2

u·q
q2−(u·q)2 − 3

2
q2(u·q)

[q2−(u·q)2]2 − 3
2

(u·q)

[q2−(u·q)2]2
1
2

q2+2(u·q)2

[q2−(u·q)2]2 0

0 0 0 0 1
2q2

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎣

gαβJαβ

uαuβJαβ

qαqβJαβ

(uαqβ + uβqα)Jαβ

(uαqβ − uβqα)Jαβ

⎤
⎥⎥⎥⎥⎥⎥⎦

.
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A simplification of the second-rank tensor J αβ is made possible by using the identities uαπαβ = gαβπαβ = 0. Indeed, J αβ is only
proportional to qαqβ and the proportionality constant b2 is obtained via the projection operator

Pαβ = 1

2

gαβ

(u · q)2 − q2
+ 1

2

[
q2 + 2(u · q)2

[q2 − (u · q)2]2

]
uαuβ + 3

2

qαqβ

[q2 − (u · q)2]2
− 3

2

[
u · q[

q2 − (u · q)2
]2

]
(uαqβ + uβqα). (A11)

Since PαβJ αβ is a Lorentz invariant quantity, the most efficient way to compute it is in the rest frame of the fluid cell. Performing
that computation yields

b2 = PαβJ αβ = 1

2|q|5
∫ E+

E−

dE1

(2π )5

q2

2
σn(E1)n(q0 − E1)[1 − n(E1)]D, D =

[
(3q2

0 − |q|2)E2
1 − 3q0E1q

2 + 3

4
q4

]
, (A12)

where E± = q0±|q|
2 . Finally, the Born rate with viscous corrections reads

d4R

d4q
= q2

2

σ

(2π )5

[
1

exp(βq0) − 1

{
1 − 2

β|q| ln

[
n−
n+

]}
+ Cq

qα

T

qβ

T

παβ

ε + P

1

2|q|5
∫ E+

E−
dE1n(E1)n(q0 − E1)[1 − n(E1)]D

]
.

(A13)

APPENDIX B: THE VECTOR MESON SELF-ENERGY AND ITS VISCOUS CORRECTION

Using the tools of the previous section, the goal of this section is to derive the viscous correction to the self-energy. To this
end, we first outline the steps leading to the thermal self-energy and then we extend it to include viscous corrections.

1. Thermal self-energy

To simplify the calculation, and without loss of generality, we choose the z axis such that the four-momentum of particle V
is aligned with it, i.e., pμ = (E,0,0,|p|). We further define the angle θ between the z axis and the momentum kμ = (ω,k) of
particle a. Note that θ is not the angle between pμ and kμ.

In the rest frame of particle a, it is possible to evaluate the angular part of the self-energy integral. From now on, prime (′) is
used to denote energy and momentum in V ’s rest frame and double prime (′′) is used to label a’s rest frame. One can relate the
energy in the two frames via

s = m2
V + m2

a + 2E′′ma = m2
V + m2

a + 2mV ω′. (B1)

Hence, E′′ = mV

ma
ω′. Furthermore, in V ’s rest frame, ω = Eω′+|p||k′|z′

mV
, where z′ = cos θ ′. Putting everything together,

�T
V a(|p|,T ) = −4π

∫
d3k

(2π )3ω
na(ω)

√
sf c.m.

V a (s) = −4π

∫ |k′|2d|k′|dz′

(2π )2ω′ na

(
Eω′ + |p||k′|z′

mV

)
f a′s rest

V a

(
mV

ma

ω′
)

= −mV

π

∫ ∞

ma

|k′|dω′f a′s rest
V a

(
mV

ma

ω′
)∫ 1

−1
dz′na

(
Eω′ + |p||k′|z′

mV

)

= −mV maT

π |p|
∫ ∞

ma

dω′ ln

[
1 ± exp (−ω+/T )

1 ± exp (−ω−/T )

]
f a′s rest

V a

(
mV

ma

ω′
)

, (B2)

where ω± = Eω′±|p||k′|
mV

. This expression for the self-energy is evaluated on the mass shell of the vector meson V .

2. Viscous corrections to the thermal self-energy

To calculate the viscous correction to the thermal self-energy, we proceed by including the δn correction to the thermal
distribution function. Unlike the Bose distribution function present in the rates—which originates from the KMS relation and
therefore is not related to the thermal distribution function of vector mesons—the distribution function present in the self-energy,
Eq. (11), is indeed a distribution function of thermal particles, so the viscous correction to the thermal distribution in Eq. (A2)
applies. Thus,

δ�T
V a(|p|,T ) = −4π

∫
d3k

(2π )3ω
δna(k · u)

√
sf c.m.

V a (s) = Ca

Kαβ

T 2

παβ

ε + P
. (B3)

Note that Ca cannot be computed via Eq. (A7), since δ�T
V a is describing a multicomponent mixture. Hence, a simplifying

assumption is made: ∀a Ca = 1. Now we expand the tensor Kμν in the same manner as the QGP Jμν tensor encountered earlier:

Kμν = B0g
αβ + B1u

αuβ + B2p
αpβ + B3(uαpβ + uβpα) + B4(uαpβ − uβpα). (B4)
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Since the relation uαπαβ = gαβπαβ = 0 still holds, we use the same projection operator as in Eq. (A11) to determine B2. Thus,

B2,V a = PαβKαβ = −4π

∫
d3k

(2π )3
na(u · k)[1 ± na(u · k)]

√
s

ω
fV a(s)

[
1

2

m2
a

(u · p)2 − p2
+ 1

2

[
p2 + 2(u · p)2

[p2 − (u · p)2]2

]
(u · k)2

+ 3

2

(p · k)2

[p2 − (u · p)2]2
− 3

(u · p)(u · k)(p · k)

[p2 − (u · p)2]2

]
. (B5)

Throughout this appendix, the upper (lower) sign refers to bosons (fermions). In the rest frame of the medium (using z = cos θ
as before)

B2,V a = −4π

∫
d3k

(2π )3ω
na(1 ± na)

√
sfV a

[
m2

a

2|p|2 +
(

3E2

2|p|4 − 1

2|p|2
)

ω2 + 3

2

(Eω − |p||k|z)2

|p|4 − 3Eω(Eω − |p||k|z)

|p|4
]

= −4π

∫
d3k

(2π )3ω
na(1 ± na)

√
sfV a

[
m2

a

2|p|2 + 3|k|2z2 − ω2

2|p|2
]

. (B6)

By evaluating the integral in the rest frame of a, we obtain

B2,V a = −4πma

∫
d3k′

(2π )3ω′ na

(
Eω′ + |p||k′|z′

mV

)[
1 ± na

(
Eω′ + |p||k′|z′

mV

)]
f a′s rest

V a

(
mV

ma

ω′
)

×

⎡
⎢⎣ m2

a

2|p|2 +
3
(

E|k′|z′+|p|ω′
mV

)2
−

(
Eω′+|p||k′|z′

mV

)
2|p|2

⎤
⎥⎦

= − ma

2π |p|2
∫ ∞

ma

dω′|k′|f a′s rest
V a

(
mV

ma

ω′
) ∫ 1

−1
dz′nb

(
Eω′ + |p||k′|z′

mV

) [
1 ± na

(
Eω′ + |p||k′|z′

mV

)]

×
[
m2

a + (3|p|2 − E2)
ω′2

m2
V

+ 4E|p|ω
′|k′|
m2

V

z′ + (3E2 − |p|2)
|k′|2
m2

V

z′2
]

, (B7)

where |k|z = E
mV

|k′|z′ + |p|
mV

ω′. Performing the angular integral yields

B2,V a = − mV

2π |p|2
∫ ∞

ma

dω′|k′|f a′s rest
V a

(
mV

ma

ω′
)

× (A + B + C + D + E) , (B8)

where

A =
(

mV T

|p||k′|
) [

m2
a + (E|k′| − |p|ω)2 − (Eω′ − |p||k′|)2

m2
V

]
[exp(ω−/T ) ∓ 1]−1,

B = −
(

mV T

|p||k′|
) [

m2
a + (E|k′| + |p|ω)2 − (Eω′ + |p||k′|)2

m2
V

]
[exp(ω+/T ) ∓ 1]−1,

C = ±2

(
mV T

|p||k′|
)2 [

(3E2 − |p|2)
|k′|2
m2

V

+ 2
Eω′|p||k′|

m2
V

]
ln[1 ∓ exp(−ω+/T )],

D = ±2

(
mV T

|p||k′|
)2 [

(3E2 − |p|2)
|k′|2
m2

V

− 2
Eω′|p||k′|

m2
V

]
ln[1 ∓ exp(−ω−/T )],

E = ∓2

(
mV T

|p||k′|
)3 [

(3E2 − |p|2)
|k′|2
m2

V

]
{Li2[± exp(−ω+/T )] − Li2[± exp(−ω−/T )]}, (B9)

and Li2 is the dilogarithm function. Thus, the total self-energy is

�tot
V (M,|p|,T ) = �vac

V (M)

+
∑

a=N,N̄,π

{
−mV maT

π |p|
∫ ∞

ma

dω′ ln

[
1 ± exp (−ω+/T )

1 ± exp (−ω−/T )

]
f a′s rest

V a

(
mV

ma

ω′
)

+ CaB2,V a

pα
V p

β
V

T 2

παβ

ε + P

}
.

(B10)
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