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Strongly intensive measures for transverse momentum and particle number fluctuations
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Strongly intensive measures �[PT ,N ] and �[PT ,N ] are used to study the event-by-event fluctuations of the
transverse momentum PT and particle multiplicity N in nucleus-nucleus collisions. A special normalization
for these fluctuation measures ensures that they are dimensionless and yields a common scale required for a
quantitative comparison of fluctuations. In this paper basic properties of the �[PT ,N ] and �[PT ,N ] measures
are tested within different phenomenological models using the Monte Carlo simulations (the so-called fast
generators) and analytical solutions. The obtained results are helpful to elucidate the properties of the �[PT ,N ]
and �[PT ,N ] measures.
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I. INTRODUCTION

The main motivation for the experiments studies on
relativistic nucleus-nucleus (A + A) collisions is to create and
study strongly interacting matter. Experimental and theoretical
investigations of event-by-event (e-by-e) fluctuations in A + A
collisions produce new information about its properties. E-by-
e fluctuations can be also an important tool for localizing
the phase boundary and the critical point of the QCD matter.
In particular, significant increase of transverse momentum
and multiplicity fluctuations are expected in a vicinity of
the critical point [1]. One can probe different regions of the
phase diagram by varying the collision energy and the size of
colliding nuclei [2]. A possibility to observe signatures of the
critical point inspired the energy and system size scan program
of the NA61/SHINE Collaboration at the CERN Super Proton
Synchrotron (SPS) [3] and the low-energy scan program of
the STAR and PHENIX Collaborations at the Brookhaven
National Laboratory’s Relativistic Heavy Ion Collider (BNL
RHIC) [4]. In these studies one measures and then compares
the e-by-e fluctuations in collisions of different nuclei at
different collision energies. The average sizes of created
physical systems and their e-by-e fluctuations are expected
to be rather different [5]. This strongly affects the observed
hadron fluctuations, and consequently the measured quantities
do not describe local physical properties of the system but
rather reflect the system size fluctuations. For instance, A + A
collisions with different centralities may produce a system
with approximately the same local properties (e.g., the same
temperature and baryonic chemical potential) but with the
volume changing significantly from interaction to interaction.
Note that in high energy collisions the average volume of
created matter and its variations from collision to collision are
usually out of experimental control, i.e., the volume variations
are difficult or even impossible to measure. Therefore, a
suitable choice of statistical tools for the study of e-by-e
fluctuations is really important.

In statistical mechanics, an extensive quantity is propor-
tional to the system volume V , whereas an intensive one
has fixed finite value in the thermodynamical limit V → ∞.
Intensive quantities are used to describe local properties of

a physical system. In particular, the equation of state of the
matter is usually formulated in terms of intensive physical
quantities, e.g., the pressure is considered as a function of
temperature and chemical potentials.

The strongly intensive quantities have been introduced in
Ref. [6]. Within the grand canonical ensemble formulation
of statistical mechanics they are independent of the average
volume and volume fluctuations. Similar properties take place
in the model of independent sources: the strongly intensive
measures of fluctuations are independent of the average
number of sources and of fluctuations of the number of
sources. The strongly intensive measures �[A,B] and �[A,B]
are suggested for studies of e-by-e fluctuations of hadron
production in heavy ion collisions at high energies. They are
defined using two arbitrary extensive quantities A and B. In
the present paper we consider a pair of extensive variables:
the transverse momentum A = PT = p

(1)
T + · · · + p

(N)
T , where

p
(i)
T is the absolute value of the ith particle transverse

momentum, and the number of particles B = N . The mea-
sures �[PT ,N ] and �[PT ,N ] were studied recently within
the ultrarelativistic quantum molecular dynamics (UrQMD)
simulations in Ref. [7]. The measures �[A,B] and �[A,B] in
the case of two hadron multiplicities A and B were considered
within the hadron-string dynamics (HSD) transport model in
Ref. [8]. To simplify notations we sometimes use X = PT

and xi = p
(i)
T . Note that our consideration is valid also for

other motional variables X, e.g., the system energy X = E =
ε1 + · · · + εN . The strongly intensive measure �[X,N ] and
�[X,N ] are defined as [6]

�[X,N ] = 1

C�

[〈N〉ω[X] − 〈X〉ω[N ]], (1)

�[X,N ] = 1

C�

[〈N〉ω[X] + 〈X〉ω[N ] − 2(〈X N〉
−〈X〉〈N〉)], (2)

where

ω[X] = 〈X2〉 − 〈X〉2

〈X〉 , ω[N ] = 〈N2〉 − 〈N〉2

〈N〉 (3)
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are the scaled variances for X and N fluctuations, and C� and
C� are normalization factors. The notation 〈· · · 〉 represents
the e-by-e averaging.

The first strongly intensive measure of fluctuations, the
so-called � measure, was introduced a long time ago in
Ref. [9]. There were many attempts to use the � measure in
the data analysis [10–16] and in theoretical models [17–32].
In general, � is a dimensional quantity and it does not assume
a characteristic scale for a quantitative analysis of e-by-e
fluctuations for different observables. Note that the latter
properties were clearly disturbing.

In the recent paper [33] special normalization has been
proposed for the � and � fluctuation measures. It is used
in the present study and ensures that measures (1) and (2)
are dimensionless and yields a common scale required for
a quantitative comparison of the e-by-e fluctuations. This
normalization has been already used for the �[PT ,N ] and
�[PT ,N ] measures using the transport model of A + A
collisions in Ref. [33] and for the ideal quantum gases within
the grand canonical ensemble formulation [34]. Note that the
NA61 Collaboration has already started to use the strongly
intensive measures to study e-by-e fluctuations in A + A
collisions [35].

In the present paper several phenomenological models
of hadron production are suggested and studied using the
Monte Carlo (MC) simulations (the so-called fast generators).
Analytical solutions for the proposed models are also presented
and analyzed. These studies are helpful to elucidate properties
of the �[PT ,N ] and �[PT ,N ] measures. A search for possible
signals for the phase transition and critical point in A + A
collisions is outside of the scope of our paper. To achieve this
goal one first needs to formulate suitable dynamical models
for these phenomena.

The paper is organized as follows. In Sec. II we introduce
two reference models. The first model is the independent
particle model within which we calculate the normalization
factors C� and C� for �[X,N ] and �[X,N ] quantities. The
second model is the model of independent sources which is
often used to analyze the data on nucleus-nucleus collisions.
Section III presents examples of the MC simulations. Some
of these examples correspond to different versions of the
model of independent sources. Analytical solutions are also
presented and analyzed. In Sec. IV the MC simulations and
analytical consideration are used for the models where single
particle momentum spectra are dependent on the number of
the produced particles. In Sec. V results of statistical and
transport models are presented. Using the UrQMD simulations
we study effects of the centrality selection and limited detector
acceptance and efficiency in A + A collisions. A summary in
Sec. VI closes the article.

II. REFERENCE MODELS

In this section two simple models of particle production
are presented. The first one is the independent particle
model (IPM) which is used as a reference model to fix the
normalization of the strongly intensive measures � and �.
Namely, properly normalized strongly intensive quantities
assume the value one for the fluctuations given by the IPM.

The second model is the model of independent sources. In this
model, the values of � and � for the system of sources are
equal to their values for a single source.

A. Independent particle model

In Ref. [33] a special normalization for the strongly
intensive measures �[A,B] and �[A,B] has been proposed. In
this subsection we present its derivation when A is an extensive
variable A = X presented as a sum of single particle terms

X = x1 + x2 + · · · + xN (4)

(e.g., the system energy E or transverse momentum PT ) and
B = N is the number of particles. Interparticle correlations
are absent in the IPM, i.e., the probability of any multiparticle
state is a product of probability distributions F (xj ) of single-
particle variables xj , and these probability distributions are the
same for all j = 1, . . . ,N and independent of the number of
particles N :

FN (x1,x2, . . . ,xN ) = P(N ) × F (x1) F (x2) × · · · × F (xN ),

(5)

where P(N ) is an arbitrary multiplicity distribution of parti-
cles. The functions entering Eq. (5) satisfy the normalization
conditions:

∑
N

P(N ) = 1,

∫
dxF (x) = 1. (6)

The averaging procedure for kth moments of any multiparticle
observable A reads

〈Ak〉 =
∑
N

P(N )
∫

dx1dx2 . . . dxNF (x1) F (x2) × · · ·

×F (xN )[A(x1,x2, . . . ,xN )]k. (7)

For the first and second moments of X and N one obtains

〈X〉 = x · 〈N〉, 〈X2〉 = x2 · 〈N〉 + x2 · [〈N2〉 − 〈N〉],
〈XN〉 = x · 〈N2〉, (8)

where

〈Nk〉 =
∑
N

P(N ) Nk, xk =
∫

dx F (x) xk. (9)

Note that the overline denotes averaging over single particle in-
clusive distribution, whereas 〈· · · 〉 represents event averaging
over multiparticle states of the system, e.g., e-by-e averaging
over hadrons detected in A + A collisions.

Using Eq. (8), one finds

ω[X] ≡ 〈X2〉 − 〈X2〉
〈X〉 = x2 − x2

x
+ x · 〈N2〉 − 〈N〉2

〈N〉
≡ ω[x] + x · ω[N ], (10)

〈XN〉 − 〈X〉 〈N〉 = x · [〈N2〉 − 〈N〉2] ≡ x · 〈N〉ω[N ], (11)
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and finally,

�[X,N ] = 1

C�

[〈N〉ω[X] − 〈X〉ω[N ]] = ω[x] · 〈N〉
C�

, (12)

�[X,N ] = 1

C�

[〈N〉ω[X] + 〈X〉ω[N ]

− 2(〈X N〉 − 〈X〉〈N〉)]
= ω[x] · 〈N〉

C�

. (13)

The requirement that

�[X,N ] = �[X,N ] = 1 (14)

for the IPM leads thus to the normalization factors

C� = C� = ω[x] · 〈N〉, ω[x] ≡ x2 − x2

x
. (15)

The normalization factors (15) are suggested to be used both
in theoretical models and for the data analysis (see Ref. [33]
for further details of the normalization procedure).

According to the current classification the � measure [9]
belongs to the � family [6]. It can be calculated as

�X = [x ω[x]]1/2 [
√

�[X,N ] − 1]. (16)

The representation of X with Eq. (4) as the sum of single
particle variables xi is an evident feature of the IPM. Thus,
one needs such a representation to calculate the normalization
factors C� and C� . Such a representation of the extensive
motional variable is, however, not necessarily needed for the
e-by-e measurements. For example, the system energy E (or
transverse momentum PT ) can be measured by a calorimeter
without determining individual single particle contributions.

It was proven [33] that the IPM relation (14) is valid also
in two models. The first model is statistical mechanics for
the Boltzmann ideal gas within the grand canonical ensemble.
The second model is the mixed event procedure which creates
a sample of artificial events, where each particle is taken from
different physical events. These model constructions play an
important role as reference model. The deviations of real
data from the IPM results (14) can be used to clarify the
physical properties of the system. It resembles the situation
with particle number distributions. One prefers to use the

Poisson distribution P (N ) = exp(−N ) N
N
/N! with ω[N ] =

1 as a reference model. Another reference value ω[N ] = 0
corresponds to N = const, where the N fluctuations are absent.
The fluctuations for any particle number distribution P(N )
is then clarified by the comparison of the calculated (or
measured) scaled variance ω[N ] with its reference value of
ω[N ] = 1. The relation ω[N ] > 1 (or ω[N ] � 1) corresponds
to “large” (or “very large”) fluctuations of N , and ω[N ] < 1
(or ω[N ] � 1) to “small” (or “very small”) fluctuations.

B. Model of independent sources

In this subsection we consider a model of independent
sources (MIS) for multiparticle production. In this model the
number of sources, NS , changes from event to event. The
sources are statistically identical and independent of each

other. A famous example of the MIS is the wounded nucleon
model [36] for A + A collisions. Two fluctuating extensive
quantities X and N can be expressed as

X = X1 + X2 + · · · + XNS
, N = n1 + n2 + · · · + nNS

,

(17)

where nj denotes the number of particles emitted from the
j th source (j = 1, . . . ,NS), and Xj = x1 + · · · + xnj

is the
contribution from the j th source to the quantity X.

Overline notations will be used for the averages connected
to a single source. The single-source quantities are independent
of NS and have the properties of intensive quantities. The
single-source distribution FS(XS,n) is assumed to be statis-
tically identical for all sources, thus, for all j = 1, . . . ,NS it
follows that

Xk
j ≡ Xk

S, nk
j ≡ nk, Xjnj ≡ XSn, (18)

where Xk
S , nk , and XS n (for k = 1,2) are the first and second

moments of the distribution FS(XS,n) for a single source. The
sources are assumed to be independent. This gives at i 	= j :

XiXj ≡ XS
2
, ninj ≡ n2, Xinj ≡ XSn. (19)

Using Eqs. (18) and (19) one finds for the event averages:

〈X〉 = XS · 〈NS〉, 〈X2〉 = X2
S · 〈NS〉 + XS

2[〈
N2

S

〉 − 〈NS〉
]
,

(20)

〈N〉 = n〈NS〉, 〈N2〉 = n2 · 〈NS〉 + n2 · [〈
N2

S

〉 − 〈NS〉
]
,

(21)

〈X N〉 = XS n〈NS〉 + XSn · [〈
N2

S

〉 − 〈NS〉
]
. (22)

A probability distribution PS(NS) of the number of sources
is needed to calculate 〈NS〉 and 〈N2

S 〉 and, in general, it is
unknown.

Using Eqs. (20)–(22) one obtains

ω[X] ≡ 〈X2〉 − 〈X〉2

〈X〉 = X2
S − XS

2

XS

+ XS ·
〈
N2

S

〉 − 〈NS〉2

〈NS〉
≡ ω[XS] + XS · ω[NS], (23)

ω[N ] ≡ 〈N2〉 − 〈N〉2

〈N〉 = n2 − n2

n
+ n ·

〈
N2

S

〉 − 〈NS〉2

〈NS〉
≡ ω[n] + n · ω[NS], (24)

where ω[XS] and ω[n] are the scaled variances for quantities
XS and n referring to a single source. The scaled variances
ω[X] and ω[N ] are independent of the average number of
sources 〈NS〉. Thus, ω[X] and ω[N ] are intensive quantities.
However, they depend on the fluctuations of the number
of sources via ω[NS] and, therefore, they are not strongly
intensive quantities.

From Eqs. (22)–(24) it follows that

�[X,N ] = 1

ω[x]
[ ω[XS] − x · ω[n] ]. (25)

034903-3



MARK I. GORENSTEIN AND KATARZYNA GREBIESZKOW PHYSICAL REVIEW C 89, 034903 (2014)

�[X,N ] = 1

ω[x]

[
ω[XS] + x · ω[n] − 2

XS n − xn2

n

]
,

(26)

where the relations x = XS/n = 〈X〉/〈N〉 , and the normal-
ization factors (15) have been used.

Note that the terms with 〈N2
S 〉, which are present in the

expressions (20)–(22) for the second moments of X and
N , are canceled out in the final expressions (25),(26). From
three second moments 〈X2〉, 〈N2〉, and 〈X N〉 only two linear
combinations independent of 〈N2

S 〉 can be constructed. They
are defined as the strongly intensive quantities � and �.
To remove the dependence on 〈NS〉, the strongly intensive
quantities should be in a form of reducible fractions. This is
achieved due to the normalization factors (15).

Only the first and second moments of X and N are required
in order to define the strongly intensive quantities � and �.
However, in order to calculate the proposed normalization
factors C� and C�, additional information is needed, namely
the second moment x2 of single-particle distribution F (x).
Note that the first moment x can be calculated as x = 〈X〉/〈N〉,
and thus to find it the single particle distribution F (x) is not
necessarily needed.

The IPM and MIS have similar structure. The difference is
that the number of sources NS in the MIS is replaced by the
number of particles N in the IPM. Each source can produce
many particles, and the number of these particles varies from
source to source and from event to event. Besides, the physical
quantity XS for particles emitted from the same source may
include interparticle correlations. Therefore, in general, the
MIS does not satisfy the assumptions of the IPM. Nevertheless,
a formal similarity between the two models can be exploited
and gives the following rule of one to one correspondence: all
results for the IPM can be found from the expressions obtained
within the MIS, assuming artificially that each source always
produces exactly one particle. In this case one finds

n = 1, ω[n] = 0, ω[XS] = ω[x], XS n = x, (27)

and Eqs. (25),(26) are transformed to Eq. (14).
If particles are independently emitted from a single source,

one obtains

FS(XS,n) = PS(n) × FS(x1) × · · · × FS(xn), (28)

with the probability distributions FS(xi) which are the same
for all i = 1, . . . ,n and independent of the number of particles
n. Similar to Eqs. (10) and (11) one then finds

ω[XS] = ω[x] + x · ω[n], XS n − XS n = xn · ω[n],

(29)

and Eqs. (25) and (26) are again transformed to Eq. (14).
Therefore, the MIS with independent particle emission from
each source is equivalent to the IPM.

Correlations of particles emitted from a single source can
be of different origin. Let us consider the case when all
single-particle distributions FS(x) in Eq. (28) are dependent on
the source parameter T (e.g., the source temperature) which
fluctuates, and these T -fluctuations are independent for each

source. The FS(XS,n) distribution for a single source can be
then presented as

FS(XS,n)=PS(n)×
∫

dT W (T )FS(x1,T ) × · · · × FS(xn,T ).

(30)

Note that presentation (30) means the absence of correlations
between particle momenta xj and multiplicity n, but correla-
tions between xi and xj appear due to the T fluctuations. The
multiparticle distribution (30) may look as a simple product
of the one-particle distributions. However, the single particle
distributions are not independent due to integration over T .
With distribution (30) one calculates

XS n =
∑

n

PS(n)
∫

dT W (T )
∫

dx1 . . . dxnFS(x1,T ) . . .

×FS(xn,T ) (x1 + · · · + xn) · n

= x n2. (31)

Using Eq. (31) one can simplify further Eq. (26). Finally, it
gives

�[X,N ] = �[X,N ] = ω[XS] − x · ω[n]

ω[x]
. (32)

III. FAST GENERATORS AND ANALYTICAL RESULTS

We consider the Boltzmann transverse momentum (p ≡
pT ) distribution

f (p,T ) = C p exp

(
−

√
m2 + p2

T

)
, (33)

where constant C is defined by the normalization condition
and C−1 = ∫ ∞

0 dpp exp(−
√

m2 + p2/T ). The particle mass
m in the MC simulations is taken as the pion mass m =
mπ

∼= 140 MeV, T is the effective temperature or simply an
inverse slope parameter controlled by the actual freeze-out
temperature and the collective transverse flow velocity. The
moments (k = 1,2) of the f (p,T ) probability distributions
(33) are denoted as

p̃k =
∫ ∞

0
dppkf (p,T ). (34)

In the presence of e-by-e temperature fluctuations, the inclu-
sive transverse momentum distributions reads

f (p) =
∫

dT W (T )f (p,T ), (35)

where W (T ) is the temperature probability distribution nor-
malized to one. The moments (k = 1,2) of the f (p) probability
distribution (35) are denoted as

pk =
∫ ∞

0
dppkf (p) =

∫
dT W (T )p̃k. (36)

In the case of massless particles m = 0 distribution (33)
is reduced to a simple exponential form and one can easily
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compute

p̃ = 2T , p̃2 = 6T 2, p = 2T ,
(37)

p2 = 6T 2, ω[p] = 3T 2 − 2T
2

T
,

where (k = 1,2)

T k =
∫

dT T kW (T ). (38)

Note that in the MC simulations the particle transverse
momenta are generated with the p values in a region [0,pmax].

The basic properties of �[PT ,N ] and �[PT ,N ] measures
will be tested using MC simulations (so-called fast generators).
Each interaction (event) is composed by a given number of
sources. For each simulation the statistical errors on �[PT ,N ]
and �[PT ,N ] are estimated as follows. The whole sample
of events is divided into 30 independent subsamples. Next,
the values of �[PT ,N ] and �[PT ,N ] are evaluated for each
subsample and the dispersions (D�, and D�) of the results are
then calculated. The statistical error of �[PT ,N ] or �[PT ,N ]
is taken to be equal to D�/

√
30 or D�/

√
30, respectively.

A. Fixed temperature

The first set of the MC simulations refers to particle
production from sources with fixed temperature. For each
source in a given event the number of particles was gen-
erated from the Poisson distribution with a mean value of
5. The particle transverse momentum was generated from
transverse momentum distribution (33) with maximal value
pmax = 2.0 GeV/c. The temperature parameter is fixed as
T = 150 MeV. The number of sources NS composing an event
is either constant (circles in Fig. 1) or selected from Poisson
(triangles) or from Negative Binomial distribution (squares).
For negative binomial distribution its dispersion

√
(NS) is large

and equals 〈NS〉/2.
Figure 1 shows �[PT ,N ] and �[PT ,N ] versus the number

or the mean number of sources composing one event. The
distribution function of a single source has the form of Eq. (28)

and the PS(x) function is taken as f (p,T ) (33) with fixed
temperature T , same for all sources. This corresponds the case
when the MIS is reduced to the IPM, and relation (14) should
be valid. As expected, the �[PT ,N ] and �[PT ,N ] values for
the MC simulations are consistent with one, independently
of the assumed shape of transverse momentum distribution.
The circles in Fig. 1 confirm that �[PT ,N ] and �[PT ,N ]
are intensive measures (do not depend on NS), whereas the
triangles and the squares show that these quantities are also
strongly intensive (do not depend on NS fluctuations).

For a constant number of sources per event (circles in
Fig. 1), the scaled variance of multiplicity distribution ω[N ] =
ω[n] + nω[NS] equals 1 in the whole range of the horizontal
axis. For the Poisson distribution of the number of sources
ω[N ] equals 6 also for the whole range of the mean number of
sources per event. For the negative binomial distribution of the
number of sources ω[N ] increases from about 7 at 〈NS〉 = 5,
through 126 at 〈NS〉 = 100, up to approximately 1000 at
〈NS〉 = 800. Therefore, Fig. 1 shows that �[PT ,N ] and
�[PT ,N ] measures are strongly intensive even for multiplicity
distributions which are extremely wide.

B. Source temperature fluctuations

In the next set of simulations, the number of particles
produced by each single source is again selected from the
Poisson distribution with a mean value of n = 5. The particle
transverse momentum is generated by the transverse momen-
tum distribution (33) with average inverse slope parameter
T = 150 MeV. The T parameter is generated separately for
each single source (source-by-source T fluctuations) from the
Gaussian distribution

W (T ) = 1√
2π σT

exp

[
− (T − T )2

2σ 2
T

]
, (39)

with dispersion σT = 25 MeV. Finally, the number of sources
NS composing an event is generated from the Poisson
distribution, with 〈NS〉 as denoted on the horizontal axis of
Fig. 2. As seen, the effect of source temperature fluctuations
results in �[PT ,N ] and �[PT ,N ] values higher than 1.

(average) number of sources / event
1 10 210 310

, N
]

T
[PΔ

0

0.5

1

1.5

2

2.5
no. of sources per event constant
no. of sources per event from Neg. Bin.
no. of sources per event from Poisson

(a)

(average) number of sources / event
1 10 210 310

, N
]

T
[PΣ

0.9

0.95

1

1.05

1.1

1.15
no. of sources per event constant
no. of sources per event from Neg. Bin.
no. of sources per event from Poisson

(b)

FIG. 1. (Color online) The symbols are the MC results for the �[PT ,N ] (a) and �[PT ,N ] (b) measures versus the number or mean number
of sources composing one event. All sources have fixed temperature. The number of sources per event are fixed (circles) or fluctuating according
to the Poisson distribution (triangles) and negative binomial distribution (squares).
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average number of sources / event
1 10 210 310

, N
]

T
[PΣ

, N
]  

 o
r

T
[PΔ

1

1.2

1.4

1.6
, N]

T
[PΔ

, N]
T

[PΣ

FIG. 2. (Color online) The symbols are the MC results for the
�[PT ,N ] (circles) and �[PT ,N ] (triangles) measures versus the
mean number of sources composing one event. The temperatures
of the sources fluctuate independently according to Eq. (39), and
the number of sources per event fluctuates according to the Poisson
distribution. The solid line corresponds to Eq. (48), the dashed line
to Eq. (51).

If the parameter T fluctuates independently for each source,
the sources remain to be statistically identical and independent
of each other. Therefore, these MC simulations correspond to
the MIS and the �[PT ,N ] and �[PT ,N ] strongly intensive
measures should not depend on the mean number of sources
〈NS〉 and on its fluctuations ω[NS]. Indeed, Fig. 2 confirms
this expectation.

The distribution function of a single source has the form of
Eq. (30) with FS(x,T ) function taken as f (p,T ). This leads to
the result (P ≡ PT ) Eq. (32):

�[P,N ] = �[P,N ] = ω[PS] − p · ω[n]

ω[p]
,

(40)

ω[p] ≡ p2 − p2

p
.

For PS and P 2
S one obtains

PS = p · n, (41)

(PS)2 =
∑

n

PS(n)
∫

dT W (T )

×
∫ ∞

0

n∏
i=1

[pidpi f (pi)](p1 + · · · + pn)2

=
∑

n

PS(n)
∫

dT W (T )
∫ ∞

0

n∏
i=1

[pidpi f (pi)]

×
⎡
⎣ n∑

j=1

p2
j +

∑
1�l 	=m�k

pl · pm

⎤
⎦

=
∑

n

PS(k)
∫

dT W (T )[n · p̃2 + n(n − 1) · p̃2]

= p2 · n + p̂2 · [n2 − n], (42)

where

p̂2 ≡
∫

dT W (T )p̃2. (43)

Calculating ω[PS] from Eqs. (41),(42) and inserting it into
Eq. (32) one obtains

�[P,N ] = �[P,N ] = 1 + 1

ω[p]
· p̂2 − p2

p
· [n + ω[n] − 1].

(44)

One can easily prove that

p̂2 − p2 =
∫

dT W (T )(p̃ − p)2 � 0, (45)

n + ω[n] − 1 = n2 − n

n
= 1

n

∑
n�2

PS(n) (n2 − n) � 0. (46)

When temperature fluctuations are absent, relation (45) is
transformed to p̂2 − p2 = 0, and Eq. (44) is reduced to
Eq. (14). The same happens when PS(n) = 0 for all n � 2,
and, thus, n + ω[n] − 1 = 0. This is intuitively clear: the MIS
is reduced to the IPM if each source can emit only one or zero
number of particles.

In Fig. 2 the results of the MC simulations are compared
with analytical results of Eq. (44). The solid line corresponds
to the distribution (33) and Gaussian temperature fluctuations
(39). In this case one finds

p ∼= 0.328GeV/c, p2 ∼= 0.158(GeV/c)2,
(47)

p̂2 ∼= 0.110(GeV/c)2.

The PS(n) Poisson distribution for a single source corresponds
to n = 5 and ω[n] = 1, therefore, n + ω[n] − 1 = 5. The final
result of Eq. (44) is

�[P,N ] = �[P,N ] ∼= 1.227. (48)

As seen in Fig. 2, this is in a good agreement with the results
of the MC simulations.

For massless particles the quantities in Eq. (47) can be
calculated analytically

p = 2T = 0.3GeV/c, p2 = 6T 2 = 6 [T
2 + σ 2

T ]

= 0.13875(GeV/c)2, (49)

p̂2 =
∫

dT W (T ) p̃2 = 4T 2 = 4
[
T

2 + σ 2
T

]

= 0.0925(GeV/c)2. (50)

With Eqs. (49),(50) one finds

�[P,N ] = �[P,N ] = 1 + 2σ 2
T

T
2 + 3σ 2

T

· [n + ω[n] − 1].

(51)

For the values T = 0.15 GeV, σT = 0.025 GeV, n = 5, and
ω[n] = 1 used in the MC simulations one finds �[P,N ] =
�[P,N ] ∼= 1.256. This result for m = 0 is shown in Fig. 2 by
the dashed line.
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FIG. 3. (Color online) The symbols are the MC results for the �[PT ,N ] (circles) and �[PT ,N ] (triangles) measures. The MC simulations
correspond to the global temperature fluctuations according to Eq. (39), i.e., temperatures of all sources are equal. The number of sources are
taken from the Poisson distribution with the average value of 〈NS〉. The solid lines present the results of Eq. (53), the dashed lines of Eq. (55).
(a) The dependence on the mean number of sources at fixed σT = 25 MeV. (b) The dependence on σT at fixed 〈NS〉 = 100 (here for calculating
dashed line the obtained σT values were used; due to the limited range of T distribution they are slightly smaller than the assumed ones).

The MC results presented in Figs. 1 and 2 demonstrate
a different sensitivity of the strongly intensive measures to
model details: despite of the equality �[PT ,N ] = �[PT ,N ]
the statistical errors of the simulations calculated for �[PT ,N ]
are found to be essentially larger than those for �[PT ,N ].1

C. Global temperature fluctuations

In the next MC simulations, source-by-source T fluctu-
ations from the previous subsection are replaced by e-by-e
(global) T fluctuations. The parameter T is the same for
all sources composing a given event but is varied between
events following the Gaussian distribution (39) with average
inverse slope parameter 〈T 〉 = 150 MeV and dispersion σT .
The number of sources NS composing an event is generated
from the Poisson distribution with 〈NS〉 being the average
value. As previously, for each single source, the number of
particles was selected from the Poisson distribution with a
mean value of n = 5. The results are presented in Fig. 3. Panel
(a) shows the dependence of �[PT ,N ] and �[PT ,N ]) on the
average number of sources 〈NS〉 at σT = 25 MeV, whereas
panel (b) presents the dependence on σT at 〈NS〉 = 100. In
Fig. 3(b) in order to avoid negative T values only events
within T = 150 ± 3σT MeV were accepted. We also would
like to mention here that the relationship between temperature
and multiplicity (or volume) fluctuations was studied in
Refs. [37,38].

Due to the correlated T fluctuations for different sources,
the sources are not independent of each other. Therefore,
these MC simulations do not correspond to the MIS. One
can nevertheless use the formula from the previous subsection
with the following substitutions:

NS → 1, ω[NS] → 0, n → N, PS → P, (52)

1In order to avoid too large statistical errors, in Fig. 2 we used five
times higher statistics (500 k events for each point) than that one used
in Figs. 1 and 3.

i.e., all final particles are treated as created from a “sin-
gle source” with fluctuating temperature T . Note that the
parameter T becomes an event variable with average value
〈T 〉 = T = 150 MeV and distribution (39). This gives

�[P,N ] = �[P,N ] = 1 + 1

ω[p]
· p̂2 − p2

p
·

× [ 〈N〉 + ω[N ] − 1 ]. (53)

The MC results on global temperature fluctuations are
compared to analytical predictions of Eq. (53). The solid lines
in Fig. 3 correspond to the transverse momentum distribution
(33) with temperature fluctuating according to Eq. (39). The
values of p, p2, p̂2, and ω[p] are calculated numerically with
Eqs. (33) and (39). At σT = 25 MeV, they are equal to those
in Eq. (47). Analytical calculations can be done for massless
particles according to Eq. (49) which demonstrates the explicit
dependence on σT .

Note that multiplicities n1, . . . ,nNS
for particles emitted by

different sources are uncorrelated. Therefore, one can use the
MIS to calculate 〈N〉 and ω[N ] with Eq. (24):

〈N〉 = n〈NS〉 = 5〈NS〉,
ω[N ] = ω[n] + n · ω[NS] = 1 + 5 · 1 = 6. (54)

This results in a linear increase of Eq. (53) with 〈NS〉.
For m = 0 in the distribution (33), similarly to Eq. (51),

one obtains

�[P,N ] = �[P,N ] = 1 + 2σ 2
T

〈T 〉2 + 3σ 2
T

· [5 〈Ns〉 + 5], (55)

where Eq. (54) has been already used. This is shown in Fig. 3
by dashed lines.

As expected from Eq. (53), the fluctuation measures
�[PT ,N ] and �[PT ,N ]) increase when global temperature
fluctuations are stronger (higher σT ). This is explicitly seen
from Eq. (55) for m = 0. The same conclusion was drawn
in Ref. [25], where the influence of temperature fluctuations
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FIG. 4. (Color online) (a) and (b) Properties of the fast generator producing M(pT ) versus N correlation (see the text for details). Green
solid line (b) shows Eqs. (69), (70), where 〈N〉 = 1.4 and TN = 〈M(pT )〉N/2.

on transverse momentum fluctuations was studied for the �pT

measure [9] (see also Ref. [7] for the corresponding plot).

IV. TEMPERATURE CORRELATIONS VERSUS
NUMBER OF PARTICLES

The results of fast generators in the previous section showed
the same behavior and magnitudes of �[PT ,N ] and �[PT ,N ]
measures. The MC simulation, presented in this section, is
introduced in order to check whether one can propose a
fast generator for which different values of �[PT ,N ] and
�[PT ,N ] may be obtained. As an example, we consider the
M(pT ) versus N correlation suggested in Ref. [9], where
M(pT ) is the event mean single-particle transverse momentum
and N is the particle multiplicity. In Fig. 4(a) the assumed
multiplicity distribution is presented as red triangles (those
values correspond to the accepted multiplicities at forward
rapidities in p + p collisions at the beam energy 158 GeV
[11]). As seen, the generated multiplicity distribution (gray
histogram) coincides with the assumed one. For each event,
particle momenta are generated from transverse momentum
distribution (33) with T taken as TN = 〈M(pT )〉N/2, where
〈M(pT )〉N is dependent on generated multiplicity N as shown
in Fig. 4(b) by the red triangles [11]. The range of pT

generation is from zero to 2 GeV/c. In Fig. 4(b) the scatter
plot represents all generated events (M(pT ) values) and the
gray squares their profile histogram [〈M(pT )〉N values, where
〈...〉N represents averaging within the same multiplicity N ].
The difference between red triangles (input values of 2 TN used
in simulation) and gray squares [〈M(pT )〉N values obtained
from simulated data set] is due to the fact that in transverse
momentum distribution used in simulation (33) the average
transverse momentum is only approximately equal to 2 T . It
was, however, verified by an independent analysis that when
using f (p,T ) = C p exp(−p/T ) distribution, for which the

mean transverse momentum equals exactly 2 T , red and gray
points coincide. For the simulation presented in Fig. 4 the
values of fluctuation measures obtained for 500 000 generated
events are

�[PT ,N ] = 0.8158 ± 0.0051,
(56)

�[PT ,N ] = 1.0075 ± 0.0018.

Particle production considered in this section corresponds
to the distribution

FN (p1, . . . ,pN ) = P(N ) × fN (p1) × · · · × fN (pN ), (57)

where fN (p) = f (p,TN ) with f (p,TN ) given by Eq. (33),
but with the parameter T depending now on the particle
multiplicity, TN = T (N ). The moments of single particle
distributions at fixed N are then equal to

(pk)N =
∫ ∞

0
dppkfN (p). (58)

The moments of single particle spectrum averaged over N are

pk =
∑
N

N P(N )

〈N〉 (pk)N, (59)

and ω[p] = (p2 − p2)/p .
With distribution (57) one finds

〈P 〉 =
∑
N

P(N )
∫

fN (p1)dp1 · · ·
∫

fN (pN )dpN

× (p1 + · · · + pN )

=
∑
N

P(N ) N

∫
dp fN (p) p =

∑
N

P(N ) N (p)N

= p · 〈N〉, (60)
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〈P 2〉 =
∑
N

P(N )
∫

fN (p1)dp1 · · ·
∫

fN (pN )dpN

× (p1 + · · · + pN )2

=
∑
N

P(N )

[
N

∫
dp fN (p) p2 + N (N − 1) ·

×
( ∫

dp fN (p) p

)2 ]

=
∑
N

P(N )
[
N · (p2)N + N (N − 1) · (p)2

N

]

= [p2 − p2] · 〈N〉 +
∑
N

P(N ) N2 (p)2
N, (61)

〈P N〉 =
∑
N

P(N ) N

∫
fN (p1)dp1 · · ·

×
∫

fN (pN )dpN (p1 + · · · + pN )

=
∑
N

P(N ) N2 (p)N . (62)

This gives

ω[P ] = ω[p] +
∑

N P(N ) N2 · (p)2
N − p2 · 〈N〉2

p · 〈N〉 , (63)

〈PN〉 − 〈P 〉 〈N〉 =
∑
N

P(N ) · N2 · (p)N − p · 〈N〉2. (64)

Finally,

�[P,N ] = 1 + p

ω[p] · 〈N〉
∑
N

P(N ) N2
(
Y 2

N − 1
)
, (65)

�[P,N ] = 1 + p

ω[p] · 〈N〉
∑
N

P(N ) N2(YN − 1 )2, (66)

where YN ≡ (p)N/p . Calculating numerically Eqs. (65) and
(66) with P(N ) and TN = 〈M(pT )〉N/2 presented in Fig. 4(a)
and (b), respectively, one finds the �[PT ,N ] and �[PT ,N ]
values which coincide with those in Eq. (56) within statistical
uncertainties.

To make further analytical calculations several simplifying
assumptions will be adopted. First, it will be assumed that
produced particles are massless. For m = 0 in the distribution
(33) with T = TN one finds (p)N = 2TN,(p2)N = 6T 2

N , and

p = 1

〈N〉
∑
N

N P(N ) (p)N = 2T

[
1 + θ

(
1 − 〈N2〉

〈N〉2

)]
, (67)

p2 = 1

〈N〉
∑
N

N P(N ) (p2)N = 6T 2

〈N〉
∑
N

N P(N )

[
1 + θ ·

(
1 − N

〈N〉
)]2

= 6T 2

[
1 − θ · 〈N2〉

〈N〉2
+ θ2 ·

(
1 − 2

〈N2〉
〈N〉2

+ 〈N3〉
〈N〉3

)]
.

(68)

Second, a parametrization for the multiplicity dependent
temperature

TN = T

[
1 + θ ·

(
1 − N

〈N〉
)]

(69)

proposed in Ref. [29] will be adopted. This formula, with
small positive dimensionless parameter θ , is approximately
valid for the data in p + p collisions at SPS energy presented
in Fig. 4(b). Using the value of 〈N〉 = 1.4 [found from the
data in Fig. 4(a)] the values of

T ∼= 160 MeV, θ ∼= 0.04 (70)

are fixed from fitting the data in Fig. 4(b). The correlation of the
inverse slope (‘temperature’) parameter TN versus N in a form
of Eq. (69) with θ > 0 is probably of simple kinematic origin:
when the multiplicity of produced particles increases at fixed
collision energy, there is less and less energy to be transformed
to transverse momenta of produced particles. As a result, the
average transverse momentum per particle decreases when
N grows. However, in A + A collisions the contribution of
the transverse collective flow to particle transverse momenta
becomes important. This collective flow, in its turn, increases
with the number of produced particles. Therefore, a correlation
between TN and N in a form (69), but with θ < 0, may be
expected.

For further calculations we make the third simplification
assuming the Poisson shape for P(N ) distribution. In this case
one obtains

〈N2〉 = 〈N〉2 + 〈N〉,〈N3〉 = 〈N〉3 + 3〈N〉2 + 〈N〉, (71)

〈N4〉 = 〈N〉4 + 6〈N〉3 + 7〈N〉2 + 〈N〉, (72)

and Eqs. (67) and (68) are transformed to

p = 2T

[
1 − θ

〈N〉
]
,

(73)

p2 = 6T 2

[
1 − 2θ

〈N〉 + θ2 ·
(

1

〈N〉 + 1

〈N〉2

)]
.

This gives

ω[p] = p2 − p2

p
∼= T

[
1 − θ

〈N〉
]
,

YN = (p)N
p

∼= 1 + θ ·
[

1 − N

〈N〉
]
, (74)

where the second and higher powers of θ have been neglected
and 〈N〉 � 1 is assumed (this is our fourth and the last
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simplification). For �[P,N ] (66) one obtains

�[P,N ] = 1 + p

ω[p] 〈N〉
∑
N

P(N ) N2[YN − 1]2

∼= 1 + 2
θ2

〈N〉
[
〈N2〉 − 2

〈N3〉
〈N〉 + 〈N4〉

〈N〉2

]
= 1 + 2 θ2,

(75)

where Eqs. (71) and (72) have been used at the last step in
Eq. (75).

The �[P,N ] (65) is calculated as

�[P,N ] = 1 + p

ω[p] · 〈N〉
∑
N

P(N ) N2
[
Y 2

N − 1
]

∼= 1 + 4 θ

〈N〉
[[

〈N2〉 − 〈N3〉
〈N〉

]
= 1 − 4 θ. (76)

With θ = 0.04 (70) one obtains from Eqs. (75) and (76):

�[P,N ] ∼= 1.0032, �[P,N ] ∼= 0.8400. (77)

The results of our approximate analytical calculations (77)
may be compared with the full MC calculations (56).

Note that the correlation (69) between TN and N leads to
the additional term to � (75) proportional to θ2, whereas �
(76) includes a linear θ term. Therefore, the �[P,N ] measure
is much more sensitive to the correlations (69) between TN

and N than �[P,N ]: the linear θ contribution is essentially
larger than θ2 one, as θ � 1. Besides, it is sensitive to a sign
of θ . Therefore, both suppression (at θ > 0) and enhancement
(at θ < 0) effects for �[P,N ] may be observed.

V. MODEL EXAMPLES

A. Quantum gases

The strongly intensive fluctuation measures �[PT ,N ] and
�[PT ,N ] have been recently studied in Ref. [34] for the ideal
Bose and Fermi gases within the grand canonical ensemble. As
it was already noted in Ref. [33], the Boltzmann approximation
satisfies the conditions of the IPM, i.e., Eq. (14) is valid.
Quantum statistics introduces particle correlations and the
following general relations have been found [34]:

�Bose[PT ,N ] < �Boltz = 1 < �Fermi[PT ,N ], (78)

�Fermi[PT ,N ] < �Boltz = 1 < �Bose[PT ,N ], (79)

i.e., Bose statistics makes �[PT ,N ] to be smaller and
�[PT ,N ] larger than unity, whereas Fermi statistics works
in exactly opposite way. The Bose statistics of the pion gas
appears to be the main source of quantum statistics effects
in the hadron gas with the temperature typical for the hadron
system created in A + A collisions. It gives approximately
�[PT ,N ] ∼= 0.8 and �[PT ,N ] ∼= 1.1, at T ∼= 150 MeV, i.e.,
suppression of �[PT ,N ] and enhancement of �[PT ,N ] in
a comparison to the Boltzmann approximation, equal to the
IPM results (14). Fermi statistics contributions to �[PT ,N ]
and �[PT ,N ] for the protons are almost negligible for typical

temperatures and baryonic chemical potentials in the hadron
gas created in A + A collisions.

B. UrQMD

In this subsection we discuss the UrQMD [39] results. In
Ref. [33] the simulations for �[PT ,N−] and �[PT ,N−], where
N− is the number of negative particles, were considered. In the
sample of 7% most central Xe+La collisions the fluctuation
measure �[PT ,N−] appears to be close to 1 for the whole
SPS energy region Elab from 20 to 158 GeV per nucleon,
whereas the fluctuation measure �[PT ,N−] increases with the
collision energy from the value of 1 at Elab = 20 GeV per
nucleon to approximately 1.4 at Elab = 158 GeV per nucleon.
Note that the UrQMD takes into account several sources of
fluctuations and correlations, e.g., exact conservation laws,
resonance decays, flow effects, etc.

We use the UrQMD simulations in Pb+Pb collisions
at Elab = 20 GeV per nucleon to study �[PT ,N−] and
�[PT ,N−]. With this example we illustrate effects of the
centrality selection and limited detector acceptance and ef-
ficiency in A + A collisions. The results presented in Fig. 5
correspond to the centrality bins of 5%, 10%, 15%, and 20%
most central Pb+Pb collisions. One observes very strong
increase of ω[N−] with a width of the centrality bin. This
reflects the fact that fluctuations of the number of nucleon
participants affect strongly the fluctuations of final hadron
multiplicities. Therefore, scaled variances as the fluctuation
measures become almost useless for wide centrality bins. For
these wide samples of collisions, the scaled variances do not
describe physical properties of the system but reflect the system
size fluctuations (see more details in Ref. [8]). The strongly
intensive measures �[PT ,N−] and �[PT ,N−] look much more
appropriate. These quantities are not sensitive to the trivial
system size fluctuations. Their dependence on the size of the
centrality bin is rather moderate (it is more pronounced for
�[PT ,N−]) and reflects changes in local physical properties
for different centrality samples.

Another important aspect of today measurements of the
e-by-e fluctuations in A + A collisions is a limited detector
acceptance and/or efficiency. Particles may be lost due to the
geometry of the detector (for example fixed target experiments
typically cover only forward hemisphere) and we call it
acceptance losses. On the other hand, even in this accepted
kinematic region we still may have efficiency losses due to track
reconstruction problems (including problems with ionization
energy loss, dE/dx, reconstruction).

The UrQMD results for negatively charged particles in
Pb+Pb collisions at Elab = 20A GeV for the full 4π accep-
tance and for the particles accepted only in the center of mass
rapidity interval 1 < yπ < 2 are shown in Fig. 5(a) and 5(b),
respectively (full symbols). From a comparison of the results
for the full and limited detector acceptance one observes
rather strong effects of acceptance losses for the scaled
variance ω[N−]. The strongly intensive measures �[PT ,N−]
and �[PT ,N−] look again more appropriate. The effects of
the limited acceptance are rather moderate for �[PT ,N−] and
almost absent for �[PT ,N−]. We also would like to stress
that the acceptance dependence shown in Fig. 5 is the example
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FIG. 5. (Color online) The UrQMD results for the centrality dependence of ω[N−] (squares), �[PT ,N−] (circles), and �[PT ,N−] (triangles)
in Pb+Pb collisions at Elab = 20A GeV. A centrality selection is done with a restriction on the impact parameter b. (a) The full 4π detector
acceptance. (b) Only particles with center of mass rapidity in the interval 1 < yπ < 2 are accepted (pion mass was assumed for all particles).
Open symbols correspond to the case when 10% of particles was randomly rejected.

only. In general, the measured magnitude of ω[N ], �[PT ,N ] or
�[PT ,N ] depends on both the correlation(s) length(s) and the
size of the acceptance region (when the kinematic acceptance
is much smaller that the correlation range the effect will be
washed out). Therefore, when comparing experimental results
to models the experimental kinematic restrictions should be
carefully taken into account.

Finally, the example of the effect of efficiency losses is
shown by open symbols in Fig. 5. In this case from each event
we randomly rejected 10% of particles. As seen, the effect of
efficiency losses is small or even negligible (comparison of
full and open symbols) for all presented fluctuation measures
but, in general, it depends on the fraction of rejected particles.

VI. SUMMARY

In the present paper strongly intensive measures of the
event-by-event fluctuations �[PT ,N ] and �[PT ,N ] are stud-
ied. The recently proposed special normalization for these
fluctuation measures are used, and it ensures that these
measures are dimensionless and yields a common scale
required for a quantitative comparison of fluctuations. Several
phenomenological models are considered using the Monte
Carlo simulations and analytical calculations. Our studies
include different versions of the model of independent sources:
with fixed number of sources, with the Poisson distribution
of the number of sources, and with the Negative Binomial
distribution. The quantities �[PT ,N ] and �[PT ,N ] are found
to be independent of the average number of sources and of its
fluctuations. This reflects the strongly intensive properties of
the � and � measures, and is a main motivation of their using
for the analysis of the event-by-event fluctuations in nucleus-
nucleus collisions. The transverse momentum distribution
of particles emitted from the source are assumed to be a
thermal-like (Boltzmann) distribution over transverse mass.
The average single-particle transverse momentum is then
controlled by the inverse slope (temperature) parameter.

The system of sources with constant temperature appear
to be equivalent to the model of independent sources, i.e.,

a relation �[PT ,N ] = �[PT ,N ] = 1 is obtained. For inde-
pendent temperature fluctuations from source to source, one
finds the correlations between transverse momenta of particles
emitted from the same source. This leads to �[PT ,N ] =
�[PT ,N ] = 1 + qS , where the value of qS is positive and
depends only on the parameters of a single source. If all
sources have the same fluctuating temperature, the model
of independent sources becomes no more applicable. One
obtains �[PT ,N ] = �[PT ,N ] = 1 + QS , where the value of
QS increases linearly with the average number of sources 〈NS〉
and increases with σT which determines the size of temperature
fluctuations.

A model which introduces a correlation between the
temperature parameter and particle multiplicity is studied.
In this case, the different values for the � and � measures
have been found: �[PT ,N ] = 1 + qδ and �[PT ,N ] = 1 + qσ .
Analytical calculations under several simplifying assumptions
give: qδ

∼= − 4θ and qσ
∼= 2θ2, where the parameter θ de-

scribes the correlations between TN and N according to Eq.
(69) and is assumed to be small, |θ | � 1.

The UrQMD simulations for Pb+Pb collisions at the
collision energy Elab = 20 GeV per nucleon are done and
analyzed. With this example we illustrate a role of the centrality
selection and limited detector acceptance and efficiency in
A + A collisions. We find that the strongly intensive quantities
�[PT ,N ] and �[PT ,N ] have an advantage over the standard
fluctuation measures. In contrast to the scaled variance,
�[PT ,N ] and �[PT ,N ] demonstrate much weaker sensitivity
to the width of the centrality bin and to the limited detector
acceptance and efficiency.

In all considered model examples, �[PT ,N ] appears to
be more sensitive to interparticle correlations than �[PT ,N ].
This reveals itself as stronger deviations of �[PT ,N ] from
the IPM results (14). Even for �[PT ,N ] = �[PT ,N ], in the
MC simulations in Sec. III, a stronger sensitivity of �[PT ,N ]
manifests as its larger statistical errors.

We hope that the results obtained in this paper will be
helpful to elucidate the properties of �[PT ,N ] and �[PT ,N ]
measures.
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