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Rapidity profile of the initial energy density in heavy-ion collisions
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The rapidity dependence of the initial energy density in heavy-ion collisions is calculated from a three-
dimensional McLerran-Venugopalan model introduced by Lam and Mahlon. This model is infrared safe since
global color neutrality is enforced. In this framework, the nuclei have nonzero thickness in the longitudinal
direction. This leads to Bjorken-x-dependent unintegrated gluon distribution functions, which in turn result
in a rapidity-dependent initial energy density after the collision. These unintegrated distribution functions are
substituted in the initial energy density expression, which has been derived for the boost-invariant case. We argue
that using three-dimensional (x-dependent) unintegrated distribution functions together with the boost-invariant
energy formula is consistent given that the overlap of the two nuclei lasts less than the natural time scale for
the evolution of the fields (1/Qs) after the collision. The initial energy density and its rapidity dependence are
important initial conditions for the quark gluon plasma and its hydrodynamic evolution.
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I. INTRODUCTION

In high energy heavy-ion collisions at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC)
a strongly interacting quark gluon plasma (QGP) has been
observed [1–3]. The initial state of these collisions can be
pictured as very strong classical color fields stretched between
the colliding nuclei. In the color glass condensate (CGC)
framework, the initial classical color fields can be calculated
from the wave function of the nuclei [4–7]. The nuclear wave
function at high energies is dominated by gluons with small
momentum fraction x, which are radiated from the partons at
large x. The high occupation numbers that the small-x gluons
reach at high energies allow us to use the classical color fields
as an approximation to quantum chromodynamics.

The classical glue field Aa
μ is the solution of the Yang-Mills

equation with the large-x partons of an ultrarelativistic nucleus
being the source. From Aa

μ one can calculate the unintegrated
gluon distribution (UGD) of the nucleus. This quantity is the
main ingredient for the calculation of the initial energy density
of the QGP and gluon production from classical color fields.
The collision of two nuclei proceeds through the interaction
of their glue fields. In the light-cone limit the (color-)electric
and magnetic fields Ea and Ba in the nuclei, which follow
from the gauge potential Aa

μ, are transverse. The longitudinal
electric and magnetic fields are then initially formed between
the nuclei during the interaction while the transverse field
modes between the nuclei are initially zero and then grow
linearly with time [8–12]. The energy that will eventually be
available as thermal energy and collective kinetic energy of the
QGP is deposited in these initial longitudinal fields. Quarks
and gluons are produced by the decay of these color fields,
and the subsequent local thermalization of quarks and gluons
leads to the formation of QGP.

*ozonder@uw.edu
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The realization that the QGP after its formation behaves
almost like an ideal fluid has made relativistic hydrodynamics
a useful model to describe its expansion and cooling. Hy-
drodynamic simulations have proved to be powerful tools
in analyzing experimental observations [13–15]. The initial
energy density is a key initial condition that must be specified
for these simulations.

Event-by-event and averaged energy densities have been
calculated before in different implementations of the CGC
approach [10,16–18], but mostly in a boost-invariant setup,
which is valid only around midrapidity. In this approximation,
the colliding nuclei have been taken to be two-dimensional
infinitely thin sheets rather than being longitudinally extended
wave packets. The consequences of this approximation are x-
independent UGDs and rapidity-independent energy densities.
In this paper, we calculate the initial energy density ε at
longitudinal proper time τ ∼ 0 as a function of rapidity by
adopting a more realistic picture where the nuclei are slightly
off the light cone and accordingly have nonzero thickness
in the longitudinal direction. In the three-dimensional case, a
nucleus has partons with a nontrivial distribution of momentum
fractions x. Collisions of nuclei with x-dependent parton
distributions lead to rapidity-dependent final states. Here ε
will be ensemble-averaged over all possible configurations
of the color charge densities of the two nuclei. The color
charge densities fluctuate on an event-by-event basis and
the averaging here corresponds to averaging over multiple
events.

In this work, we employ the three-dimensional McLerran-
Venugopalan model (3dMVn) first developed by Lam and
Mahlon [19,20]. Besides the fully three-dimensional treatment
of the nuclei, the 3dMVn model comes with color neutrality
enforced on the scale of a nucleon size, which makes the model
well-behaved in the infrared. The 3dMVn model has two free
parameters, the strong coupling constant αs and the length
scale of the color neutrality λ ∼ 1.8 fm. The parameter space of
the model has been explored in Ref. [21] through a comparison
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between the gluon distribution function calculated from the
model and the parametrization of parton distribution functions
from the data by Jimenez-Delgado-Reya (JR09) [22]. Note
that our approach is somewhat different from the attempts to
calculate the rapidity dependence of the initial energy density
from UGDs of which the x dependence is extracted from
phenomenological fits or from quantum evolution (see, e.g.,
Ref. [23]).

The main result of this work is an expression for the
dependence of the initial energy density on the momentum
rapidity y. We will then make an ansatz to translate the rapidity
profile into a dependence on space-time rapidity ηs . The initial
energy density as a function of ηs is the main input of these
hydrodynamic simulations.

II. 3DMVN MODEL

The gluon density in a nucleus at ultrarelativistic beam
energy becomes large, and it is expected to saturate at some
energy scale due to gluon recombination. The saturation
density sets a new dimensional scale Qs � �QCD. At the scale
Qs the coupling αs is expected to be weak. However, this
does not mean that the interactions are weak; on the contrary,
the classical fields are strong due to the coherence of many
small-x gluons. Therefore, weak coupling techniques can be
used to understand the structure of the nucleus in spite of its
intrinsically nonperturbative nature.

The equation of motion of Yang-Mills theory is given by

[Dμ,Fμν] ≡ ∂μFμν − ig[Aμ,Fμν] = J ν, (1)

where the field strength is defined as

Fμν ≡ ∂μAν − ∂νAμ − ig[Aμ,Aν], (2)

and Jμ is a suitably chosen SU(3) current representing the
large-x partons. As two nuclei, represented by two currents,
pass through each other, their fields can interact through the
non-Abelian term in the definition of Fμν . The result is the
generation of chromoelectric (Ea) and chromomagnetic (Ba)
fields stretching between the two nuclei. In the ultrarelativistic
case the longitudinal components dominate initially, which
is what is used in the original McLerran-Venugopalan (MV)
model [4,11]. In the three-dimensional case, which allows
us to calculate corrections to this limit, transverse fields are
produced initially as well, but they are still much smaller than
the longitudinal components due to Lorentz contraction. As the
nuclei pass through each other at high energies, some fraction
of their kinetic energy is deposited in the classical color fields
between them. This initial energy density as a function of the
transverse spatial coordinates as well as rapidity affects the
multiplicity, transverse momentum, and rapidity distribution
of the final particles that reach the detector.

The initial energy density can be calculated from the fields
via H = Tr(E2 + B2), where (E,B) = (Ea,Ba)ta . These fields
can be written in terms of the vector potential Aa

μ, which in
turn is created by the color charge densities ρa

1,2(x) of the
nuclei that enter the current in Eq. (1). Here we shall use
source-averaged quantities in the spirit of the original MV
model [4]. A Gaussian measure has been assumed for the

ensemble average. The average color charge density and its
fluctuations at any point in a nucleus are given by [19–21]

〈ρa(x)〉 = 0, (3)

〈ρa(0)ρb(x)〉 = δabκ3
A

[
δ3(x) − 3 exp

( −
√

3|x|
λ

)
4πλ2|x|

]
, (4)

where the average squared color charge per unit volume
is determined by κ3

A = 3ACF /(N2
c − 1)V = 3A/2NcV (we

assume that the valence quarks of the nucleons are the source
of all gluons). The correlation length of valence quarks
is set by λ ∼ �−1

QCD. The term in Eq. (4) that includes λ
mimics confinement through colored noise and hence cures
the infrared divergence problem. The correlation length is
found to be λ ∼ 1.8 fm from the comparison between the
3dMVn model and measured gluon distribution functions
[21]. In the absence of the λ-dependent term, the spectrum
of the correlation function in Eq. (4) would resemble that of
white noise. In that case, fluctuations at all scales, including
|q| < �QCD, would exist and this would cause a divergence in
the infrared [19–21].

The three-dimensional coordinate system x = (x‖,x⊥) to
be used in the 3dMV model is defined in the rest frame of the
nucleus. The longitudinal coordinate is given by [20]

x‖ = 1

ε
x− − ε

2
x+, (5)

where ε = [2(1 − β)/(1 + β)]1/2 and β is the speed of
the nucleus. The light-cone coordinates are defined as
x± = (t ± z)/

√
2. The longitudinal coordinate x‖ is conjugate

to p‖, which is related to the parton momentum fraction via

p‖ = mx, (6)

where m is the nucleon mass.
The ensemble-averaged initial energy density ε(τ = 0) can

be written in terms of the correlation functions 〈Aa
i (x)Ab

i (x ′)〉
for each nucleus in light-cone gauge. For a given nucleus, the
vector field correlation function in momentum space is given
by [20,21]

〈
Aa

i (q)Aa
i (−q)

〉 = 12παs

N2
c − 1

Nc

A

m2x2

∫
d2�⊥eiq⊥·�⊥

×L(x; �⊥)E(v2L(�⊥)), (7)

where A is the mass number of the nucleus and
�⊥ = x⊥ − x ′

⊥. Here q = (q‖,q⊥) is the momentum con-
jugate to the rest frame coordinate x = (x‖,x⊥). The pair
distribution functions L and L are convolutions of the Green’s
function with Eq. (4), and they are given as

L(x; �⊥) = − 1

12π

[
(xmλ)2K0(xm�⊥)

− (3 + (xmλ)2)K0(�⊥
√

3 + (xmλ)2/λ)

]
,

(8)
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and

L(�⊥) = − λ2

6π

[
K0

(√
3�⊥
λ

)
+ ln

(√
3�⊥
2λ

)
+ γE

]
.

(9)
For a cylindrical nucleus, the nuclear correction factor E(z)
and its argument v2 are given by

E(z) = 1

z
(ez − 1), (10)

and

v2 = 3Ag4

2πR2
A

≈ 24πα2
s A

1/3r−2
0 . (11)

The correlation function in Eq. (7) can be related to the
Weizsäcker-Williams unintegrated gluon density (UGD)

φ(x,q2
⊥) ≡ x

dN

dxd2q⊥
= m2x2

4π3

〈
Aa

i (q)Aa
i (−q)

〉
. (12)

The UGD in Eq. (12) can be expressed in terms of either
the longitudinal momentum q‖ or momentum fraction x via
the relation x = q‖/m. The gluon distribution function for the
nucleus of mass number A is defined as the integral of the
UGD

xgA(x,Q2) ≡
∫ Q2

d2q⊥φ(x,q2
⊥). (13)

So far, we have reviewed the three-dimensional (x-dependent),
color neutral UGD of the 3dMVn model. In the next section,
we will find the energy density in terms of those distributions.

III. RAPIDITY-DEPENDENT ENERGY DENSITY

The aim in this section is to express the energy density of the
longitudinal fields, which form after the collision, in terms of
the UGDs φ(x,q2

⊥) of the nuclei. In the original MV model, the
interaction of nuclei as infinitely thin sheets is instantaneous at
the hypersurface τ = 0. By imposing the continuity of the vec-
tor potential on that hypersurface via the classical Yang-Mills
equation, one finds two boundary conditions [8,9]. At τ = 0,
these boundary conditions determine the vector potential after
the collision with light-cone components (x+A, − x−A,Ai

⊥)
in terms of the vector potential of the incoming nuclei Ai

1 and
Ai

2. Hence, the initial energy density after the collision can
be expressed in terms of the vector potential of the incoming
nuclei before the collision.

In the three-dimensional case where nuclei are moving
with speed v < 1, the interaction is not instantaneous due
to the longitudinal extent of the nuclei. Hence, it is not
possible to define a single interaction hypersurface, which
makes the interaction time dependent. Also, since the nuclei
are not on the light cone, there will be some longitudinal
fields in the nuclei, which would give rise to initial transverse
fields right after the interaction. In this work, we will not
fully solve the corresponding problem in the 3dMVn setup.
Rather, we will rely on the boost-invariant energy expression
[see Eq. (14)], which assumes instantaneous interaction at
τ = 0 and no longitudinal fields in the nuclei before the
collision. This approximation uses the fact that for sufficiently

large energy the interaction time �τ ∼ RA/γ , where γ is
the Lorentz factor of the nuclei in the laboratory system,
is smaller than the natural time scale for the evolution of
the fields after the collision ∼ 1/Qs . Since dε/dτ = 0 in
the MV model [12,24], we can argue that ε does not vary
much over time scales �τ and it will be acceptable to use the
formula derived in the MV model for τ = 0 [see Eq. (14)]
as an approximation for the energy density just after nuclear
overlap. In addition, the longitudinal fields in the nuclei
before the collision in the three-dimensional setup are still
suppressed by the large Lorentz boost and we will neglect
the contribution of the transverse fields they generate on the
energy density. It is important to note, however, that despite
these approximations we will use the 3dMVn (x-dependent)
version of the correlation function of transverse vector fields
which are related to the three-dimensional x-dependent UGDs.

Thus from here on, when we refer to the initial energy
density we refer to the proper time just after the overlap of the
two nuclei, and we will sometimes quote it as τ → 0. We use
the classic result of the MV model for the initial energy density
from the longitudinal fields after the collision [16,24,25]

ε(τ → 0) = Tr(EηEη + BηBη). (14)

The longitudinal fields after the collision in Eq. (14) are given
in terms of the transverse nuclear fields before the collision in
light-cone gauge as [12,26]

Eη(Bη) = igδij (εij )
[
Ai

1,A
j
2

]
, (15)

where Eη = Eaηta . Plugging this into Eq. (14) leads to

ε(τ → 0) = 1

2
g2f abcf dec (δij δkl + εij εkl)

× 〈
Aa

i A
d
k

〉〈
Ab

jA
e
l

〉
, (16)

where the nuclear indices 1 and 2 have been dropped for
simplicity because we assume a central collision for which
averaged fields will be the same for both nuclei when they
have the same mass number.

The dependence of the initial energy density on the rapidity
y can be inferred if we use the x-dependent 3dMVn UGDs
from Eq. (12) in the expression for the energy density.
Those UGDs are summed over color and spatial indices.
Equation (16), however, includes correlators with most general
color and spatial indices. For the latter, we make an ansatz
which employs the color neutral x-dependent UGD. Our ansatz
here is a generalization of the one in Ref. [16]:

〈
Aa

i (q)Ab
j ( p)

〉 = δab

N2
c − 1

δ p,−q
〈
Aa

i (q)Aa
i (−q)

〉p⊥ip⊥j

p2
⊥

, (17)

where again q = (q‖,q⊥). Using δ3( p − q) ⇔ V δ p,q/(2π )3

and substituting the diagonal correlation function from
Eq. (12), we find

〈
Aa

i (q)Ab
j ( p)

〉 = δab

N2
c − 1

1

V
(2π )3δ(p‖ + q‖)δ2( p⊥ + q⊥)

× p⊥ip⊥j

p2
⊥

4π3

m2x2
φ(x, p2

⊥).

(18)
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Apart from being three dimensional and x dependent, our
ansatz includes a factor 1/V that is missing in the ansatz in
Ref. [16]. This is because the UGD in Ref. [16] has been
defined as per unit area and a factor of area has been included
in the definition of the gluon distribution function, unlike the
definition given in Eq. (13).

Writing the fields in Eq. (16) in momentum space and using
our ansatz given in Eq. (18) lead to

ε(τ → 0) = g2

2

Nc

N2
c − 1

1

V 2

∫ �UV d3 p
(2π )3

d3q
(2π )3

4π3

p2
‖

φ(p‖, p2
⊥)

× 4π3

q2
‖

φ(q‖,q2
⊥), (19)

where d3 p = dp‖d2 p⊥, and �UV is a UV cutoff. We go
from the longitudinal momenta p‖ = x1m, q‖ = x2m of the
partons from both nuclei to the momentum rapidity y of the
produced gluon via momentum conservation of a 2 → 1 gluon
fusion process. The rapidity of the produced gluons after the
interaction and the momentum fraction of the gluons from
nucleus 1 and nucleus 2 before the collision are related via

x1,2 = mT√
s
e±y, (20)

where mT is a scale related to the transverse mass of the
produced gluon and

√
s is the center of mass energy per

nucleon pair. The integration over the longitudinal momenta
in Eq. (19) is rewritten as follows:

dp‖dq‖ = m2dx1dx2 −→ dm2
T dy

1

s
. (21)

Now we can write the density differential in rapidity as

dε

dy
= g2

2

Nc

N2
c − 1

1

V 2

(
4π3

2π

)2 ∫ �UV d2 p⊥
(2π )2

d2q⊥
(2π )2

× 1

m2

∫
dm2

T

s

m4
T

φ(x1, p2
⊥)φ(x2,q2

⊥). (22)

We have confirmed that the rapidity dependence was not
affected if the m2

T integration was replaced by an average value
of the transverse mass 1 �→ 〈m2

T 〉δ(m2
T − 〈m2

T 〉) for simplicity.
Finally, we obtain

dε

dy
= 8π5αs

Nc

N2
c − 1

1

V 2

∫ �UV d2 p⊥
(2π )2

d2q⊥
(2π )2

× 1

m2

s

〈mT 〉2
φ(x1, p2

⊥)φ(x2,q2
⊥). (23)

Starting from Eq. (23) one can perform a numerical
evaluation of the momentum integrals, or one can derive a
pocket formula using the expressions for the UGD given in
Eqs. (7) and (12). After taking the integrals and regularizing
the UV singularity by coarse-graining the limit |x⊥| → 0 at a
scale |x⊥| ∼ 1/�, we arrive at

dε

dy
= 72πα3

s A
2 N2

c − 1

Nc

s

m2〈mT 〉2

1

V 2
E2(v2L(�−1))

×L
( 〈mT 〉√

s
ey ; �−1

)
L

( 〈mT 〉√
s

e−y ; �−1

)
, (24)

where � is related to �UV through a numerical constant
of order O(1). One could simplify the analytic result in
Eq. (24) further by expanding the Bessel functions of the
second kind in L and L, and the exponential function in E
without a significant increase in the numerical uncertainty
for given realistic parameters for not too large rapidity y.
In the next section, we present our numerical estimates
for dε/dy.

IV. RESULTS

For our numerical calculations we take Nc = 3, m = 1 GeV
and �QCD = 0.2 GeV. We also assume αs = 0.4 and λ =
1.8 fm as a result of the comparison between the 3dMVn
model and the JR09 parametrization of the nuclear gluon
distribution function carried out in Ref. [21]. We parametrize
the volume of the cylindrical nucleus with mass number A
as V = πR2

Ah where the nuclear radius is RA = r0A
1/3 and

the longitudinal length (in the rest frame of the nucleus) is
taken to be h = RA. For Au and Pb, we take r0 = 1.1 fm and
r0 = 1.3 fm, respectively.

The numerical evaluation of the spatial integration in Eq. (7)
has been carried out between the limits 0 � �⊥ � 2 fm;
the integrand does not contribute significantly for �⊥ >
2 fm. For Pb–Pb (A = 207) at LHC at

√
s = 2.76 TeV, we

use �UV ∼ Qs ∼ 2.5 GeV as the cutoff for the integral in
Eq. (19). For Au–Au (A = 197) at RHIC at

√
s = 200 GeV,

we use �UV ∼ Qs ∼ 2 GeV. The transverse momentum of
the produced gluons is assumed to be 〈mT 〉 = 0.7 GeV and
〈mT 〉 = 1.3 GeV for RHIC and LHC, respectively. Our final
results are shown in Fig. 1.

Let us recall that the 3dMVn model extends the validity
of the MV model to larger Bjorken-x. For Au and Pb nuclei
it merges with MV below x ∼ 0.05, but it describes UGDs
up to ∼0.25 for certain values of Q2 [20,21]. This means
that our results can be estimated to be reliable to about
y ≈ 4 for RHIC energies and y ≈ 6 for LHC, far beyond the
region of validity of the original MV model applied to those
energies.

Now we turn to the discussion of finding ε(ηs) from dε/dy.
Let us recall that

dε

dy
= dE

dy τdηsd2x⊥
, (25)

where ηs is the space-time rapidity. The simple picture of
the transverse structure in the cylindrical 3dMVn model
ensures that the energy density is homogeneous as a function
of x⊥ in the nuclear overlap zone (one can certainly go
beyond this approximation, see Ref. [12]). Also, we have
not solved the full nonboost invariant collision problem
that would give us the ηs dependence. However, we will
now postulate a relation between rapidity y and space-
time rapidity ηs that will allow us to estimate the de-
pendence on ηs . One reasonable ansatz follows from the
Bjorken flow where we consider a Hubble-like velocity
profile for the produced gluons, i.e., vz = pz/E ≈ z/t [23,27].
This leads to y ≈ ηs , where ηs ≡ 1

2 ln [(t + z)/t − z] and
y ≡ 1

2 ln [(E + pz)/E − pz] Therefore, our ansatz can be
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FIG. 1. (Color online) dε/dy as a function of rapidity y for
central Au–Au collisions at RHIC (upper panel) and central Pb–Pb
collisions at LHC (lower panel). dε/dy can also be taken as ε(ηs)
(see text). The shape of the energy density from 3dMVn is fitted well
by a Woods-Saxon profile in both cases.

summarized as

dE

dyτdηsd2x⊥
≈ ε(ηs)δ(y − ηs). (26)

However, the dε/dy that we calculated in Eq. (23) did not have
this correlation, rather it was flat in ηs for any fixed value of y
and must thus correspond to an averaged quantity

dε

dy

∣∣∣
y≈ηs

∝
∫

dηs

dE

dyτdηsd2x⊥
. (27)

This leads to the relation

ε(ηs) ∝ dε

dy

∣∣∣
y≈ηs

. (28)

Thus we infer that the momentum rapidity profile would
coincide with the space-time rapidity profile. However, we
will not attempt to find the proportionality constant between
ε(ηs) and dε/dy. This result could be generalized by allowing
additional smearing around the y = ηs relation.

The normalizations of our results depend only weakly on
the correlation length λ, but they are sensitive to the choice
of αs , �UV ∼ Qs , 〈mT 〉, and the nuclear volume V . However,
reasonable values for these parameters lead to a normalization

of ε(ηs), which is comparable to the typical initial conditions
used in hydrodynamics simulations. Our main result here is
the shape of the rapidity dependence of the initial energy
density, which is much more stable against the variations of
the parameters. Note that the uncertainty grows significantly at
large rapidities |ηs | ≈ |y| ≈ ybeam. Our numerical calculations
exhibit a plateau around midrapidity and a fall-off toward
beam rapidity that is about three units of rapidity wide at both
energies. The shape is fitted well by a Woods-Saxon profile

ε(ηs) = ε0

1 + exp[(|ηs | − ηflat)/a]
. (29)

The values of the Woods-Saxon parameters for RHIC and LHC
are given in Table I.

Our Woods-Saxon parametrization is somewhat different
from the usual phenomenological parametrization of the initial
energy density used by most groups employing (3 + 1)D hy-
drodynamics, which consists of a perfectly flat plateau around
midrapidity flanked by two half-Gaussian functions [28,29].
It remains to be seen whether the differences between our
calculated shape and the empirical assumptions in the literature
can be resolved experimentally. However, our calculation
makes quantitative predictions of the width of the plateau and
the width of the fall-off towards the beam rapidity, albeit within
the limitations of the approximations used.

Our results can be compared with the ones in Ref. [23],
which use different assumptions. In that reference the energy
density is extracted from the number density, which in

TABLE I. The list of parameters for the Woods-Saxon
parametrization of dε/dy [GeV/fm3] given in Eq. (29). Within the
approximation of Eq. (28), this table can be seen as a list of parameters
for ε(ηs) as well. Although there is a large uncertainty in the parameter
ε0, the ratio of ε0 for RHIC to LHC is in compliance with the
ratio that can be calculated for the Stefan-Boltzmann law given
the typical RHIC and LHC temperatures. While varying one of
the parameters αs , λ, and 〈mT 〉, we keep the other two fixed to
αs = 0.4, λ = 1.8 fm, and 〈mT 〉 = 0.7 GeV for RHIC, and αs = 0.4,
λ = 1.8 fm, and 〈mT 〉 = 1.3 GeV for LHC.

RHIC LHC

ε0 ηflat a ε0 ηflat a

αs 0.2 5.8 4.6 0.7
0.3 19 4.6 0.7 477 6.7 0.7
0.4 43 4.6 0.7 1091 6.7 0.7
0.5 77 4.6 0.7 2024 6.7 0.7

λ 1.4 34 4.7 0.6 892 6.8 0.7
1.6 39 4.7 0.6 995 6.8 0.7
1.8 43 4.6 0.7 1091 6.7 0.7
2.0 46 4.6 0.7 1180 6.6 0.7
2.2 50 4.5 0.7 1264 6.6 0.7

〈mT 〉 0.5 84 4.9 0.7
0.7 43 4.6 0.7
0.9 26 4.4 0.7 2276 7.1 0.7
1.1 17 4.2 0.7 1524 6.9 0.7
1.3 12 4 0.7 1091 6.7 0.7
1.5 819 6.6 0.7
1.7 638 6.4 0.7
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turn comes from a kT -factorized ansatz involving UGDs.
The x dependence of those UGDs does not come directly
from the three-dimensional structure of the nuclei but from
phenomenological fits. While the result in Ref. [23] might
encode some quantum corrections that are not included in our
work, it also uses a set of assumptions which go beyond the
ones used here.

V. SUMMARY AND OUTLOOK

We have estimated the initial energy density per momentum
space rapidity dε/dy as a function of y at very small τ ≈ 0 in
the three-dimensional color neutral McLerran-Venugopalan
model. We have further made an assumption about the
correlation between the momentum space rapidity and space-
time rapidity, which ultimately allowed us to determine the
energy density as a function of ηs . The initial energy density is
an important input, poorly constrained thus far, for current
hydrodynamic simulations of heavy-ion collisions. While
hydrodynamics sets in at times somewhat later than τ ≈ 0, we
argue that our results can nevertheless be useful as constraints.
The normalization of the energy density depends strongly on
some of the parameters, but we found that for reasonable values
of these parameters the normalizations had the correct order of
magnitude. Our main result is the shape of the energy density

as a function of rapidity. We provided a parametrization of
our result in terms of a Woods-Saxon function. Our result is
complementary to others found in the literature.

Approaches that first calculate the number density of gluons
have to make assumptions about how to relate the number of
gluons to the energy density as well as the time at which this
matching should be done. We have followed an approach that
calculates the energy density T 00 directly at a time ∼R/γ .

It should be straightforward to work the rapidity profile
we found here into the (3 + 1)D hydrodynamics codes, also
including fluctuations of the energy density in the transverse
plane. It would also be interesting to consider fluctuations in
the longitudinal direction, which are beyond the scope of this
work.
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