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Microscopic description of the odd-even effect in cold fission
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The time-dependent equations of motion for the pair-breaking effect were corroborated with a condition that
fixes dynamically the number of particles on the two-fission fragment. The single-particle level scheme was
calculated with the Woods–Saxon superasymmetric two-center shell model. This model provides a continuous
variation of the energies from one nucleus up to two separated fragments. The dissipated energy resorts from
the time-dependent pairing equations. A peculiar phenomenon was observed experimentally in cold fission:
the odd partition yields are favored over the even ones. This odd-even effect for cold fission was explained
microscopically.
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I. INTRODUCTION

By identifying unambiguously the fission fragments
according to their mass number and their charge, the fission
yields as function of the excitation energy were measured [1].
The experimental data showed a dominance of odd-odd frag-
ments at excitation energies close to zero for U isotopes. This
phenomenon was independently remarked also in Refs. [2,3]
for Cf. A first interpretation involved a proportionality between
the level densities of the fission fragments and the yields.

Recently, a new set of time-dependent coupled-channel
equations derived from the variational principle was proposed
to determine dynamically the mixing between seniority-zero
and seniority-two configurations [4]. The essential idea is that
the configuration mixing is managed under the action of some
inherent low-lying time dependent excitations produced in the
avoided-crossing regions; that is, a dynamical mechanism like
the Landau–Zener effect [5].

In the pioneering investigations of the mass and charge
distributions at low excitation energies, the experimental
results showed a preference for the mass division leading
to even-Z fragments [6,7]. It was believed that, at very low
excitation energies, i.e., high kinetic energies, the fragments
would be fully paired. Improving the experimental procedure,
these facts were contradicted in Ref. [8] where no strong
even-odd effect was evidenced in the thermal neutron induced
fission for high values of the total kinetic energy. Even
and odd partitions were observed experimentally close to
their respective Q values for the four systems investigated:
233,235U(nth,f), 239Pu(nth,f) and 252Cf(sf). It is worth under-
lining that the importance of the Landau–Zener effect in
the cold-fission fragmentation behavior was anticipated, as
mentioned in Ref. [9]. However, the odd-even structure in
fission is explained usually within statistical arguments, as for
example in Refs. [10–13]. Recently, some arguments linked
the odd-even structure also to the charge asymmetry evolution
during the fission process [14,15], not only to the dissipated
energy as has been done earlier [16,17].

II. FORMALISM

In this section, the ingredients required to investigate
dynamically the odd-even effect are described.

A. Equations of motion

The usual theories of fission consider that the nuclear
system is characterized by several generalized coordinates
q(t) = {qn(t)}, (n = 1, . . . ,N). These coordinates vary and
force the system to split into two separated fragments. The
single-particle energies, and the many-body wave function are
determined by the the variation in time of these coordinates.
In order to deduce the microscopic equations of motion,
the starting point is a many-body Hamiltonian with pairing
residual interactions:

H (qi(t)) =
∑
k>0

εk(qi(t))(a+
k ak + a+

k̄
ak̄)

−
∑
k,l>0

Gkl(t)a
+
k a+

k̄
alal̄ . (1)

This Hamiltonian depends on the collective parameters q(t),
which are allowed to vary with respect the time. Here, εk are
single-particle energies, and a+

k and ak denote operators for
creating and destroying a particle in the state k, respectively.
The state characterized by a bar signifies the time-reversed
partner of a pair. The pairing correlations arise from the
short-range interaction of correlated pairs of fermions moving
in time-reversed orbits. Gkl is the matrix element of the pairing
interaction and its value is in principle dependent on the
overlap of the wave functions of the pairs. For a given nucleus,
it is possible to approximate the pairing interaction matrix
elements with a constant value by using a renormalization
procedure that depends on the number of states in the active
pairing space and on the structure [18].

Concerning the pair-breaking effect, it must be evidenced
that only two types of velocity-dependent excitation mech-
anisms are possible between different single-particle (or
molecular) states of a dynamical nuclear system [19]: the
radial coupling that can be described by the Landau–Zener
effect in avoided-level-crossing regions and the Coriolis one
produced in the region of real crossings. The Coriolis coupling
is responsible for transitions between levels characterized by
quantum numbers of the projection of the spin that differ by
one unity. This coupling is important in the treatment of the α
decay where the inertia is small, and such an investigation was
made in Ref. [20]. Concerning the dynamical pair breaking, it
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FIG. 1. Ideal avoided-crossing regions between two adiabatic single- particle levels εi and εj characterized by the same good quantum
numbers. Three possible transitions between configurations in an avoided-crossing region in the superfluid model are displayed: (a) The
configuration remains unchanged after the passage through the avoided-crossing region. (b) A pair is broken. (c) A pair is created.

can be described by a mechanism similar to the Landau–Zener
one. The perturbation that produces the pair breaking in
avoided-crossing regions between levels with the same good
quantum numbers is obtained in terms of quasiparticle creation
and annihilation operators

αk(ij ) = uk(ij )ak − vk(ij )a
+
k̄
, αk̄(ij ) = uk(ij )ak̄+vk(ij )a

+
k ,

(2)
α+

k(ij ) = uk(ij )a
+
k − v∗

k(ij )ak̄, α+
k̄(ij ) = uk(ij )a

+
k̄
+v∗

k(ij )ak.

Within the previous transformations, some perturbations that
break dynamically a Cooper pair when the system traverses an
avoided-level-crossing region are constructed. The parameters
vk(ij ) and uk(ij ) are occupation and vacancy amplitudes,
respectively, for a pair occupying the single-particle level k
of the configuration {ij}. The seniority-zero configuration is
denoted with 0 and the seniority-two configuration by a pair of
indexes {ij}, i and j denoting the levels occupied by unpaired
fermions. As evidenced in Ref. [4], the three situations plotted
in Fig. 1 can be modeled. In the plot of Fig. 1(a), the Cooper
pair remains on the adiabatic level εj , in Fig. 1(b) the pair de-
struction is illustrated, while in Fig. 1(c) two fermions generate
a pair. To describe these three situations, a residual perturbation
in the avoided-level-crossing region is postulated as follows:

H ′(t) =
n∑

i,j �=i

hij (t)

⎡
⎣αi(0)αj̄ (0)

∏
k �=i,j

αk(0)α
+
k(ij )

+ α+
i(0)α

+
j̄ (0)

∏
k �=i,j

αk(ij )α
+
k(0)

⎤
⎦ , (3)

where hij is the interaction energy between levels in the
avoided-level-crossing regions. Under the action of the inter-
action hij , according to the identities (A5) of the Appendix,
the operators αi(0)αj̄ (0) and α+

i(0)α
+
j̄ (0) transform a Bogoliubov

seniority-zero wave function into a seniority-two wave
function, and vice versa, being responsible for configuration
mixing. The products over the index k �= i,j in the previous
formula transform the remaining Bogoliubov amplitudes
from values pertaining to the seniority-zero wave function to
those pertaining to the seniority-two functions with unpaired
orbitals i and j , and vice versa. This dynamical pair-breaking
effect was theoretically formulated in Ref. [4] for the first
time. It is important to note that the same kind of perturbation
was used also to generalize the Landau-Zener effect in
superfluid systems [21–23]. It was demonstrated in Ref. [21]

that equations governing the Landau–Zener effect and the
time-dependent pairing equations are two particular cases of
a new set of coupled-channel equations.

The two fission products must be characterized by integer
numbers of neutrons and protons. As a consequence, the sums
of the occupation probabilities of single-particle levels of the
two fragments must give the mass and charge numbers. By
solving the equations of motion, unfortunately, the sum of
single-particle densities (BCS occupation probabilities) of the
single-particle levels belonging to the two fission fragments
obtained after the scission do not give exactly their numbers
of nucleons. A recipe can be implemented to fix dynamically
these numbers of particles in the two final fragments by using
the operators for the number of particles N̂i (i = 1,2) that act
on each fission product. At scission, the two fission fragments
must be characterized by a supplementary condition

|N2N̂1 − N1N̂2| = 0, (4)

where N1 and N2 are the number of particles in the final
fragments labeled 1 and 2, respectively, and

N̂1=
∑
k1

(
a+

k1
ak1+a+

k̄1
ak̄1

)
, N̂2=

∑
k2

(
a+

k2
ak2+a+

k̄2
ak̄2

)
(5)

are the corresponding operators. Here, k1 and k2 run over the
pairing active level states that are located in the potential wells
of the final fragment 1 and of the final fragment 2, respectively.
The condition (4) can be introduced in the equations of motion
by means of the Lagrange multipliers [24,25].

All the previous ingredients could be used to obtain the
microscopic equations of motion. These equations are obtained
from the variational principle by minimizing the following
energy functional:

δL = δ〈ϕ|H + H ′ − λ|N2N̂1 − N1N̂2| − i�
∂

∂t
|ϕ〉. (6)

The trial many-body function ϕ is a superposition of Bogoli-
ubov seniority-zero and seniority-two wave functions:

|ϕ(t)〉 =
[
c0

∏
k

(uk(0)(t) + vk(0)(t)a
+
k a+

k̄
) +

∑
j,l �=j

cjl(t)a
+
j a+

l̄

×
∏
k �=j,l

(uk(j l)(t) + vk(j l)(t)a
+
k a+

k̄
)

]
|0〉, (7)

where c0 is the amplitude of the seniority-zero wave function
while cjl are amplitudes for the seniority-two wave functions
for configurations in which the single-particle orbitals j and
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l belonging to the active pairing space are each blocked
by only one unpaired nucleon. Here, the vacancy uk and
occupation vk amplitudes are not the adiabatic solutions of
the BCS equations and depend on the variation in time of the
generalized parameters and the history of the nuclear system.
λ is a Lagrange multiplier.

The evolution in time of the nuclear system, if the collective
parameters {qn(t)} ( n = 1, . . . ,N) vary, is obtained by
performing the variation of the functional (6). The procedure
required for the functional variation is described in detail in the
Appendix. The next coupled-channel equations are obtained,
eventually:

i�ρ̇k(0) = κk(0)

∗
k(0) − κ∗

k(0)
k(0), (8)

i�ρ̇k(j l) = κk(j l)

∗
k(j l) − κ∗

k(j l)
k(j l), (9)

i�κ̇k(0) = (2ρk(0) − 1)
k(0) + 2κk(0)
(
εk − sNikλ

)
− 2Gkkρk(0)κk(0), (10)

i�κ̇k(j l) = (2ρk(j l) − 1)
k(j l) + 2κk(j l)
(
εk − sNikλ

)
− 2Gkkρk(j l)κk(j l), (11)

i�Ṗ0 =
∑
l,j �=l

hlj (S∗
0j l − S0j l), (12)

i�Ṗj l = hlj (S0j l − S∗
0j l), (13)

i�Ṡ0j l = S0j l(Ē0 − Ējl) + S0j l

⎛
⎝∑

k �=j,l

Tk(j l) −
∑

k

Tk(0)

⎞
⎠

+
∑

{mn}�={j l}
hmnSmnjl+hjl(Pjl − P0), (14)

i�Ṡmnjl = Smnjl(Ēmn−Ējl)+Smnjl

⎛
⎝∑

k �=m,n

Tk(mn) −
∑
k �=j,l

Tk(j l)

⎞
⎠

+hmnS0j l−hjlS
∗
0mn, (15)

where j , k, l, m, n label the single-particle levels in the active
pairing space. The sign s = ±1 ensures that the matrix element
of the expression (4) is positive. Nik = N2 or Nik = −N1 if the
state k will be located in the fragment 1 or in the fragment 2
after the scission, respectively. Here, the following notations

are used:


k(0) =
∑
k′

κk′(0)Gkk′, 
k(j l) =
∑

k′ �=j,l

κk′(j l)Gkk′,

κk(0) = uk(0)vk(0), ρk(0) = |vk(0)|2,
κk(j l) = uk(j l)vk(j l), (16)

ρk(j l) = |vk(j l)|2, P0 = |c0|2, Pjl = |cjl|2,
S0j l = c0c

∗
j l, Smnjl = cmnc

∗
j l .

The symbol 
γ gives the gap parameter. (The label γ denotes
here generically a specific configuration.) The variables that
depend on time through the generalized coordinates are the
single-particle densities ργ , the pairing moment components
κγ , the probabilities to have a given seniority configuration Pγ ,
and the moment components between configurations Sγγ ′ . The
relations (8)–(12) are the well-known time-dependent paring
equations previously deduced in Refs. [26,27]. These formulas
are identical to the time dependent Hartree–Fock–Bogoliubov
equations [28,29]. The symbol hγ denotes the Landau–Zener
interaction, while Ēγ and Tγ are energy terms. The significance
of the quantities appearing in the equations can be understood
in the Appendix. The condition that

∑
γ Pγ = 1 is implicitly

ensured through Eqs. (12) and (13) because Ṗ0 + ∑
γ Ṗγ = 0.

B. Dissipation

The energy of the nuclear system in the seniority-zero state
is

E0 =
〈∏

k

[uk(0)(t) + vk(0)(t)a
+
k a+

k̄
]|H |

∏
k

[uk(0)(t)

+ vk(0)(t)a
+
k a+

k̄
]

〉

= 2
∑

k

ρk(0)εk −
∑

k

κ(0)

∑
k′

κ∗
k′(0)Gkk′ −

∑
k

ρ2
k(0)Gkk,

(17)

and in the seniority-two state it is

Ejl =
〈
a+

j a+
l̄

∏
k �=j,l

[uk(j l)(t) + vk(j l)(t)a
+
k a+

k̄
]|H |a+

j a+
l̄

∏
k �=j,l

[uk(j l)(t) + vk(j l)(t)a
+
k a+

k̄
]

〉

= 2
∑
k �=j,l

ρk(j l)εk −
∑
k �=j,l

κk(j l)

∑
k′ �=j,l

κ∗
k′(j l)Gkk′ −

∑
k �=j,l

ρ2
k(j l)Gkk + εj + εl. (18)

The corresponding lower-energy states E0
0 and E0

j l of the
nuclear system in a given configuration are obtained with
the previous relations by replacing the densities ργ and the
pairing moment components κγ with the adiabatic values
obtained in the BCS approximation and using the same single-
particle-level scheme. Consequently, as defined in Ref. [26],
along the fission path the average dissipated energies E∗

γ

will be

E∗
0 = E0 − E0

0 , E∗
j l = Ejl − E0

j l, (19)

in the seniority-zero and the seniority-two configurations,
respectively. From the total potential energy of the nuclear
system, we subtracted its adiabatic value. It was already
shown in Ref. [30] that the mean value of the dissipated
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energy becomes larger when the velocities of the generalized
coordinates increase.

The single-particle levels belonging to the core of the initial
parent nucleus are rearranged in the two cores of the fragments.
Knowing the number of levels in each core, it is possible to
redefine the pairing active space of each fragment and the
asymptotic values of the lower-energy states can be evaluated.
After the scission, E0

0 must be replaced by the sum E0
10 +

E0
20, where E0

10 and E0
20 are the lower energies of the two

fission fragments. A similar rule is valid also for seniority-two
configurations. At the same time, the pairing interaction matrix
elements Gkk′ between pairs pertaining to different nuclei are
zero. For each channel, asymptotically [24], the next limits
hold

E0
0 → E0

10 + E0
20, E0

0j l → E0
1j l + E0

2j l, (20)

where the indices 1 and 2 refer to the two fragments. If only
one pair is broken along the fission path, the spin of the two
nuclei delivered from one unique seniority-two configuration
must be the same. This last assumption is due to the fact that
the Landau–Zener effect is produced between levels with the
same good quantum numbers.

C. Macroscopic-microscopic method
and single-particle energies

In order to determine the fission barriers, the total energy
of the nuclear system is computed in the framework of
the macroscopic-microscopic method [18,31]. As mentioned
previously, the whole system is characterized by some col-
lective coordinates that determine approximately the behavior
of many other intrinsic variables. The essential idea of this
approach is that a macroscopic model, such as the liquid-drop
model, describes quantitatively the smooth trends of the poten-
tial energy with respect the particle number and deformation,
whereas a microscopic approach such as the shell model
describes local fluctuations. The combined macroscopic-
microscopic method should reproduce both smooth trends and
local fluctuations. The basic ingredient in such an analysis is
the shape parametrization that depends on several macroscopic
degrees of freedom. The macroscopic deformation energy
is calculated within the liquid-drop model. A microscopic
potential must be constructed to be consistent with this
nuclear shape parametrization. A microscopic correction is
then evaluated using the Strutinsky procedure [32].

The basic ingredient of the model is the nuclear shape
parametrization. In the following, an axial symmetric nuclear
shape surface during the deformation process from one initial
nucleus to the separated fragments is obtained by smoothly
joining two spheroids of semi-axes ai and bi (i = 1, 2)
with a neck surface generated by the rotation of a circle
of radius R3 around the axis of symmetry. By imposing
the condition of volume conservation we are left with five
independent generalized coordinates {qn} (n = 1, 5) that can
be associated with five degrees of freedom: the elongation R
given by the distance between the centers of the spheroids,
the necking parameter C = S/R3 related to the curvature of
the neck, the eccentricities εi associated with the deformations
of the nascent fragments, and the mass asymmetry parameter

FIG. 2. Nuclear shape parametrization. The elongation is defined
as R = z2 − z1. The curvature of the neck parameter is C = S/R3,
where S = 1 for necked shapes in the median surface and S = −1
otherwise. The eccentricities of the fragments are εi = √

1 − (bi/ai)2

(i = 1,2). The mass asymmetry parameter can be defined as η =
a1b

2
1/(a2b

2
2).

η = V1/V2, Vi (i = 1, 2) denoting the volumes of the virtual
ellipsoids characterized by the semi-axes ai and bi . The nuclear
shape parametrization is displayed in Fig. 2. The entire model
can be considered valid as long as the generalized coordinates
and their variations in time make sense.

The many-body wave function and the single-particle
energies are provided by the Woods–Saxon two-center shell
model [21]. The Woods–Saxon potential, the Coulomb inter-
action, and the spin-orbit term must be diagonalized in an
eigenvector basis. The asymmetric two-center shell oscillator
provides an orthogonal eigenvector basis for only one Hermite
space [33,34]. In this Hermite space the behavior of both
fragments can be described. When the elongation R is zero,
the eigenvector basis becomes that of the anisotropic oscillator.
When R tends to infinity, a two-oscillator eigenvector system is
obtained in the same Hermite space, centered in the two frag-
ments. In the intermediate situation, each eigenfunction has
components in the two subspaces that belong to the fragments.
So, the two-center shell model provides permanently the wave
functions associated to the lower energies of the single-particle
states pertaining to a major quantum number Nmax. Therefore,
molecular states formed by two fragments at scission could
be precisely described. Another feature of the two-center shell
model is related to the localization of the single-particle wave
function in one of the two potential wells after the scission. As
evidenced in Ref. [24], it is possible to predict this localization
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for a given fragmentation before that the scission is produced.
This feature helps us to fix the number of particles in each
fragment by resolving Eqs. (8)–(16).

This model was widely used by the Bucharest group in the
calculations addressing the cluster [35–39] and α decay [40],
the fission [41–43], or the heavy-element synthesis [44]. For
example, the model was able to describe two tangent nuclei in
a wide range of mass asymmetries. The half-lives for cluster
decay were reproduced. A mechanism for the formation of an
α particle on the nuclear surface was supplied. Fission barriers
that agree with the evaluated ones were calculated.

If the different penetrabilities which characterize every
channel through the barrier are taken into account, it is
expected that the daughter ground state is strongly enhanced
in the exit channel. Indeed, in the cases of the excited
channels, the barrier must be increased with approximately
the value of the excitation energy of the unpaired nucleon
and, therefore, the penetrability is decreased exponentially.
The amount of which the barrier is modified can be estimated
by accounting for the specialization energy. Wheeler defined
this specialization energy [45] as the excess of the energy
of a nucleon with a given spin over the energy for the same
spin nucleon state of lowest energy. So, the final excitation is
given by the sum between the dissipated energy and the single-
particle excitations that are equivalent to the specialization
energies.

The probability to obtain a given partition in the mass
distribution is determined by the penetrability of the fission
barrier:

Pb = exp

{
−2

�

∫ rb

ra

√
B(r)[V (r) − U ]dr

}
. (21)

The exponent is the classical action integral taken along the
fission path at a given energy U that connects the two turning
points ra(U ) and rb(U ). Only positive values of [V (r) − U ]
are integrated. B is the inertia along the fission trajectory and
V is the deformation energy.

III. RESULTS

The fission yields as function of the total excitation energy
for the fragmentation 90Kr + 144Ba (even-even), 90Rb + 144Cs
(odd-odd) will be investigated in the framework of our model.
Experimental data are available for the reaction [1] 233U(nth,f)
and the model can be tested.

In order to determine the rearrangement of the single-
particle energies, the first step is the calculation of the fission
path from the ground state up to scission. As described
in Ref. [42], the minimal action principle can be used to
determine the best fission trajectory in the configuration space
spanned by our five generalized coordinates. For this purpose,
two ingredients are required: the deformation energy V and
the tensor of the effective mass {Bij }. The deformation energy
was obtained in the frame of the microscopic-macroscopic
method. The effective mass is computed within the cranking
approximation. By minimization, the theory can give us the
most probable fragmentation, that corresponds to a heavy
fragment with mass around 138. In our work, the fission path
for the 144/90 fragmentation is required. As evidenced in

FIG. 3. (a) The fission barrier is plotted with a full line. The
lower single-particle excited seniority-two state for neutrons is
plotted with a dot-dashed line while the first one for protons is
plotted with a dashed line. The avoided-level-crossing regions are
marked with arrows. The turning points ra and rb are defined for a
given collective potential energy U . (b) The inertia in the nonadiabatic
cranking approximation is plotted with a full line, the inertia within
the Gaussian overlap approximation is plotted with a dashed line, and
the inertia in the cranking approximation is plotted with a dot-dashed
line.

Ref. [46], it is not yet understood how the compound nucleus is
transformed in a variety of different fragmentations. It is also
believed that the models for mass distributions have limited
predictive power. To overcome these difficulties, some simple
assumptions are made in our work. We rely on the results of
Refs. [25,41] where the mass distribution of the fragments was
relatively well reproduced by considering that the variation of
the mass asymmetry is linear from the saddle configuration
of the outer barrier up to the exit point. It is considered
that under the rapid descent from the top of the second
barrier different mass partitions are obtained. To obtain these
different mass partitions, the simplest way is to vary the mass
asymmetry parameter η and the averaged deformations of
fragments as in Ref. [25]. The fission barrier is plotted in Fig. 3
for the partition A1/A2 = 144/90. At R ≈ 17 fm, the variation
of the mass asymmetry parameter is started, producing a small
bump in the barrier. In Fig. 3(b), the effective mass is displayed.
The inertia along the trajectory was computed with three
approximations: the nonadiabatic cranking model [47,48], the
Gaussian overlap approximation [49,50], and the cranking
approach [5]. In order to solve the equations of motion, we
need the single-particle energies, the variations of the pairing
matrix elements Gkl , the interactions in the avoided-crossing
regions, and the velocity of passage through these regions.

In Figs. 4 and 5, the single-particle energy levels obtained
within the two-center Woods–Saxon model are displayed
along the fission trajectory for neutrons and protons, respec-
tively. With a dashed thick line the Fermi levels of the parent
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FIG. 4. Neutron single-particle-level scheme. The levels with
spin projection  = 5/2 that give the lower-energy configuration
for the unpaired fragments are plotted with a full line. The Fermi
energy of the compound nucleus is displayed with a thick dashed
line. Four avoided-level-crossing regions were identified for R ≈ 4.9,
15.3, 17.1, and 19.6 fm.

nucleus are plotted. The pair of levels with the same spin
projection that gives the lower single-particle seniority-two
excitation (or specialization energy) are also displayed with
thick full lines. It can be observed that the levels that pertain
to the lower excitation are close to the Fermi energy. In
the case of protons the spin projection  of these levels
is 3/2 while in the case of neutrons it is  = 5/2. These
values of  give also the final spin of the partners. The
barriers for the seniority-two configurations were displayed
in Fig. 3 with dot-dashed and dashed lines. The difference
between the seniority-two and seniority-zero energies, that
is the single-particle excitations, are obtained by subtracting
their values computed with Eqs. (18) and (17) and by using
the adiabatic BCS amplitudes. Our pairing active space is
constructed with 58 single-particle levels around the Fermi
energy.

An important question is the identification of the avoided-
crossing regions that arise from the strong energy fluctuations
of the single-particle levels observed along the fission path.
For this purpose, we selected all the pairs of adjacent levels
with the same spin projection in the active pairing space. From
an analysis of the rearrangement of these levels in a manner
similar to that of Ref. [51], the avoided-crossing regions
were identified. The positions of some avoided-level-crossing
regions are marked with arrows in Fig. 3. In these regions, the
excitations are possible between the mentioned seniority-two
configurations and the seniority-zero one. In other words,
these regions are like gates for mixing the configurations, or
for changing the seniority. Using the interpolation method

FIG. 5. Proton single-particle-level scheme. The levels with spin
projection  = 3/2 that give the lower-energy configuration for the
unpaired fragments are plotted with a full line. The Fermi energy of
the compound nucleus is displayed with a thick dashed line. Four
avoided-level-crossing regions were identified for R ≈ 9.1, 14.7, 16,
and 20 fm.

described in Ref. [52], the magnitude of the interactions
was calculated. Finally, we selected 32 seniority-two con-
figurations for protons and 31 configurations for neutrons
that are coupled to the seniority-zero configuration through
avoided-level-crossing regions. In the frame of the adiabatic
BCS model [5], a mean value of the pairing interaction G
can be associated with a given active pairing space, by using
a renormalization procedure. So, the values of G for all
seniority states were computed for the parent and for the two
fragments. In the case of seniority-two states, the blocked
levels are eliminated from the single-particle diagram. A linear
interpolation between the values of G from those of the parent
to those of the fragments is realized in order to solve the
equations of motion, as will be specified in the following.
So, all the most important quantities required to solve the
equations of motion are provided: the single-particle energies
εk , the perturbations hij , and the pairing interactions G. The
dependence in time is introduced by means of the variations
of the collective coordinates. In this respect, several values of
the internuclear velocity v = Ṙ are tested in order to solve the
equations: 5 × 102, 8 × 102, 103, 3 × 103, 104, 3 × 104, 105,
3 × 105, 106, and 3 × 106 fm/fs.

Equations (8)–(12) do not have a dependence on Pγ and
Sγγ ′ and can be solved separately for different values of the
internuclear velocities. The initial conditions are given by
the adiabatic BCS values for the ground-state deformation
of the parent (located at R ≈ 4.6 fm) of all seniority states
involved. The equations are solved in a way similar to that
presented in Ref. [24]. That is, at the beginning of the reaction
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FIG. 6. (a) Total dissipation energy after the scission E∗ as
function of the internuclear velocity v for the seniority-zero con-
figuration. The neutron and proton components of the dissipated
energy are plotted with a dot-dashed and a dashed line, respectively.
(b) Total dissipation for the seniority-two configuration with lower
single-particle excitation. The neutron and proton components are
displayed with the same line types as in panel (a).

the system evolves without constraints. At the internuclear
distance R = 17 fm, close to the top of the outer barrier,
in Eqs. (11) and (12) the value of λ is set to nonzero
values. At the same time, two linear variations of the mean
value of the pairing interactions G are started in order to
reach the final values G1 and G2 that characterize the two
fragments at scission. When the equalities between the sums
of single-particle occupation probabilities and the numbers of
nucleons are obtained, λ and the pairing interaction between
the two fragments G12 are set to zero. For G12 = 0, from
conservation conditions as explained in Ref. [24], the sum of
occupation probabilities that run on the single-particle states
of the two fragments are preserved. The solutions ρk(γ ) and
κk(γ ) are obtained up to an internuclear distance of R = 22 fm.
The calculated values of Ēγ and Tkγ as function of R are
recorded and will be used later to solve Eqs. (12)–(16). For the
two isospins and for all velocities and seniority configurations
involved, the systems are solved within the Runge–Kutta
algorithm. The dissipated energies E∗ after the scission as
function of the internuclear velocity v, computed according to
Eqs. (19) and (20), are plotted in Fig. 6 for the seniority-zero
and the lower single-particle excitation seniority-two states.
The general trend exhibited in both cases is an increase of
the final dissipated energy when the internuclear velocity
becomes larger. The same behavior is typical for all seniority
configurations involved. So the general rule that assesses that
the dissipation is proportional to the velocity is retrieved.
Another way to introduce the dissipation in quantum systems
is to consider forces proportional to the velocity in analogy
with the friction forces in classical mechanics [53], leading
to a generalized Schrödinger nonlinear equation for an open
system.

The initial condition for Eqs. (12)–(16) that describe the
configuration mixing is P0 = 1, all the other values being zero.
From physical considerations, we imposed in the numerical
code the conditions that Ṗij � 0 if Pij = 1 or if P0 = 0,
and that Ṗij � 0 if Pij = 0 or if P0 = 1. That ensures that

FIG. 7. (a) Probability of realization of the adiabatic seniority-
zero configuration at scission as function of the internuclear velocity
for neutrons (full line) and protons (dot-dashed line). (b) Probability
of the realization of the seniority-two configuration at scission
with the lower single-particle excitation for neutrons (full line)
and protons (dot-dashed line). The upper axis corresponds to the
saddle-to-scission time τ .

the probability to have any configuration must be in the
interval [0,1]. The final probabilities of realization of two
configurations for neutrons and protons as function of the
internuclear velocities are displayed in Fig. 7. This figure
evidences the fact that the probability of realization of adiabatic
seniority-zero states are close to zero for small velocities,
exactly in the energy region in which the dissipation is smaller.
So, the main features concerning the relation between the final
excitation energy and the probability of realization of a given
channel presented in Ref. [4] are retrieved and are valid even if
the method for dynamical projection on final atomic and mass
numbers is used. The saddle-to-scission time τ depends on the
intrinsic velocity v. This scission time τ labels the upper axis
of Fig. 7.

The results concerning the final excitation and the prob-
abilities of realization presented above are coupled through
the collective velocity parameter. In order to compare the
theoretical findings with the experimental data, this velocity
must be eliminated. Therefore, a simple model related to the
experimental arrangement is conceived in order to relate the
dissipation and the yields. By bombarding the 233U with
thermal neutrons and using mass evaluations [54] we found
that an excitation of at least Bn = 6.85 MeV is accumulated
in the compound 234U nucleus. As represented in Fig. 3, this
energy is shared between a potential part U and a kinetic
one T = 2B0v

2/2, where B0 is the inertia in the ground-state
configuration. A constant population of all values of the
kinetic energy is assumed. The penetrability Pb(v,γn,γp) of
each channel depends on the turning points of the barrier;
that is, on v through the relation Bn = U + T . That leads
to a larger penetrability when the velocity decreases. The
penetrability depends also on the excitation channel {γ } that
can be constructed with the specialization energies of the
configurations {0} or {ij} of the two isospins. The final
excitation energy of the two fragments is E∗

x (v,γn,γp) =
E∗(v,γn,γp) + Esp(γn,γp); that is, it corresponds to a sum
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between the dissipated energy E∗ and the single-particle
excitations Esp of the two fragments. The dependence of the
yield as function of the final excitation E∗

x in the interval
[E∗

x1,E
∗
x2] exhibits the following proportionality:

Y0(E∗
x ) ∝ 1

E∗
x2 − E∗

x1

∫ vmax

0

⎡
⎣P0(n)(v)P0(p)(v)Pb(v,0,0)

+P0(n)(v)
∑
γp

Pγp(p)(v)Pb(v,0,γp)

+P0(p)(v)
∑
γn

Pγn(n)(v)Pb(v,γn,0)

+
∑
γn,γp

Pγn(n)(v)Pγp(p)(v)Pb(v,γn,γp)

⎤
⎦

×w(v)θ (E∗
x1 − E∗

x (v,γn,γp))

× θ (E∗
x (v,γn,γp) − E∗

x2))dv, (22)

for the even-even channel. Here, Pb are the penetrabilities that
depend on a specific channel and P0 are the probabilities of
realization given by the time-dependent equations for neutrons
[index (n)] and protons [index (p)]. For all velocities that
give an excitation in the interval [E∗

x1,E
∗
x2], the previous

formula reflects the fact that the yields are proportional to
these penetrabilities and probabilities. Of course, at scission
it is possible to obtain even-even partitions even if a Cooper
pair is broken. In this case, one of the fission products picks
this broken pair and will carry a very large excitation energy.
Therefore, the sums that run over the channels γ in Eq. (22)
take into consideration the fact that some configurations
are formed with a broken pair in only one partner. The
probabilities of realization of a given seniority configuration
Pγn(p)(v) depend on the internuclear velocity. The penetrability
of the fission barrier Pb(v,γn,γp) at the velocity v in the
channel {γn,γp} depends on the variation of the probabilities
of realization along the fission path. The factor w(v) = B0v
is a weighting that reflects the dependence of the kinetic
energy of the velocity, because dT = w(v)dv, and θ is the
step Heaviside distribution used to select only events in the
interval [E∗

x1,E
∗
x2]. B0 is considered to be the inertia in

the ground state of the parent nucleus. The maximal value
of the the velocity is obtained from the boundary Tmax =
1
2B0v

2
max = Bn. The penetrability Pb(v,γn,γp) is calculated by

considering the turning points at the energy U = Bn − 1
2B0v

2.
The calculations were made within three approximations
for the inertia: the cranking model [5], the Gaussian over-
lap approximation [49,50] and the nonadiabatic cranking
approach [47,48]. The yields for odd-odd partitions are
proportional:

Y2(E∗
x ) ∝ 1

E∗
x2 − E∗

x1

∫ vmax

0

∑
γn

∑
γp

Pγn(n)(v,)Pγp(p)(v,)

×Pb(v,γn,γp)w(v)θ (E∗
x1 − E∗

x (v,γn,γp))

× θ (E∗
x (v,γn,γp) − E∗

x2)dv. (23)

FIG. 8. Full line: dependence of even even yield in arbitrary units
Y0 as function of the final excitation E∗

x of the fission fragments.
Dashed line: dependence of the odd-odd yields Y2 as function of the
excitation energy. Panel (a) corresponds to the cranking model, panel
(b) is obtained with the nonadiabatic cranking approach, and panel
(c) is obtained with the Gaussian overlap approximation.

In the previous relationship, the sums run over all the seniority-
two configurations taken into consideration for neutrons (index
n) and protons (index p) that give unpaired nucleons in the two
fragments.

The results obtained for the folded distributions Y0(E∗
x ) and

Y2(E∗
x ) are displayed in Fig. 8. The averaging interval is E∗

x2 −
E∗

x1 = 0.5 MeV. The observed experimental trends exhibited
in Fig. 4 of Ref. [1] for cold fission yields were reproduced.
The trends are same for the three approaches used for the
inertia. At low excitation energy the odd-odd yields surpass
the even-even ones. The even-even yields become larger for
excitation energies larger that 3 to 4 MeV, in accordance with
the experimental findings.

IV. DISCUSSION AND CONCLUSIONS

In this work, a microscopic model is proposed for the
explanation of the odd-even effect in cold fission. This
explanation is based on a mixing configuration mechanism
that is produced during the fission process. This configuration
mixing mechanism is obtained dynamically by solving a
the generalized system of time-dependent pairing equations,
which include a pair-breaking effect. A first rule can be
extracted from this model. The even-even fission products
cannot be obtained at zero excitation energies because of the
existence of dynamical excitations produced in the avoided-
level-crossing regions when the nuclear system deforms
slowly.

The magnitudes of the interactions and the location of the
the avoided-crossing regions are fixed along the fission path
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and are independent of the velocity of passage through these
regions. If this velocity is large, the perturbation will act on
the Cooper pair a small fraction of the time. So, the chance to
break a pair will be small. If the velocity is low, the pairs will
traverse the regions in larger time durations. So, the probability
to break a pair increases. On another hand, high velocities lead
to large dissipation energies.

Another characteristic that was not exploited in this work
can be featured from the model. The lower excitation energies
of a combination of two odd-odd partners can be obtained only
if their spin are the same for neutrons and protons. If the spins
of the partners are not the same, the model predicts that at
least two pair ruptures are produced for neutrons or protons
and additional single-particle excitations must be taken into
consideration.

The possibility to jump from one level to another in
a large-scale-amplitude motion was predicted by Hill and
Wheeler in Ref. [5]. Dissipation in terms of Landau–Zener
crossings during fission was first proposed in Ref. [55] where
excitations were considered only for time-reversed pairs,
neglecting the possible existence of unpaired nucleons. As
evidenced in Ref. [56], many studies were performed in order
to exploit this mechanism in different types of processes. It
was also shown in Ref. [27] that the Landau–Zener mecha-
nism is cached in the time-dependent pairing equations (8)
and (12). Pairs undergo Landau–Zener transitions on virtual
levels with coupling strengths given by the value of the
magnitude of the gap parameter. Anyhow, it is the first time
that the dynamical pair-breaking effect was used to explain
the odd-even effect in fission. It must be mentioned that a
time-dependent microscopic approach to the scission process
was described in Ref. [57]. They observed that, for scission
time greater than 5 × 10−21 s, the single-particle excitations
are negligible. This time, which characterizes the neck rupture,
corresponds to a velocity of 106 fm/fs in our calculations. A
typical value for saddle-to-scission time could be considered
as τs ≈ 1.3 × 10−21. As plotted in Fig. 6, this value of the
scission time is consistent with a total excitation energy of the
even-even fragments of about 9 MeV (10 MeV for odd-odd
ones). For this value τs , the probability to have fully paired
partners is close to unity.

The density of single-particle levels increases in the region
of the second barrier. Therefore, from the outer saddle to the
scission, many avoided-crossing regions are produced and
the chance to break a pair is enhanced. Up to the second
saddle, the number of avoided-crossing regions is small and
the system evolves merely in the seniority-zero configuration.
That gives a large penetrability for all channels, the mixing of
configurations being produced especially in the outer barrier
region.

As mentioned, the basic ingredient of the macroscopic-
microscopic model is the nuclear shape parametrization.
The fission barrier heights emerge as a mixing between the
liquid-drop energy and shell (plus pairing) affects behavior.
The behavior of both quantities are strongly dependent of the
shape of the nuclear system. It is possible to improve the
theoretical description of the fission barriers heights to better
reproduce the empirical ones by introducing new shape degrees
of freedom. For example, it is known that the axial asymmetry,

not included in the model, lower the inner fission barrier in the
case of U isotopes. It becomes important to discuss the role of
the shape degrees of freedom on the accuracy of the results. The
dissipation accumulated in the system is a quantity strongly
dependent on the intrinsic structure (as well as the shell effects)
and on the history of the system (as well as the inertia). If an
axial asymmetry parameter is considered during the passage
of the first barrier, the shell effects exhibit smaller values
along the least-action path. In this case, a lesser degree of
rearrangement of the single-particle levels against the ground-
state configuration can be presumed in contrast to the situation
of axial symmetry. As a consequence, a smaller amount of
dissipation can be expected by traversing the first barrier of
the axial asymmetric improved parametrization. On the other
hand, as evidenced in Ref. [4], the dissipation obtained in the
second well is small in comparison to its value at scission. So,
it can be anticipated that the influence of the axial asymmetry
is not crucial on the final results. An opposite picture is given
by the mass-asymmetry degree of freedom. The variation of
the mass asymmetry establishes the asymptotic single-particle
configurations during the penetration of the second fission
barrier. Consequently, a pronounced rearrangement of the
intrinsic structure is produced and the associated value of the
dissipation becomes important. It is interesting to note that,
for cluster decay, where only few particles are emitted from
the parent, the same model gives a dissipation of about only 2
to 3 MeV for an internuclear velocity of 1.4 × 106 fm/fs [21].
It can be concluded that the dissipation is mainly sensitive
to the shape degrees of freedom able to produce strong
rearrangements of the single-particle levels in the topological
description of the fission path.

In this paper, the scission configuration takes in account
values for the fragment deformations close to the fundamental
ones while the fission path corresponds to cold fission.
Therefore, small values of the excitation energy are expected.
However, if other deformations of the fragment at scission
and a path for more elongated shapes are provided, the same
prescriptions can be used to describe the odd-even effect.
The dissipated energy depends on the modality in which the
microscopic levels are rearranged along the specific fission
trajectory. If the deformations at scission differ from the
ground-state deformations, the specialization energy and the
deformation energy of each fragment increase in magnitude,
giving finally larger excitation energies.

From the outer turning point of the fission barrier, the
deformation energy decreases abruptly. In terms of our nuclear
shape parametrization, the scission is produced when the
position of the center of the circle that determines the neck
region becomes equal to its radius R3 (S = 1). So, the
scission configuration is precisely determined if the depen-
dence between the neck generalized coordinate and the
elongation is known. This dependence was deduced from the
least-action principle in the region of the fission barrier and
was extrapolated for elongations larger than the outer turning
point. The scission point was determined in this context.
At scission and in the external region, the single-particle
diagram of the whole system resembles to a great extent to the
superposition of the asymptotic single-particle levels of both
fragments. It can be inferred that only minor modifications
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of the dissipated energy are produced after scission because
the amount of dissipated energy is mainly managed by the
variation in time of the single-particle energies. However, for
a constant value of the internuclear velocity, the dissipated
energy depends on the position of the scission point. If
the scission is produced at small values of the elongation,
close to the saddle configuration, a sudden rearrangement of
the single-particle levels is produced in order to reach the
asymptotic intrinsic configurations. In this case, the expected
amount of dissipated energy is larger.

In conclusion, by solving the dynamical microscopic
equations of motion for a fissioning even-even system it

is found that the probability to obtain an odd-odd partition
overcomes the probability of an even-even one at excitation
energies smaller than 4 MeV, for the same division in mass
numbers. The theoretical results are in accordance with the
experimental behavior of the odd-even distributions at high
kinetic energies. It is the first time that this behavior was
explained within a quantum-mechanical approach.
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APPENDIX: EQUATIONS FOR CONFIGURATION MIXING

The following identities are used to develop the functional (6):〈
c0

∏
k

(uk(0) + vk(0)a
+
k a+

k̄
)

∣∣∣∣∣H (t) − λ|N2N̂1 − N1N̂2|
∣∣∣∣∣×c0

∏
k

(uk(0) + vk(0)a
+
k a+

k̄
)

〉

= |c0|2
[

2
∑

k

|vk(0)|2
(
εk − sNikλ

) +
∑

k

uk(0)vk(0)

∑
k′

u∗
k′(0)v

∗
k′(0)Gkk′ −

∑
k

|vk(0)|4Gkk

]
, (A1)

〈∑
j,l �=j

cjla
+
j a+

l̄

∏
k �=j,l

(uk(j l) + vk(j l)a
+
k a+

k̄
)

∣∣∣∣∣∣H (t) − λ|N2N̂1 − N1N̂2|
∣∣∣∣∣∣
∑
j,l �=j

cjla
+
j a+

l̄

∏
k �=j,l

(uk(j l) + vk(j l)a
+
k a+

k̄
)

〉

=
∑
j,l �=j

|cjl|2
⎛
⎝2

∑
k �=j,l

|vk(j l)|2
(
εk − sNikλ

) + (
εj − sNij λ

) + (
εl − sNil λ

)

+
∑
k �=j,l

uk(j l)vk(j l)

∑
k′ �=j,l

u∗
k′(j l)v

∗
k′(j l)Gkk′ −

∑
k �=j l

|vk(j l)|4Gkk

⎞
⎠ , (A2)

where we introduced the sign s = sgn(N2
∑

k1
|vk1(γ )|2 − N1

∑
k2

|vk2(γ )|2) in order to have a positive value of the matrix element
of the condition (4). In this last relation {γ } = {0} or {ij} denotes a configuration. Nik = N2 or Nik = −N1 if the state k will
belong to the fragment 1 or 2 after the scission, respectively.

For the time derivatives, the following relations are used:〈
c0

∏
k

(uk(0) + vk(0)a
+
k a+

k̄
)

∣∣∣∣ ∂

∂t

∣∣∣∣ c0

∏
k

(uk(0) + vk(0)a
+
k a+

k̄
)

〉
= c∗

0 ċ0 + |c0|2
∑

k

(uk(0)u̇k(0) + v∗
k(0)v̇k(0)), (A3)

and 〈∑
j,l �=j

cjla
+
j a+

l̄

∏
k �=j,l

(uk(j l) + vk(j l)a
+
k a+

k̄
)

∣∣∣∣ ∂

∂t

∣∣∣∣ ∑
j,l �=j

cjla
+
j a+

l̄

∏
k �=j,l

(uk(j l) + vk(j l)a
+
k a+

k̄
)

〉

=
∑
j,l �=j

⎡
⎣c∗

j l ċj l + |cjl |2
∑
k �=j,l

(
uk(j l)u̇k(j l) + v∗

k(j l)v̇k(j l)
)⎤⎦ . (A4)

The matrix elements of the time derivatives of the wave functions are neglected because they are considered to be responsible
only for the inertia parameter. These matrix elements were investigated in Refs. [47,48], where a relationship between the inertia
and the dissipation was revealed. By using the following properties of the creation and annihilation operators:

αka
+
k = uk + vka

+
k a+

k̄
, α+

k a+
k̄

= uka
+
k a+

k̄
− v∗

k ,
(A5)

αk̄a
+
k̄

= uk + vka
+
k a+

k̄
, α+

k̄
a+

k = −uka
+
k a+

k̄
+ v∗

k ,
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the next equalities are deduced:

∑
i,j �=i

c∗
0cij =

〈
c0

∏
k

(uk(0) + vk(0)a
+
k a+

k̄
)

∣∣∣∣∣∣
∑
i,j �=i

αi(0)αj̄ (0)

∏
k �=i,j

αk(0)a
+
k akα

+
k(ij )

∣∣∣∣∣∣
∑
j,l �=j

cjla
+
j a+

l̄

∏
k �=j,l

(uk(j l) + vk(j l)a
+
k a+

k̄
)

〉
, (A6)

and

∑
i,j �=i

c0c
∗
ij =

〈∑
j,l �=j

cjla
+
j a+

l̄

∏
k �=j,l

(uk(j l) + vk(j l)a
+
k a+

k̄
)

∣∣∣∣∣∣
∑
i,j �=i

α+
i(0)α

+
j̄ (0)

∏
k �=i,j

αk(ij )a
+
k akα

+
k(0)

∣∣∣∣∣∣ c0

∏
k

(uk(0) + vk(0)a
+
k a+

k̄
)

〉
. (A7)

By using the previous identities, the energy functional (6) reads, eventually,

〈ϕ|H − i�
∂

∂t
+ H ′ − λ(N2N̂1 − N1N̂2)|ϕ〉

= |c0|2
[

2
∑

k

|vk(0)|2
(
εk − sNikλ

) −
∑

k

uk(0)vk(0)

∑
k′

u∗
k′(0)v

∗
k′(0)Gkk′ −

∑
k

|vk(0)|4Gkk

]

+
∑
j,l �=j

|cjl|2
⎡
⎣2

∑
k �=j,l

|vk(j l)|2
(
εk − sNikλ

) + (
εj − Nij λ

) + (
εl − sNil λ

)

−
∑
k �=j,l

uk(j l)vk(j l)

∑
k′ �=j,l

u∗
k′(j l)v

∗
k′(j l)Gkk′ −

∑
k �=j,l

|vk(j l)|4Gkk

⎤
⎦ − i�

⎧⎨
⎩c∗

0 ċ0 + |c0|2
∑

k

1

2
(v∗

k(0)v̇k(0) − v̇∗
k(0)vk(0))

+
∑
j,l �=j

⎡
⎣c∗

j l ċj l + |cjl|2
∑
k �=j,l

1

2
(v∗

k(j l)v̇k(j l) − v̇∗
k(j l)vk(j l))

⎤
⎦

⎫⎬
⎭ +

n∑
l,j �=l

hjl(c
∗
0cjl + c0c

∗
j l)

= |c0|2Ē0 +
∑
j,l �=j

|cjl|2Ējl −
⎧⎨
⎩i�c∗

0 ċ0 + |c0|2
∑

k

Tk(0) +
∑
j,l �=j

⎡
⎣i�c∗

j l ċj l + |cjl|2
∑
k �=j,l

Tk(j l)

⎤
⎦

⎫⎬
⎭ +

n∑
l,j �=l

hjl(c
∗
0cjl + c0c

∗
j l),

(A8)

where Ē0 and Ējl are terms that include the energies E0 and Ejl [given by Eqs. (17) and (18)] of the seniority-zero and the
seniority-two configurations, respectively,

Ē0 = 2
∑

k

|vk(0)|2
(
εk − sNikλ

) −
∑

k

uk(0)vk(0)

∑
k′

u∗
k′(0)v

∗
k′(0)Gkk′ −

∑
k

|vk(0)|4Gkk = E0 − 2
∑

k

ρk(0)sNikλ, (A9)

Ējl = 2
∑
k �=j,l

|vk(j l)|2
(
εk − sNikλ

) −
∑
k �=j,l

uk(j l)vk(j l)

∑
k′ �=j,l

u∗
k′(j l)v

∗
k′(j l)Gkk′ −

∑
k �=j,l

|vk(j l)|4Gkk + εj − sNij λ + εl − sNil λ

= Ejl − 2
∑
k �=j,l

ρk(j l)sNikλ − sNij λ − sNil λ, (A10)

and Tγ are state-dependent energy terms:

Tk(0) = i�

2
(v∗

k(0)v̇k(0) − v̇∗
k(0)vk(0)) = 2|vk(0)|2

(
εk − sNikλ

) − 2Gkk|vk(0)|4

+ 
∗
k(0)

2

( |vk(0)|4
(vk(0)uk(0))∗

− vk(0)uk(0)

)
+ 
k(0)

2

( |vk(0)|4
vk(0)uk(0)

− (vk(0)uk(0))
∗
)

, (A11)

Tk(j l) = i�

2
(v∗

k(j l)v̇k(j l) − v̇∗
k(j l)vk(j l)) = 2|vk(j l)|2

(
εk − sNikλ

) − 2Gkk|vk(j l)|4

+ 
∗
k(j l)

2

( |vk(j l)|4
(vk(j l)uk(j l))∗

− vk(j l)uk(j l)

)
+ 
k(j l)

2

( |vk(j l)|4
vk(j l)uk(j l)

− (vk(j l)uk(j l))
∗
)

, (A12)

where the notation 
γ defined in Eq. (17) was introduced.
The time-dependent equations are obtained by minimizing the functional (A9); that is, differentiating with respect the

independent parameters vk(0), vk(ij ), c0, and cjl , together with their complex conjugates. Equations (8)–(12) were derived in

034623-11



M. MIREA PHYSICAL REVIEW C 89, 034623 (2014)

different ways in Refs. [21,26,27], and it is straightforward to introduce the condition (4). So, we will focus on the derivation of
Eqs. (12)–(16), related to the mixing of configurations.

To obtain the derivatives, the following relations must be used:

|c0|2 +
∑
j,l �=j

|cjl|2 = 1,
∂

∂c0

⎡
⎣|c0|2 +

∑
j,l �=j

|cjl |2
⎤
⎦ = 0,

(A13)

ċ0c
∗
0 +

∑
j,l �=j

ċj lc
∗
j l = −ċ∗

0c0 +
∑
j,l �=j

ċ∗
j lcjl,

∂ċ0c
∗
0

∂c0
= −ċ∗

0,
∂ċj lc

∗
j l

∂cjl

= −ċ∗
j l .

The previous conditions ensure that the sum of the probabilities |cγ |2 of all configurations is one.
The first equations are obtained by differentiating with respect c0 and c∗

0

c∗
0Ē0 + i�ċ∗

0 − c∗
0

∑
k

Tk(0) +
∑
l,j �=l

hjlc
∗
j l = 0, (A14)

c0Ē0 − i�ċ0 − c0

∑
k

Tk(0) +
∑
l,j �=l

hjlcjl = 0. (A15)

After multiplying by c0 the Eq. (A14) and by c∗
0 the Eq. (A15) and subtracting we obtain:

i�[c0ċ
∗
0 + c∗

0 ċ0] =
∑
l,j �=l

hjl[cjlc
∗
0 − c∗

j lc0]. (A16)

Similar equations are obtained by differentiating the functional with respect cjl and c∗
j l :

c∗
j lĒj l + i�ċ∗

j l − c∗
j l

∑
k �=j,l

Tk(j l) + hjlc
∗
0 = 0, (A17)

cjlĒj l − i�ċj l − cjl

∑
k �=j,l

Tk(j l) + hjlc0 = 0. (A18)

After multiplying by cjl the Eq. (A17) and by c∗
j l the Eq. (A18) and subtracting we construct the expression

i�[cjl ċ
∗
j l + c∗

j l ċj l] = hjl[c
∗
j lc0 − cjlc

∗
0]. (A19)

In a similar way we determine an exchange term between seniority-zero and seniority-one configurations. We start from the
equalities obtained from the identities (A14) and (A17)

i�ċ0c
∗
j l = c0c

∗
j lĒ0 − c0c

∗
j l

∑
k

Tk(0) +
∑

m,n�=m

hmncmnc
∗
j l, i�ċ∗

j lc0 = −c0c
∗
j lĒj l + c0c

∗
j l

∑
k �=j,l

Tk(j l) − hjlc0c
∗
0,

(A20)
i�ċ∗

0cjl = −c∗
0cjlĒ0 + c∗

0cjl

∑
k

Tk(0) −
∑

m,n�=l

hmncjlc
∗
mn, i�ċj lc

∗
0 = c∗

0cjlĒj l − c∗
0cjl

∑
k �=j,l

Tk(j l) + hjlc0c
∗
0,

and we construct the expression

i�
d(c∗

j lc0)

dt
= c0c

∗
j l(Ē0 − Ējl) + c0c

∗
j l

⎛
⎝∑

k �=j,l

Tk(j l) −
∑

k

Tk(0)

⎞
⎠ +

∑
{mn}�={j l}

hmncmnc
∗
j l + hjl(cjlc

∗
j l − c0c

∗
0). (A21)

Another exchange term is produced between seniority-two states:

− i�ċ∗
j l = c∗

j lĒj l + c∗
j l

∑
k �=j,l

Tk(j l) + hjlc
∗
0, i�ċmn = cmnĒmn + cmn

∑
k �=m,n

Tk(mn) + hmnc0, (A22)

giving eventually the relation

i�(c∗
j l ċmn + ċ∗

j lcmn) = cmnc
∗
j l(Ēmn − Ējl) + cmnc

∗
j l

⎛
⎝ ∑

k �=m,n

Tk(mn) −
∑
k �=j,l

Tk(j l)

⎞
⎠ + hmnc0c

∗
j l − hjlc

∗
0cmn. (A23)

If the notations (17) are used in the expression (A16), (A19), (A21), and (A23), the time-dependent equations (12)–(16) for
the dynamical pair-breaking effect with dynamic projection of number of particles are obtained.
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