
PHYSICAL REVIEW C 89, 034627 (2014)

Role of the “window” component of the friction tensor in the formation of superheavy nuclei
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Formation of superheavy nuclei is greatly hindered by the inner barrier and strong dissipation on the way
from the contact point of two colliding nuclei to the compound nucleus configuration. One of the dissipation
mechanisms is related to the exchange of particles across the window between two nuclei in relative motion,
which is the “window” term in the “wall-plus-window” formula. By means of the dynamic analysis for the
symmetric systems 132Xe + 132Xe and 136Xe + 136Xe, we have shown that the window component of friction
tensor retards the elongation of the fusing composite nucleus, decreases the height of the inner barrier, and hence
increases the fusion probability. Therefore, the friction associated with “window” term enhances the formation
cross sections of superheavy nuclei. Besides, we have shown the mass difference (in units of the temperature) of
the fission and neutron emission saddle points as a function of mass number of the hassium isotopes, which may
provide a useful reference for synthesis and study of the nuclei adjacent to the doubly magic nucleus 270Hs.
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I. INTRODUCTION

Collisions of heavy symmetric nuclei are a possible
alternative way for production of neutron-rich superheavy
(SH) elements. Within the model based on multidimensional
Langevin equations, Zagrebaev and Greiner [1] studied the
dynamics of heavy symmetric and asymmetric fusion reactions
leading to formation of SH nuclei. Adamian et al. [2]
investigated fusion of heavy symmetric nuclei within the
two-center shell model and found that in order to describe
the experimental data, a hindrance for the fast growth of
the neck and for the motion to smaller elongations of the
system should be incorporated in the calculations. Actually,
the physics of the whole process of the interaction between two
heavy nuclei is very complicated. One of the primary factors
is the severe hindrance of fusion, resulting in the dramatic
decrease of the formation of cross sections of SH nuclei.
Unfortunately, the fusion hindrance factor is far from clear
yet. Therefore, it is necessary to estimate this factor using test
reactions with known nuclei. One of the symmetric reactions
136Xe(136Xe, xn)272−xnHs seems to be suitable for this purpose.
Experiments on the synthesis of hassium in the 136Xe + 136Xe
fusion reaction were performed in Dubna. However, no event
was detected at the level of about 4pb [3]. Siwek-Wilczyńska
et al. [4] have analyzed the 136Xe + 136Xe fusion reaction with
the fusion-by-diffusion (FBD) model [5–7]. The maximum
evaporation residue (ER) cross section for production of 270Hs
isotope in 2n channel calculated with this model is on an
order of 10 pb, which exceeds the experimental data by
orders of magnitude [3,4]. Liu and Bao [8] have evaluated
the 136Xe(136Xe, xn)272−xnHs reaction with a modified FBD
model. In the model, early dynamics of neck growth has been
taken into account in terms of the multidimensional Langevin
equations. However, in their calculations, the schematic liquid-
drop model and the corresponding expressions of one-body
dissipations including the “window” term [9,10] were used.

*Corresponding author: lyj85@126.com

Since the fusion hindrance factors for such reactions are still
very uncertain, further evaluation of the hindrance in the fusion
of two heavy nuclei, more or less equal in mass, is required.

In a collision involving heavy nuclei, after contact, a fast
growth of neck between target and projectile brings the system
from dinuclear regime to mononuclear one. Meanwhile, a
transition from fusion valley into an asymmetric fission valley
(symmetric fission valley for the symmetric systems), which
is located outside the saddle point (inner barrier), takes
place. Recently, it is realized that for very heavy systems the
injection-point configuration in the asymmetric (or symmetric)
fission valley has critical influence on the fusion process [11].
In fact, the fusion process is very sensitive to the treatment
of the evolution of the neck between the two colliding
nuclei at contact. As shown by Boilley et al. [12], the rapid
evolution of the neck changes the initial value of the other
collective variables through a dynamic coupling. They have
demonstrated that for the radial degree of freedom, the shift
towards larger distance is not negligible and hence may greatly
enlarge the hindrance of the fusion.

The collective variables are coupled dynamically through
the inertia and friction tensors. In the stochastic equations,
terms with different inertia and friction tensors usually have
different, even opposite, influence in the final outcome. In
this connection, it is meaningful to make a detailed inspection
of their role in the dynamic evolution process. In this work,
we pay special attention to the influence of the “window”
component of friction tensor, which is related to the energy
dissipation associated with the exchange of particles across
the window between two colliding nuclei [13], in the fusion
probability. Our results show that the friction associated with
the “window” component retards the elongation of the fusing
system and therefore should be favorable to the formation of
superheavy nuclei.

II. DYNAMICAL APPROACH OF FUSION PROCESS

After contact of two colliding nuclei, the evolution from
dinuclear to mononuclear configurations is described using
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the coupled Langevin equations. The shape of the system is
specified in terms of two spheres with radii R1 and R2 smoothly
connected by a hyperboloidal neck. Three collective variables
may be defined: s, n, and η. Here s is the surface separation
between two spheres, n is the radius of neck, and η denotes
the mass asymmetry degree of freedom. In present work, the
symmetric reactions 132Xe + 132Xe and 136Xe + 136Xe are
analyzed. Therefore, the mass asymmetry degree of freedom
is not taken into account in the calculations. The coupled
Langevin equations of motion in two-dimensional collective
space have the form

dqi

dt
= μijpj ,

(1)
dpi

dt
= −1

2
pjpk

∂μjk

∂qi

− ∂V (q)

∂qi

− γijμjkpk + θij ξj (t),

where qi ≡ s,n stands for the collective coordinates, pi are
its conjugate momenta, V (q) is the nuclear deformation
potential energy, μij denotes the inverse matrix elements of the
inertia tensor mij , and γij represents the friction tensor. The
normalized random variables ξj are assumed to be independent
white noises. The strength θij of the random force is given
by θikθkj = T γij with T being the temperature of the heat
bath.

The nuclear deformation potential energy V (q) is obtained
from the finite-range liquid drop model [14,15]. We make
the Werner-Wheeler approximation [16,17] for incompressible
and irrotational flow to calculate the inertia tensor mij and
its inverse μij in Eq. (1). For the friction tensor, we use the
one-body model for nuclear dissipation in our calculations.
In the framework of the one-body dissipation model [18–21],
the friction tensor is calculated using the “wall-plus-window”
formula for strongly necked-in shapes, while only the “wall”
formula is used for compact mononuclear shapes. In the
intermediate case for the shapes that are neither compact
nor strongly necked-in, a smooth interpolation between
the wall and wall-plus-window formula is applied with a
weighting factor f (n). The corresponding formula reads
[9,18–22]

γij = ρmv̄πn̄2f (n)δsj

+ 2πρmv̄k

∫ l2+R2

l1−R1

ρs√
1 + ρ

′2
s

[(Aiρ
′
s + A

′
iρs/2)

× (Ajρ
′
s + A

′
j ρs/2)]dz, (2)

with the reduction factor k = 0.25 [23] and the subscript
(i,j ) standing for the collective variables (s,n). In the above
equation, the primes denote differentiation with respect to z,
ρm is the nuclear mass density, v̄ is the average nucleon speed,
n̄ is the average neck radius, ρs stands for the radius of nuclear
surface in a cylindrical coordinate, l1,2 are the center positions
of two outside spheres, and the quantities Ai and Aj are defined
in Ref. [17] as functions of z and q. The first and second terms
in Eq. (2) are the window (γ window

ij ) and wall (γ wall
ij ) terms,

respectively. The wall term includes the radial (γ wall
ss ), neck

(γ wall
nn ) and coupling (γ wall

sn ) components. For the window term,
only the radial element γ window

ss is important [9]; the others are
negligible in magnitude. We refer to γ window

ss as the window

FIG. 1. Different components of friction tensor in the wall-plus-
window formula as a function of n/R0 for the system 132Xe + 132Xe
at contact. They are the window (γ window

ss , dash-dotted line), radial
(γ wall

ss , dashed line), neck (γ wall
nn , dash-dot-dotted line), and coupling

term between radial and neck (γ wall
sn , short dashed line) degrees of

freedom in the wall formula. The solid line represents the sum of
γ wall

ss + γ window
ss .

component of friction tensor. We introduce the weighting
function f (n) in the window term with an expression similar
to the one used in Refs. [9,10],

f (n) = cos2

(
1

2
π

[
n√

0.5Ri

]2)
, (3)

where
√

0.5Ri with Ri = min(R1,R2) was defined to be
the boundary between the dinuclear and mononuclear
regimes [24]. The components of window (γ window

ss ) and
wall (γ wall

ss , γ wall
nn , γ wall

sn ) as well as the wall-plus-window
(γ wall

ss + γ window
ss ) of the radial degree of freedom are displayed

in Fig. 1 as a function of n/R0 with R0 the radius of the
compound nucleus. It is seen from the figure that the window
term is an important component of the macroscopic energy
dissipation.

The initial conditions for the radial and neck motions,
except the initial radial momentum ps(0), are defined in
Refs. [8,22]. The initial radial momentum ps(0) influences
the probability distribution of radial degree of freedom at the
injection point sinj, which is the distance between surfaces of
two approaching nuclei where injection into asymmetric (or
symmetric) fission valley takes place. For sake of simplicity,
we set ps(0) = 0 in the present work.

In order to investigate the role of the friction associated with
the window term on the fusion probability, we have performed
the Monte Carlo simulations using Eq. (1) in the two cases
of friction tensor, i.e., with and without the window term in
Eq. (2). As an example, the resultant distributions f (sinj) of
the injection point sinj are plotted in Fig. 2(a) for the system
132Xe + 132Xe at the center-of-mass energy Ec.m. = 311 MeV.
The solid and open circles in the figure represent the results
calculated with and without the window component of friction
tensor. It is seen from the figure that the sinj distribution
in the case of the dynamic calculation without the window
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FIG. 2. Probability distributions of sinj (a) and the inner barrier
height distributions (b) for the system 132Xe + 132Xe at Ec.m. =
311 MeV. The solid and open circles in panels (a) and (b) represent
the results calculated with and without the window term in the friction
tensor, respectively.

component shifts to a larger distance as compared to the one
calculated with the window component of friction tensor. This
means that the friction associated with the window term retards
to a certain extent the elongation of the fusing system during
the evolution process of neck.

From the sinj distribution, one can get the inner barrier
height distribution. Displayed in Fig. 2(b) are the barrier dis-
tributions for the two cases mentioned above. The barrier
height, B(sinj,l) is measured from the injection point, which
consists of the macroscopic deformation energy 
E(sinj,l =
0) and rotational energy 
Erot(sinj,l) in the l-dependent
FBD model [11]. The macroscopic deformation energy along
the symmetric fission valley is calculated using the refined
algebraic expressions [11]. The corresponding values of the
rotational energy at the injection point and at the symmetric
saddle point are calculated with moments of inertial specified
in Ref. [11]. Only the macroscopic deformation energy

E(sinj,l = 0) is plotted in Fig. 2(b).

After injection into the symmetric fission valley, thermal
shape fluctuations in the valley can occasionally bring the
system over the saddle point with a probability [5,7,11]

Pfus(Ec.m.,l) = 1

2

∫
erfc(

√
B(sinj,l)/T )f (sinj)dsinj, (4)

where T is the temperature of the fusing system, which we
take as the mean value of the initial temperature at injection
point Tinj and the temperature at the top of the saddle point
Tsaddle. Figure 3 shows the fusion probabilities of the angular

FIG. 3. Fusion probabilities for the system 132Xe + 132Xe at
Ec.m. = 311 MeV. Only the component with the angular momentum
l = 0 is shown. The solid and dashed lines represent the results
calculated with and without the window term in the friction tensor.

momentum l = 0 for the system 132Xe + 132Xe at Ec.m. =
311 MeV. It is seen from the Figs. 2(b) and 3 that the friction
associated with the window term lowers the fusion threshold
and obviously increases the fusion probability.

III. RESULTS AND DISCUSSION

The cross section of a superheavy nucleus produced
in a heavy-ion fusion-evaporation reaction is calculated as
follows [25–27]:

σER(Ec.m.) = πλ2
∞∑
l=0

(2l + 1)Pcapt(Ec.m.,l)Pfus

× (Ec.m.,l)Pxn(Ec.m.,l). (5)

Here Pcapt is the capture probability of the colliding nuclei after
overcoming the Coulomb barrier and moving up to the contact
point. We calculate Pcapt by means of a semiphenomenological
barrier distribution function method proposed by Zagrebaev
et al. [28,29]. The last factor, Pxn, represents the survival
probability of the excited compound nucleus after evaporation
of x neutrons in the cooling process. We calculate the survival
probability Pxn in more or less convenient method; for details,
see Refs. [30–32].

In order to compare with the experimental data, we first
calculate the ER cross sections for the 136Xe + 136Xe reaction
leading to formation of 268−271Hs isotopes in two approaches,
i.e., with and without the window term in the wall-plus-window
formula in the dynamic calculations using Eq. (1). Displayed
in Fig. 4 is this comparison with the Dubna data. Our calculated
maximum ER cross sections in 2n and 3n channels with the
former approach are about 0.4 pb, which are one order of
magnitude smaller than the the present experimental limit for
registration the evaporation residual nuclei. For this reaction,
the cross sections calculated with the window term are about
two times larger than those evaluated without the window term
in Eq. (2).
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FIG. 4. The evaporation residue cross sections for the
136Xe + 136Xe reaction calculated in two conditions, i.e., with
(solid line) and without (dashed line) the window term in the
wall-plus-window formula. The dash-dotted line shows the cross
sections calculated using the friction of the wall term in Eq. (2)
only, but with reduction factor k = 1.0. The insert illustrates the
nuclear shape in the symmetric valley, in which the thin and thick
solid lines are obtained with reduction factors k = 0.25 and k = 1.0,
respectively. The hollow bar in panel (a) shows the upper limit of the
experimental ER cross sections in this reaction [3].

Figure 5 displays the predicted ER cross sections for the
132Xe + 132Xe reaction leading to formation of 260−263Hs
isotopes. The results shown in the figure clearly demonstrate
that the friction associated with the window term plays an
important role in the formation of superheavy nuclei. The
132Xe(132Xe,1n)263Hs fusion-evaporation reaction provides
the most obvious example. For this reaction, the peak position
of the ER excitation function should be located at Ec.m. =
214 MeV, which is below the threshold of fusion in the case
where the window term in Eq. (2) is not taken into account
in the dynamic calculations. As a result, the peak of the ER
excitation function is pushed to an energy 6 MeV higher than

FIG. 5. Same as Fig. 4, but for the 132Xe + 132Xe reaction.

the most favorable value in the 1n evaporation channel and
the corresponding ER cross sections are reduced by orders
of magnitude as compared to the cross sections in which the
sinj distributions are calculated with the window term included
in the friction tensor. In other words, the friction associated
with the window term greatly increases the ER cross sections
of the 1n channel. The 132Xe(132Xe,2n)262Hs reaction takes
place in the energy region near the threshold of fusion. The
friction associated with the window term brings about the
ER cross sections in the 2n evaporation channel increased
by more than one order of magnitude. As for the 3n and 4n
evaporation channels of the 132Xe + 132Xe reaction, although
the effect of the friction of the window term is not as obvious
as that observed in the 1n and 2n channels, the cross sections
calculated with the window term in the friction tensor are still
several times as large as those evaluated without the window
term.

In the following, we examine whether similar results can
be obtained with larger friction coefficients but without the
window term. For this purpose, we have calculated the cross
sections of the 136Xe(136Xe,3n)269Hs reaction using the wall
formula with the reduction factor k = 1.0 [Eq. (2) without the
window term]. The resultant ER excitation function is shown
in Fig. 4 as dash-dotted line. It is noteworthy that its cross
sections are more than one order of magnitude smaller than
the results calculated with the reduction factor k = 0.25. The
time scale of the transition from dinuclear to mononuclear
configurations is of the order of γnn/fn [12], where γnn and
fn are the friction coefficient of neck motion and slope of the
potential V (q) with respective to the neck degree of freedom.
The larger value of γnn results in a longer transition time.
Under the Smoluchowski approximation and neglecting the
driving force of the radial degree of freedom, −∂V (q)/∂s,
Boilley et al. [12] got an approximate relation between the
radial distance and neck size in the neck evolution process,


〈s〉 � −γsn

γss


〈n〉. (6)

Therefore, the radial motion is basically not influenced by
the increase of the friction strength in the transition from the
dinuclear regime to the mononuclear one because both γss and
γsn are increased with the same ratio. As a consequence of
longer transition time needed, the radial driving force pushes
the system into a configuration of the mononucleus with a more
elongated shape when the injection into the symmetric valley
(beyond the inner barrier) takes place. The insert of Fig. 4
illustrates the nuclear shape in the symmetric valley for the
two cases, i.e., with the reduction factors k = 1.0 (thick solid
line) and k = 0.25 (thin solid line). Consequently, the fusion
probability and hence the cross sections are obviously reduced.
On the other hand, if including the window friction term, then
the denominator of Eq. (6) becomes γss = γ window

ss + γ wall
ss ,

and hence the ratio −γsn/γss decreases as compared to the
case without the window friction term. It turns out that the
nuclear system enters the symmetric fission valley with a
compact shape. This is why the window friction tensor retards
the elongation of the fusing composite nucleus and therefore
increases the fusion probability. In this context, we have shown
that the window and wall components of friction tensor play
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a quite different role in the dynamic evolution process of the
heavy nuclear systems.

The functional fluctuation-dissipation relation provides us
the simplified expression γij = γmij . Therefore, the value of
the inertia tensor should be changed with shutting on and off
the window term in the friction tensor. However, because it is
based on a somehow different mechanism, there is no inertia
counterpart associated with the window term in the friction
tensor in the the Werner-Wheeler approximation [16,17]. As
an alternative way, one may check the role of the inertia tensor
in the nuclear dynamic evolution process. If the terms with the
inertia tensor in the Langevin equations do not have important
influence on the final results, then it should not be a serious
problem to ignore the change of the inertia tensor due to
shutting on or off the window component of friction tensor.
By means of a detailed study of the one-body dissipation,
Blocki et al. [18] came to the conclusion that the dynamics
would appear to be characterized by superviscidity, i.e., a
pronounced dominance of the motions by dissipative effects.
In other words, the effects of the inertia tensor should be much
less important. In fact, in the Smoluchowski approximation,
the inertia terms in the dynamic equations are neglected (see
Eq. (9) of Ref. [7] and Eq. (7) of Ref. [12]). We have checked
the possible effect of the change of inertia tensor on the ER
cross sections by using the relation γij = γmij . For the sake
of simplicity, we take the value of γ as γ = γ wall

ss /mss , and
hence the increase of the inertia tensor in the radial motion may
be approximately expressed as 
mss = (mss/γ

wall
ss )γ window

ss

due to introducing the window component of friction tensor.
Note that 
mss is collectively coordinate dependent. Adding

mss to mss , we have calculated the ER excitation function
for the 136Xe(136Xe,3n)269Hs reaction. As compared with the
case without the increased term 
mss , the calculated cross
sections decrease by about 20%, which are one order of
magnitude smaller than the variation caused by the window
component of friction tensor. Therefore, the above approach
clearly demonstrates that the dynamic evolution process does
not sensitively depend on the inertia tensor, and in some
circumstances, the terms with the inertia tensor even can be
neglected, as treated in the Smoluchowski approximation.

One may observe from Figs. 4 and 5 that the ER cross
sections for the 136Xe + 136Xe reaction are several order
of magnitude larger than the ER cross sections of the
132Xe + 132Xe reaction. The capture and fusion probabilities
of these two reactions are similar. The large differences
should caused by the survival probability. The ratio between
the neutron and fission disintegration widths has a simple
relationship [30],

n

f

∝ exp[(Bf − Bn)/T ]. (7)

Equation (7) means that the logarithm of n/f and the
difference, d, between the fission barrier height and the neutron
binding energy (Bf − Bn) have a simple relationship, i.e.,
a linear function. In the present approach, n/f depends
on the mass difference (in units of the temperature) of the
fission and neutron emission saddle points (see Fig. 9 in
Ref. [7]). Correspondingly, the d value for the emission of

FIG. 6. The difference of the effective fission barrier hight and
neutron separation energy in units of the temperature as a function of
the mass number for the hassium isotopes. The arrows indicate the
mass numbers of the 132Xe + 132Xe and 136Xe + 136Xe systems.

k neutrons [32,33] is

d =
k∑

i=1

([(
BLD − 


gs
sh + 
p − Bn

]
i−1

− {

p − 


gs
sh[1 − exp(−U/ED)]

}
i

)/
Ti−1. (8)

Here 

gs
sh, 
p(k), and BLD denote, respectively, the micro-

scopic shell correction of ground state, the pairing energy,
and the barrier height of the macroscopic liquid drop energy.
Data of 


gs
sh and 
p(k) are taken from Ref. [34]. ED =

18.5 MeV [31,35] is the damping parameter describing the
decrease of the influence of the shell effects on the energy
level density with increasing excitation energy. The suffixes in
the sum of the first and second terms represent the values taken
in the (i − 1)th and its daughter nuclei, respectively. Ti−1 is
the corresponding nuclear temperature. The initial compound
nucleus is indexed as i = 0. Figure 6 shows the d values of
the 2n and 3n evaporation channel as a function of the mass
number of the hassium isotopes. It may be seen from the figure
that the d values of 272Hs are several times lager that those of
264Hs. Thus, Fig. 6 clearly demonstrates the origin responsible
for the large differences of the ER cross sections between the
132Xe + 132Xe and 136Xe + 136Xe reactions.

IV. SUMMARY

The coupled Langevin equations in two-dimensional col-
lective space are used to study the neck evolution for the
mass symmetric systems 132Xe + 132Xe and 136Xe + 136Xe.
By solving these Langevin equations the sinj probability
distributions are obtained. We have shown that the friction
associated with the window term retards the fusing system
to drift towards a larger distance of the injection point
sinj, and hence decreases the height of the inner barrier.
Fusion probability exponentially depends on the barrier height.
Therefore, the window component of friction tensor obviously
increases the fusion probability. Correspondingly, the ER cross
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sections are greatly enhanced, especially for those evaporation
channels which its peak position locates below or near the
fusion threshold. In such a case, the cross sections are increased
by orders of magnitude. Therefore, by means of the dynamic
analysis for these symmetric systems, we have demonstrated
that the friction associated with the window term in the
wall-plus-window formula is favorable to the formation of
superheavy nuclei.

According to the predictions of microscopic theory, the
existence of surperheavy element Hs is fully controlled by the
closed deformed shell at Z = 108 and N = 162. Very recently,
the doubly magic nucleus 270Hs has been synthesized using the
226Ra + 48Ca hot fusion reaction [36]. It is very attractive to

synthesize and study the nuclei adjacent to 270Hs. The mass
difference (in units of the temperature) of the fission and
neutron emission saddle points as a function of mass number
of the hassium isotopes shown in Fig. 6 may provide a useful
reference for these purpose.
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