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Complete and incomplete fusion of weakly bound nuclei
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Existing quantum mechanics methods to study fusion reactions with weakly bound nuclei cannot evaluate
separately the complete fusion and the incomplete fusion cross sections. We develop a semiclassical procedure
that can calculate these cross sections, apply it to 6,7Li + 209Bi collisions at energies just above the barrier, and
show that its predictions for the different fusion cross sections are in good agreement with the data. We find that
the contribution from the sequential fusion of the Li fragments to the complete fusion cross section is substantial
in the case of 6Li, reaching almost 40% of that from the direct process, which illustrates the importance of
calculating correctly the different components of the fusion cross section.
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I. INTRODUCTION

The availability of radioactive beams opened new possi-
bilities in nuclear physics. In particular, collisions of weakly
bound nuclei have aroused great interest, both theoretical and
experimental, over the past decade [1]. In such collisions,
the breakup cross section tends to be very large and breakup
couplings may have a strong influence on the cross sections
for several other channels. An important example is the fusion
process, which in this case becomes much more complex,
as, in addition to the usual fusion reaction, in which the
whole projectile merges with the target to form the compound
nucleus, there are other fusion processes following the breakup
of the weakly bound collision partner. There is the possibility
that one or more, but not all, fragments are absorbed by
the target, whereas part of the projectile’s mass escapes the
interaction region. It can also happen that all the projectile’s
fragments are sequentially absorbed by the target, producing
the same compound nucleus as in the case of direct fusion.
These fusion processes receive different names. When the
compound nucleus does not contain all of the projectile’s
nucleons, we employ the term incomplete fusion (ICF),
whereas the fusion of all of the projectile’s nucleons with
the target is called complete fusion (CF). The CF cross section
is the sum of the cross section for the direct fusion of the
projectile with the target (DCF) and of the sequential fusion
of all of the projectile’s fragments (SCF).

Most experiments measure only the total fusion (TF) cross
section, which is the sum of the cross sections for CF and ICF.
However, for some particular projectile-target combinations,
it is possible to perform separate measurements of the cross
sections for CF and ICF. Important examples are the fusion
reactions 6,7Li + 209Bi [2,3] and 9Be + 208Pb [3,4], where the
influence of the breakup channel on fusion was shown to be
very strong.

Many theoretical approaches have been proposed to study
fusion reactions with weakly bound nuclei (for a review
see Ref. [1]), ranging from simple classical models [5,6]
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to full quantum-mechanical calculations [7–10], using the
continuum discretized coupled channel method (CDCC). In
most CDCC calculations fusion is included by means of short-
range imaginary potentials acting on each fragment. In this
way, there is no correlation between absorptions of different
fragments. Thus, one cannot know if the absorption by one of
these potentials contributes to ICF or to CF. Consequently,
the calculation gives only the summed cross section for
these processes, σTF [11]. This shortcoming is avoided in
the CDCC calculations of Hagino et al. [7] and Diaz-Torres
and Thompson [8]. These works adopt a single imaginary
potential acting on the full projectile and attribute absorption
in the bound channels to CF and absorption in channels in
the continuum to ICF. However, this procedure may only be
in some way justified when the absorbed fragment contains a
large fraction of the projectile’s mass. In this case, the center of
mass of the projectile is very close to the center of mass of the
heavy fragment, and it may be a good approximation to assume
that the heavy fragment is absorbed whenever the projectile is
inside the range of the imaginary potential. This is the case of
11Be, which was the projectile in the calculations of Refs. [7,8].
In this case, the breakup reaction is 11Be → n + 10Be and
ICF corresponds to the fusion of the 10Be fragment with
the target. However, this procedure cannot be used when the
projectile dissociates into fragments of comparable masses. In
such cases, a projectile-target imaginary potential for unbound
channels is meaningless. The center of mass of the projectile
of the dissociated projectile may be inside the range of
the imaginary potential with the two fragments being far
away. Therefore, there are no quantum-mechanical methods
to evaluate CF and ICF cross sections for collisions of weakly
bound projectiles that break up into fragments of comparable
masses, like 6,7Li or 9Be, and the development of new methods
to evaluate CF and ICF cross sections that incorporate quantum
effects is called for.

In the present work, we introduce a semiclassical method
to evaluate CF and ICF cross sections in collisions of weakly
bound nuclei. Our method, which has been successfully
applied to breakup reactions [12], consists of treating the
projectile-target relative motion by classical mechanics while
the intrinsic dynamics of the weakly bound projectile is
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FIG. 1. Coordinates used in the main text to describe the breakup
reaction of a weakly bound projectile by a heavy target.

handled by quantum mechanics. In Sec. II we give the details
of the method, in particular the separate calculation of the
complete and ICF cross sections. The results of this procedure
applied to the collisions of 6,7Li ions incident on 209Bi are
presented in Sec. III. Conclusions and possible extensions of
this work are drawn in the last section of this work.

II. CALCULATION PROCEDURE

We consider the reaction as a two-step process. In the
first part the breakup of the weakly bound projectile is
described by the semiclassical procedure of Refs. [12,13]. The
breakup amplitudes obtained are transformed to momentum
distributions of the fragments, and we use this information to
calculate the fusion probabilities of the breakup products. In
the following we consider in more detail these aspects of the
semiclassical calculation.

A. Amplitudes

We begin by summarizing the breakup part of the process.
As in our previous works [12,13], we consider a weakly bound
projectile consisting of two clusters, c1 and c2, moving around
the projectile’s center of mass. The collision dynamics is
described by two vectors: R, joining the centers of mass of
the projectile and the target, and r, joining the centers of c1

and c2. This is illustrated in Fig. 1. As the collision proceeds,
the projectile-target interaction couples the intrinsic states of
the system. In this way, the projectile, which is initially in its
ground state, may suffer transitions to excited bound states, if
any, and to continuum states. For a collision with given energy,
E, and impact parameter, b, one determines a trajectory by
classical mechanics and uses this trajectory to transform R
dependence into time dependence. The intrinsic dynamics is
then treated as a time-dependent quantum-mechanics problem.

Analogously to Refs. [14,15], the interaction is given in
terms of the fragment-target vectors,

r1 = R + A2

AP
r, r2 = R − A1

AP
r,

by the expression

V (R,r) = V1

(
R + A2

AP
r
)

+ V2

(
R − A1

AP
r
)

, (1)

where V1 (V2) is the interaction between c1 (c2) and the target.
Above, A1 and A2 are the mass numbers of c1 and c2, and
AP = A1 + A2 is the mass number of the projectile. The
potentials V1 and V2 contain nuclear and Coulomb parts. For
the semiclassical calculation, as in Ref. [12], the interaction
is split into an optical potential, V0, the real part of which
only affects the classical trajectory of the projectile-target
system, while its imaginary part represents absorption from
other channels, and a coupling interaction, U (R,r), which
leads to breakup,

V0(R) = V (R,r = 0) = V1(R) + V2(R) (2)

and

U (R,r) = V (R,r) − Re {V0(R)} . (3)

The derivation of the semiclassical coupled-channel equa-
tions was done in Sec. II of Ref. [12], where also the procedure
for the discretization of the continuum was described in detail.
In summary, the time-dependent wave function describing the
c1-c2 relative motion in the projectile frame is expanded as

�(b,t) =
∑

i

ci(b,t) ψi e
−iεi t/� + �C(b,t), (4)

where ci(b,t) are the amplitudes associated with the bound
states, ψi , and �C(b,t) is the component of �(b,t) in the
continuum,

�C(b,t) =
∑

lαjαJαMα

∫
dεα cα(b,t) e−iεα t/� �α. (5)

The amplitudes cα(b,t) are associated with the basis states in
the continuum discretization, �α .

The study of the breakup follows the same procedure as in
that work. In the present paper we study the evolution of the
system after the breakup took place, in particular the eventual
fusion of one or both of the projectile fragments with the target
nucleus.

To do this, as we have the breakup amplitudes cα(b,t) along
the projectile trajectory, we could, in principle, consider, at
each point along that trajectory, that the two clusters appear
with the velocities associated with the continuum state α
and probabilities |cα(b,t)|2. These are the initial conditions
needed to determine whether those clusters fuse with the target
nucleus.

Although the above procedure is feasible, it would require
the evaluation of a very large number of fusion probabilities.
To decrease the computational effort of the calculation, we
have resorted to the following approximation. We calculate
the breakup amplitudes of Eq. (5) until the classical trajectory
reaches the point of closest approach. We then consider that,
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when breakup takes place, the fragments are created at the
point of closest approach of the projectile’s classical trajectory.
This assumption is reasonable because the breakup probability
distribution is strongly peaked in the region around the point
of closest approach.

B. Direct complete fusion

The DCF cross section is calculated as

σDCF = π

K2

∑
L

(2L + 1)
(
1 − P

bup
L

)
T (P)

L (K), (6)

where the factor P
bup
L is the breakup probability and T (P)

L (K)
is the probability that the projectile fuses with the target when
having momentum �K in the partial wave L. The fusion
probabilities are approximated by the Hill-Wheeler formula,

T (P)

L (K) = 1

1 + exp

{
2π
�ω0

[
VB0

+ �2

2μPT

(L+ 1
2 )2

r2
b0

− E

]} . (7)

Here, E = �
2K2/2μPT, where μPT is the reduced mass of

the projectile-target system, and VB0 , rb0 , and �ω0 are the
height, radius, and curvature, respectively, of the barrier
corresponding to the projectile-target system. When R < rb0

we consider T (P)

L (K) = 1.

C. Incomplete fusion and sequential complete fusion

We calculate the ICF cross section of fragment ci, i = 1,2
by means of the expression

σICFi
= π

K2

∑
L

(2L + 1)
∫

d3k|AL(k)|2PFi (k), (8)

and the SCF cross section is

σSCF = π

K2

∑
L

(2L + 1)
∫

d3k|AL(k)|2PSCF(k). (9)

Above,

AL(k) =
∑
ν1 ν2

Aν1 ν2
(k,tf ,b) (10)

is the relative momentum distribution of the c1-c2 system at
the instant of closest approach or when it enters the strong
interaction region, tf , and we denote by �K and L = Kb
the relative momentum and the orbital angular momentum in
units of � of the projectile-target relative motion, respectively.
In Eq. (10), Aν1 ν2

(k,t,b) is the scalar product

Aν1 ν2
(k,t,b) = 〈

�(−)
ν1 ν2

(k,t)
∣∣�C(b,t)

〉
,

where the wave function �C(b,t) is given by Eq. (5) and
�(−)

ν1 ν2
(k,t) is the scattering wave function with incoming wave

boundary conditions. It is given by

�(−)
ν1 ν2

(k,t) = T �
(+)
−ν1 −ν2

(−k, − t), (11)

where T is the time-reversal operator and �(+)
ν1 ν2

(k,t) =
�(+)

ν1 ν2
(k) exp(−iεkt/�) is the scattering wave function with

outgoing wave boundary conditions, with ε = �
2k2/2μ12,

In Eq. (8), PFi
(k) is the probability that only the fragment

ci(i = 1,2) fuses with the target, given by

PF1 (k) = T
(c1)
l1

(E1)
[
1 − T

(c2)
l2

(E2)
]
, (12)

PF2 (k) = T
(c2)
l2

(E2)
[
1 − T

(c1)
l1

(E1)
]
, (13)

In Eq. (9), PSCF(k) is the probability that both fragments fuse
with the target,

PSCF(k) = T
(c1)
l1

(E1) T
(c2)
l2

(E2). (14)

In the above equations, T
(ci )
li

(Ei) is the probability that
a fragment ci with energy Ei and angular momentum li
tunnels through the barrier associated with its interaction
with the target. Note that, in each case, [1 − T

(cj )
lj

(Ej )] is the
nontunneling probability for the other fragment.

Energy conservation requires that the relative projectile-
target velocity V be modified by the breakup process, V → V ′,

V ′ =
√

V 2 − μ12

μPT

v2 − 2B

μPT

, (15)

where v is the modulus of the relative velocity between
fragments c1 and c2, v, μ12 is the reduced mass of these
fragments, and where B is the breakup threshold. Besides,
we make the simplifying assumption that the orientation of
this velocity is conserved in such a process. The fragment
velocities relatives to the target are

v1 = V′ − m2

mP

v, v2 = V′ + m1

mP

v, (16)

the energy of the ci-target relative motion is given by

Ei = 1
2μiv

2
i + Vi(ri), (17)

where μi is the reduced mass of the fragment ci-target system
and Vi(ri) is the interaction between these two nuclei at the
position of the fragment ci when the fusion calculation begins.
The angular momentum of the ci-target system with respect to
its center of mass is

�li = μiri × vi . (18)

For the fragment c1 this results in

l1 = μ1

�

(
R − m2

mP

r
)

× v1, (19)

and analogously for fragment c2.
As before, the fusion probabilities are estimated by means

of the Hill-Wheeler formula,

T
(ci )
li

(Ei) = 1

1 + exp

{
2π
�ωi

[
VBi

+ �2

2μi

(
i+ 1
2 )2

r2
bi

− Ei

]} . (20)

Here 
i = |li |, and VBi
, rbi

, and �ωi are the height, radius,
and curvature, respectively, of the barrier corresponding to the
ci-target system. When R < rbi

we consider T
(ci )
li

(Ei) = 1.

III. RESULTS

Using the above procedure we have calculated the complete
and ICF cross sections for the 6,7Li + 209Bi systems, for which
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FIG. 2. (Color online) Complete and total fusion cross sections
for 7Li projectiles incident on 209Bi.

these data are available. For the interaction between each
fragment and the target we used the Christensen-Winther po-
tential [16,17] and the continuum discretization was performed
with states with energies up to 7 MeV and angular momenta
up to 3�. As our main objective is to assess the effect of
the breakup channel on the CF cross section, we have not
considered the different transfer processes that are found to
accompany these reactions, which, as we show below, affect
specially the ICF cross sections.

We start with the case of the 7Li projectiles, which are
more bound (B = 2.47 MeV, compared with B = 1.47 MeV
in the case of 6Li). The potentials employed to reproduce
the ground-state energies of these Li nuclides as well as the
0.48-MeV bound excited state of 7Li were taken from Ref. [9].
In Fig. 2 we show the result of our calculations for the complete
and total (complete + incomplete) fusion cross sections for
the 7Li + 209Bi system. The results shown were obtained
under the assumption that, when the fusion calculation begins,
the breakup fragments are no longer interacting between
themselves, only with the target. We place them at the point
of closest approach of the projectile c.m. trajectory, and at a
distance 1.2(A1/3

1 + A
1/3
2 ) fm. The orientation of the vectors

joining their centers, r, is given by their relative velocity. From
these assumptions the initial conditions for the calculation of
their fusion cross section with the target are obtained. We
should remark that the fusion calculation is not very sensitive
to these initial conditions: We have verified that if we start
them assuming that the two fragments are emitted from the
center of mass of the projectile the results do not change
much. These calculations are compared with the experimental
measurements of Ref. [3] of the production of residual nuclei
with atomic numbers higher than that of the 209Bi target in
reactions induced by 7Li projectiles.

The agreement with the CF cross section data is quite
good, especially at the lower energies. However, that with
the TF cross section is much poorer. The differences between
the theoretical TF and CF cross sections are much smaller
than those observed in the data. We believe that this is
because the TF experimental cross sections do not include
only CF and ICF, but also direct transfers of 3H and 4He
clusters, which lead to the same residual nuclei as the ICF of

FIG. 3. (Color online) Components of the CF cross section in the
case of 7Li projectiles.

the corresponding fragment produced by 7Li breakup. These
processes and their contribution cannot be disentangled from
that of the ICF in the measurements. However, from the the-
oretical point of view, ICF and cluster transfer are completely
different process. The former is a two-step transition (breakup
followed by ICF), whereas the latter is reached in a single
step.

There is also an additional complication for the theoretical
description of this data. Recent experiments [18,19] on 7Li
breakup in collisions with different targets have detected a
significant number of events where 4He is in coincidence with
2H, instead of 3H. Furthermore, proton pickup, followed by the
resulting 8Be nucleus decay into two α particles, appears to be
the dominant transfer mechanism leading to breakup, at least
at sub-barrier energies. Thus, one-nucleon transfer channels
are likely to play an important role in the reaction mechanism.
The treatment reported in the present work describes only the
breakup channel, and not any of the transfer channels that
influence the production of the residual nuclei observed in the
experiment of Ref. [3].

The CF cross section is, however, much more clearly
defined from an experimental viewpoint, so we concentrate
on the analysis of its components. A recent experiment of
Luong el al. [20] has been able to distinguish prompt breakup
from delayed breakup. However, there is no experiment that

FIG. 4. (Color online) Similar to Fig. 2 for 6Li projectiles.
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FIG. 5. (Color online) Similar to Fig. 3 for 6Li projectiles.

can distinguish DCF from SCF. From what we mentioned
in the Introduction, if the SCF cross section were negligible,
the CF cross section could be obtained from standard CDCC
calculations. Because in the semiclassical approach presented
here DCF and SCF can be separately calculated, we can check
the importance of the latter. In Fig. 3 we show the calculated
DCF and SCF cross sections, together with that of the CF
(DCF + SCF). We note that, in this case, the SCF contribution
is quite small. This is consistent with the expectation that
breakup is not a dominant process for 7Li projectiles, as their
binding energy is not too small. In cases like this, standard
CDCC calculations should correctly describe the CF cross
section.

Let us now consider the case of the more weakly bound 6Li
projectiles, for which we have performed similar calculations.
In Fig. 4 we show the complete and total fusion cross sections
for the 6Li + 209Bi system. The agreement with the CF cross
section data is rather good, and that with the TF cross section
is reasonable, except for the large differences at high energies.
We give a similar interpretation to those differences as in
the 7Li + 209Bi collision. However, in the present case the
calculated TF and CF cross sections differ markedly, indicating
the importance of breakup channels in the fusion processes
for this system. When we analyze the components of the CF

FIG. 6. (Color online) Comparison of the contribution from
transfer and ICF channels in reactions induced by 7Li projectiles
to the calculated cross section from ICF processes.

FIG. 7. (Color online) Similar to Fig. 6 for 6Li projectiles.

cross section in the case of 6Li projectiles, shown in Fig. 5,
we note that the contribution from the SCF cross section is
appreciable, reaching almost 40% of the contribution from
DCF. This is in line with the observation that breakup should
be more important in the case of this more weakly bound
nucleus.

Now we compare the calculated ICF cross sections with
the corresponding experimental data. We remark that the
experimental data are, in fact, the cross sections for production
of nucleides with atomic numbers one (ICF of 2,3H) or two
(ICF of 4He) units higher than that of Bi, namely, At and
Po isotopes. Therefore, the data include also direct transfer
of the 2,3H and 4He clusters. The results for the 7Li and 6Li
projectiles are shown, respectively, in Figs. 6 and 7. In both
cases, and especially for the 7Li projectiles, the agreement
between experiment and theory is poor. The direct transfer of
clusters may be responsible, for the discrepancies, at least in
part. However, to clarify this point it would be necessary to
perform a very complicated and time-consuming semiclassical
calculation, including also several transfer channels. We notice
that the transfer process appears to be especially dominant for
7Li projectiles. This is because of the larger number of transfer
channels open in this case.

FIG. 8. (Color online) Contributions from the 3H (short-dashed
line) and 4He (long-dashed line) fragments of 7Li to the calculated
ICF cross section (solid line) in the 7Li-209Bi collision.
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FIG. 9. (Color online) Contributions from the 2H (short-dashed
line) and 4He (long-dashed line) fragments of 6Li to the calculated
ICF cross section (solid line) in the 6Li-209Bi collision.

To finish this section, we discuss the contribution from each
breakup fragment to the ICF cross section. We consider the
7Li-209Bi and 6Li-209Bi collisions, for which the fragments
are, respectively, [3H,4He] and [2H,4He]. The experiment
of Ref. [3] measured separate cross sections for most Po
and At isotopes, which are, respectively, the signatures for
the absorption of H and He. However, it cannot distinguish
between 210Po and 210At. The reason is that 210At decays
to 210Po with T1/2 = 8.3 h and the cross section of 210Po,
which decays with T1/2 = 138 d, was determined from off-line
spectra accumulated during a few days. Thus, the measure-
ments give, in fact, the summed cross sections for these
two nuclei. Beacuse this result corresponds to most of the
experimental ICF cross section, there are no reliable data
on the contribution from each fragment. For this reason,
we base our discussion exclusively on the calculated cross
sections.

Figures 8 and 9 show, respectively, the calculated ICF cross
sections for the two 7Li and 6Li projectiles (solid lines). The
contributions from the breakup fragments are represented by
short- and long-dashed lines, as indicated in the legends and
captions of the figures. In the case of 7Li, the contributions
from the two fragments are similar at low energies but at
higher energies the contribution from 4He is twice as large. In
the case of 6Li, the contributions from 2H and from 4He are
similar in the whole energy range.

IV. CONCLUSIONS

We have developed a semiclassical calculation procedure
to study the influence of the breakup process in the fusion
reaction of a weakly bound projectile with a heavy target.

We have applied it to 6,7Li + 209Bi collisions at near-barrier
energies and compared its predictions for the CF and TF cross
section with the data of Dasgupta et al. [2]. Our model was
shown to reproduce the CF data. Further, our results indicate
a sizable contribution of the SCF process to the total CF
cross section in the case of 6Li projectiles, indicating that an
improper consideration of this process may lead to inaccurate
predictions of both the complete and incomplete fusion cross
sections.

Furthermore, we have encountered large differences be-
tween the predictions of the TF cross sections of our calcula-
tions and those reported in the data. We argue that this may be
attributable to the contributions from direct transfer processes
to the yields of final nuclei that cannot be distinguished from
those of true ICF events.

Our calculations are subject to refinements, as they are
based on a series of simplifying assumptions. The quality
of the description of available data on CF indicates that the
semiclassical method has the potential to give a complete
and accurate picture of the processes occurring in collisions
induced by weakly bound nuclei, and other similar systems. In
particular, they could be applied to study collisions between
molecules, atomic clusters, and other objects for which the
small de Broglie wavelength of the relative motion justifies
the use of a classical trajectory, while the internal states of
the colliding partners require a quantal description. We stress
that quantum-mechanical CDCC calculations for systems like
6Li + 209Bi cannot evaluate separate cross sections for CF and
ICF [11]. Thus, this seems to be an important strength of the
semiclassical approach. The purely classical treatment [5,6] is
able to correctly distinguish between all of these processes,
but lacks, however, the inclusion of quantum effects, such as
tunneling, which are known to be an important ingredient
in fusion processes, and, most importantly, the quantum-
mechanical description of the excitation of the weakly bound
projectile during the collision process.
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do Estado de Rio de Janeiro, and PEDECIBA and ANII
(Uruguay).

[1] L. F. Canto, P. R. S. Gomes, R. Donangelo, and M. S. Hussein,
Phys. Rep. 424, 1 (2006).

[2] M. Dasgupta, D. J. Hinde, K. Hagino, S. B. Moraes,
P. R. S. Gomes, R. M. Anjos, R. D. Butt, A. C. Berriman,
N. Carlin, C. R. Morton et al., Phys. Rev. C 66, 041602(R)
(2002).

[3] M. Dasgupta, P. R. S. Gomes, D. J. Hinde, S. B. Moraes, R. M.
Anjos, A. C. Berriman, R. D. Butt, N. Carlin, J. Lubian, C. R.
Morton et al., Phys. Rev. C 70, 024606 (2004).

[4] M. Dasgupta, D. J. Hinde, R. D. Butt, R. M. Anjos, A. C.
Berriman, N. Carlin, P. R. S. Gomes, C. R. Morton, J. O. Newton,
A. Szanto de Toledo et al., Phys. Rev. Lett. 82, 1395 (1999).

034625-6

http://dx.doi.org/10.1016/j.physrep.2005.10.006
http://dx.doi.org/10.1016/j.physrep.2005.10.006
http://dx.doi.org/10.1016/j.physrep.2005.10.006
http://dx.doi.org/10.1016/j.physrep.2005.10.006
http://dx.doi.org/10.1103/PhysRevC.66.041602
http://dx.doi.org/10.1103/PhysRevC.66.041602
http://dx.doi.org/10.1103/PhysRevC.66.041602
http://dx.doi.org/10.1103/PhysRevC.66.041602
http://dx.doi.org/10.1103/PhysRevC.70.024606
http://dx.doi.org/10.1103/PhysRevC.70.024606
http://dx.doi.org/10.1103/PhysRevC.70.024606
http://dx.doi.org/10.1103/PhysRevC.70.024606
http://dx.doi.org/10.1103/PhysRevLett.82.1395
http://dx.doi.org/10.1103/PhysRevLett.82.1395
http://dx.doi.org/10.1103/PhysRevLett.82.1395
http://dx.doi.org/10.1103/PhysRevLett.82.1395


COMPLETE AND INCOMPLETE FUSION OF WEAKLY . . . PHYSICAL REVIEW C 89, 034625 (2014)

[5] K. Hagino, M. Dasgupta, and D. J. Hinde, Nucl. Phys. A 738,
475 (2004).

[6] A. Diaz-Torres, Comput. Phys. Commun. 182, 1100 (2011).
[7] K. Hagino, A. Vitturi, C. H. Dasso, and S. M. Lenzi, Phys. Rev.

C 61, 037602 (2000).
[8] A. Diaz-Torres and I. J. Thompson, Phys. Rev. C 65, 024606

(2002).
[9] A. Diaz-Torres, I. J. Thompson, and C. Beck, Phys. Rev. C 68,

044607 (2003).
[10] N. Keeley, K. W. Kemper, and K. Rusek, Phys. Rev. C 65,

014601 (2001).
[11] K. Keeley and N. Rusek, Phys. Lett. B 375, 9 (1996).
[12] H. D. Marta, L. F. Canto, and R. Donangelo, Phys. Rev. C 78,

034612 (2008).
[13] H. D. Marta, L. F. Canto, R. Donangelo, and P. Lotti, Phys. Rev.

C 66, 024605 (2002).

[14] F. M. Nunes and I. J. Thompson, Phys. Rev. C 57, R2818
(1998).

[15] F. M. Nunes and I. J. Thompson, Phys. Rev. C 59, 2652
(1999).

[16] R. A. Broglia and A. Winther, Heavy Ion Reactions (Westview
Press, Boulder, CO, 2004).

[17] P. R. Christensen and A. Winther, Phys. Lett. B 65, 19 (1976).
[18] D. H. Luong, M. Dasgupta, D. J. Hinde, R. du Rietz, R. Rafiei,

C. J. Lin, M. Evers, and A. Diaz-Torres, Phys. Rev. C 88, 034609
(2013).

[19] A. Shrivastava, A. Navin, N. Keeley, K. Mahata, K.
Ramachandran, V. Nanal, V. V. Parkar, A. Chatterjee, and
S. Kailas, Phys. Lett. B 633, 463 (2006).

[20] D. H. Luong, M. Dasgupta, D. J. Hinde, R. du Rietz, R. Rafieri,
C. J. Lin, M. Evers, and A. Diaz-Torres, Phys. Lett. B 695, 105
(2011).

034625-7

http://dx.doi.org/10.1016/j.nuclphysa.2004.04.090
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.090
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.090
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.090
http://dx.doi.org/10.1016/j.cpc.2010.12.053
http://dx.doi.org/10.1016/j.cpc.2010.12.053
http://dx.doi.org/10.1016/j.cpc.2010.12.053
http://dx.doi.org/10.1016/j.cpc.2010.12.053
http://dx.doi.org/10.1103/PhysRevC.61.037602
http://dx.doi.org/10.1103/PhysRevC.61.037602
http://dx.doi.org/10.1103/PhysRevC.61.037602
http://dx.doi.org/10.1103/PhysRevC.61.037602
http://dx.doi.org/10.1103/PhysRevC.65.024606
http://dx.doi.org/10.1103/PhysRevC.65.024606
http://dx.doi.org/10.1103/PhysRevC.65.024606
http://dx.doi.org/10.1103/PhysRevC.65.024606
http://dx.doi.org/10.1103/PhysRevC.68.044607
http://dx.doi.org/10.1103/PhysRevC.68.044607
http://dx.doi.org/10.1103/PhysRevC.68.044607
http://dx.doi.org/10.1103/PhysRevC.68.044607
http://dx.doi.org/10.1103/PhysRevC.65.014601
http://dx.doi.org/10.1103/PhysRevC.65.014601
http://dx.doi.org/10.1103/PhysRevC.65.014601
http://dx.doi.org/10.1103/PhysRevC.65.014601
http://dx.doi.org/10.1016/0370-2693(96)00263-8
http://dx.doi.org/10.1016/0370-2693(96)00263-8
http://dx.doi.org/10.1016/0370-2693(96)00263-8
http://dx.doi.org/10.1016/0370-2693(96)00263-8
http://dx.doi.org/10.1103/PhysRevC.78.034612
http://dx.doi.org/10.1103/PhysRevC.78.034612
http://dx.doi.org/10.1103/PhysRevC.78.034612
http://dx.doi.org/10.1103/PhysRevC.78.034612
http://dx.doi.org/10.1103/PhysRevC.66.024605
http://dx.doi.org/10.1103/PhysRevC.66.024605
http://dx.doi.org/10.1103/PhysRevC.66.024605
http://dx.doi.org/10.1103/PhysRevC.66.024605
http://dx.doi.org/10.1103/PhysRevC.57.R2818
http://dx.doi.org/10.1103/PhysRevC.57.R2818
http://dx.doi.org/10.1103/PhysRevC.57.R2818
http://dx.doi.org/10.1103/PhysRevC.57.R2818
http://dx.doi.org/10.1103/PhysRevC.59.2652
http://dx.doi.org/10.1103/PhysRevC.59.2652
http://dx.doi.org/10.1103/PhysRevC.59.2652
http://dx.doi.org/10.1103/PhysRevC.59.2652
http://dx.doi.org/10.1016/0370-2693(76)90524-4
http://dx.doi.org/10.1016/0370-2693(76)90524-4
http://dx.doi.org/10.1016/0370-2693(76)90524-4
http://dx.doi.org/10.1016/0370-2693(76)90524-4
http://dx.doi.org/10.1103/PhysRevC.88.034609
http://dx.doi.org/10.1103/PhysRevC.88.034609
http://dx.doi.org/10.1103/PhysRevC.88.034609
http://dx.doi.org/10.1103/PhysRevC.88.034609
http://dx.doi.org/10.1016/j.physletb.2005.12.060
http://dx.doi.org/10.1016/j.physletb.2005.12.060
http://dx.doi.org/10.1016/j.physletb.2005.12.060
http://dx.doi.org/10.1016/j.physletb.2005.12.060
http://dx.doi.org/10.1016/j.physletb.2010.11.007
http://dx.doi.org/10.1016/j.physletb.2010.11.007
http://dx.doi.org/10.1016/j.physletb.2010.11.007
http://dx.doi.org/10.1016/j.physletb.2010.11.007



