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Measure of the spatial size for the monopole excitation in proton scattering
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We formulate a scattering radius, which will be demonstrated to be a good measure of the spatial size of
a general exclusive reaction. The scattering radius is presented in a framework of the partial-wave expansion
method in a general two-body scattering problem. A microscopic coupled-channel calculation is performed for
proton scattering by 12C in the range of the proton’s incident energy, Ep = 29.95–200 MeV, and the scattering
radii are evaluated for elastic scattering and inelastic scattering, going to the Hoyle 0+

2 state with a well-developed
3α structure. A prominent enhancement of the scattering radius is clearly confirmed in the 3α final channel in
comparison to the elastic channel. The scattering radius is also calculated for excitation to the giant monopole
resonance (GMR) in a microscopic coupled-channel framework. The scattering radius for the 3α excitation is
much more enhanced than the scattering radius for the GMR excitation. The proton’s incident-energy dependence
of the scattering radius is also investigated, and the energy systematics strongly suggest that the scattering radius
can characterize the spatial size of a reaction area, which is determined by the matter radius of a nucleus excited
to a final state.
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I. INTRODUCTION

Clustering phenomena, in which a nucleus is decomposed
into subunits, is well known to appear in the excited states of
a lighter mass system [1]. An α particle has a large binding
energy; hence, this particle becomes a subunit or building
block to construct the ground state and excited states. In 12C,
for instance, three α particles strongly overlap each other in the
ground 0+

1 state, while they are weakly coupled in the excited
0+

2 state, called the Hoyle state, at Ex = 7.65 MeV [2–5].
In recent theoretical developments, the Hoyle state in 12C is
reinterpreted analogously to the Bose-Einstein condensation
of the Bose α particle [4,5]. Similar α cluster structures have
been established in excited 0+ states in other systems, such
as in 16O = α + 12C [6], 20Ne = α + 16O [7], etc. Excitation
energies involving the cluster excitations are systematically
small, below 10 MeV. Saturation in a binding energy and a
matter density are the basic properties in a nucleus. Thus,
a nucleus can easily break up into subunits by providing a
low excitation energy. This is the main reason why a cluster
structure can be realized at the low-excitation energy region.

Dilute density is a characteristic feature, commonly ex-
pected in cluster states, resulting in a large matter radius. In
typical cluster systems, such as 12C, 16O, and 20Ne, for exam-
ple, all theoretical calculations predict that cluster states have
about 40%–50% enhancement of a matter radius in comparison
to the radius of the ground state. This spatial extension exists
because a cluster state is realized at the excitation energy quite
close to the threshold energy corresponding to the breakup
into subunits. The formation of a cluster structure around the
respective threshold energy is known as Ikeda’s threshold rule
[8]. In a cluster state around the threshold energy, a large part
of the total binding energy is almost consumed in forming
the subunits, and decomposed subunits are weakly coupled to
each other. This weak-coupling feature leads to a dilute and
spatially extended density distribution.

Unfortunately, the size of a cluster state is difficult to
measure directly by experiments because a cluster state has
a very short lifetime in general. However, much theoretical
effort has been applied to searching for evidence of the spatial
extension of a cluster structure in inelastic scattering, in which
a target nucleus is excited to a cluster state by a projectile
scattering. In inelastic scattering going to a cluster state, the
range of nuclear interactions in the final cluster channel is
expected to be much more extended than that in the initial
channel because of the spatially extended structure of the
cluster state. Specifically, the nuclear interaction is more
attractive at a surface region in the final cluster channel.
Such a long-range property of the nuclear interaction may
be indirectly reflected in the angular distribution of the
inelastic scattering. The signatures of the cluster excitation
in inelastic scattering have been studied, especially in the
3α Hoyle state in 12C [9–14]. There are two kinds of
theoretical approaches to evidence that suggests an extended
radius of the Hoyle state. One approach is analysis using a
diffraction model [9–11], and the other is the coupled-channel
calculation [12–14].

In the approach based on the diffraction model [9–11],
the diffraction radii are estimated for the observed angular
distributions according to Blair’s phase rule [15]. The diffrac-
tion radius for inelastic scattering to the 0+

2 state, which is
basically determined from the peak or valley positions in the
observed angular distributions, is found to be larger than that
of the elastic scattering, going to the ground 0+

1 state. From
the enhanced diffraction radius, the matter radius of 0+

2 is
also speculated under a simple assumption [9]. In Ref. [11],
a revised Blair’s phase rule has been applied, and a similar
enhancement of the diffraction radius for the 0+

2 state has been
confirmed. In these studies, an explicit value of an enhanced
diffraction radius for the 3α channel is clearly obtained from
the experimental data, but the origin of its enhancement still
remains unclear. This is because no clear relation has been
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established between the diffraction radius and an internal wave
function (or a density distribution) of the 0+

2 state.
On the contrary, in the coupled-channel approaches

[12–14], nuclear interactions for the system of the 12C target
plus various projectiles are constructed from the folding
model, which employs the internal wave function of 12C,
obtained from the 3α resonating group method (3α RGM)
[2] and from an effective density-dependent nucleon-nucleon
interaction. This coupled-channel calculation is called micro-
scopic coupled-channels (MCC) [16]. Because the 3α RGM
wave function can precisely describe the 3α structure in
0+

2 , the constructed nuclear interaction in the 0+
2 channel is

more attractive at a surface region than the interaction in
the ground channel. The MCC calculations employing the
folding interaction have been applied to the α + 12C [12]
and 3He + 12C [13,14] systems, and the calculation nicely
reproduces the angular distributions of various exit channels.
In the differential cross section for the 0+

2 channel, a scattering
angle for the first Airy minimum is shifted to the larger angle
region, and the number of the Airy minima increases in a
comparison to other inelastic channels, going to the rotational
and vibrational states such as the 2+

1 and 3−
1 states. From this

result, the authors have claimed that the evolution of the Airy
structure originated from the spatial extension of the nuclear
interaction in the final 0+

2 channel [12–14].
In the nuclear reaction, the final 3α states can be assessed

through the transition from the incident ground channel, and
the 3α state is observed as the final state in the reaction
process. Therefore, a coupling potential, which induces a
transition from the initial channel to the final channel, is
expected as a main ingredient for the angular distribution
of the inelastic scattering, and the distortion potential or the
density distribution in the exit channel may provide a minor
contribution. In fact, a dominance of the coupling potential
in the inelastic scattering has been pointed out by Takashina
et al. [17,18]. By employing the MCC calculation, which
is the same method as in Refs. [12–14], the authors have
clearly demonstrated that the Airy structure in the angular
distribution is dominated not by the size of the 0+

2 state, but
by a spatial distribution of the coupling potential for the 0+

1 →
0+

2 transition.
Although the potential or density distribution in the final

3α channel itself plays a minor role in inelastic scattering,
a coupling potential contains size information of the final
3α state because the coupling potential is determined by an
overlap of the wave function between the initial ground state
and the final 3α state. Therefore, an extended structure of the
3α state is indirectly reflected in the inelastic scattering to
the 3α final state. Thus, it is still useful to consider a relation
between an inelastic scattering and the internal size of the 3α
structure. To discuss the relation of the spatial size of the 3α
state and inelastic scattering clearly, a “radius” of the inelastic
scattering should be clearly defined in the MCC framework, as
has been done in the approach of the diffraction model [9–11].

In the present paper, we propose a “scattering radius,”
which characterizes the spatial size of exclusive reactions.
The scattering radius is simply defined from the partial cross
sections, which can be obtained from the partial-wave decom-
position of the Schrödinger equation. Therefore, the scattering

radius defined in this article can always be determined in
a standard scattering problem using partial-wave expansion.
The scattering radius does not necessarily represent the matter
radius of the finally excited state, but it characterizes a size
of the spatial area, where a scattering or a transition occurs.
The scattering radius can be used to measure the size of
various reaction channels; hence, its enhancement can be
clearly discussed in connection with the internal structure of a
final state.

First, we perform the MCC calculation for p + 12C, which
is similar to the calculation shown in Refs. [12–14,16–18].
Second, we compare the differential cross sections with the
theoretical calculation. Third, the scattering radius is derived
from the partial cross sections, and we demonstrate that the
scattering radius for the 0+

2 channel is much more enhanced
than that for the ground 0+

1 channel. Furthermore, we also
assume a monopole compression mode at the excitation energy
of 35 MeV, which simulates the giant monopole resonance
(GMR) in 12C [19]. The MCC calculation is performed for the
inelastic scattering going to the GMR state, and the scattering
radius for the GMR excitation is compared with the scattering
radius for the 3α state. A prominent difference arises in the
scattering radius of these two excitation modes because of a
large difference in the excitation energy between the 3α state
(7.65 MeV) and the GMR state (35 MeV).

The organization of this article is as follows. In Sec. II, the
definition of the scattering radius and the framework of the
MCCs are explained. In Sec. III, the theoretical calculation for
p + 12Cg.s. elastic scattering and inelastic scattering to p +
12C(0+

2 ) are compared with the experiments. The partial-wave
analysis is performed for the theoretical cross section, and the
scattering radii for the ground and 3α channels are derived. In
Sec. IV, an inelastic scattering to GMR is performed, and
the scattering radius for the GMR excitation is compared
with the 3α excitation. The incident-energy dependence of
the scattering radius is discussed in Sec. V. The final section
is devoted to a summary of the findings and a discussion.

II. FRAMEWORK

A. Definition of the scattering radius

We consider a simple scattering system, a nucleon plus
a spinless target. In this case, a Schrödinger equation for a
nucleon scattering system is expanded in terms of the total
spin J and the orbital spin L for nucleon-target relative motion.
Thus, the resultant partial cross sections σ are labeled by J , L,
and an internal energy of a target ε; hence, σ ≡ σ (JLε). Here
the partial cross sections represent the scattering probability
generated by a nuclear interaction, and the Coulomb scattering
part is excluded. The nuclear part of the partial cross sections,
σ (JLε), can be calculated for all the exit subchannels specified
by L and ε at a fixed J .

From the partial cross section, we define an effective orbital
spin L̄ as

L̄I(ε) =
√∑

JL L̃4σ (JLε)∑
JL L̃2σ (JLε)

, (1)
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with a definition of L̃ = √
L(L + 1). The effective orbital spin

is obtained by the ratio of the fourth and second moments of
the magnitude of the orbital spin,

√
L(L + 1). We assume

Eq. (1) in an analogy to the usual matter radius. A matter
radius r̄ (root-mean-squared radius) is usually calculated from
the matter density in the ground state, ρ0+

1
(r), such that

r̄ =
√√√√∫

drr4ρ0+
1
(r)∫

drr2ρ0+
1
(r)

. (2)

The matter radius r̄ is obtained by the ratio of the r4 moment
and the r2 moment for the ground-state density. Thus, Eq. (1)
is obtained by simply replacing r → L̃ and ρ0+

1
(r) → σ (JLε)

in Eq. (2). L̄(ε) is a representative value of an incident orbital
spin, which mainly contributes to the reaction going to an
exit channel with a target internal energy of ε. We call the
definition of Eq. (1) measure (I) of an effective orbital spin,
which is shown by the subscript of I in Eq. (1).

A factor of r2 contained in both the numerator and the
denominator in Eq. (2) originates from the volume element
in the spherical coordinate system. Thus, this element would
be excluded in the definition of L̄, and the resultant definition
should be modified to

L̄II(ε) =
√∑

JL L̃2σ (JLε)∑
JL σ (JLε)

. (3)

We call this definition measure (II). Other definitions will also
be available for L̄, but in the present analysis, we consider only
these two kinds of an effective orbital spin. The possibility of
another type of L̄ will be investigated in future studies.

Once the effective orbital spin L̄ is determined, we can
characterize the spatial size of the scattering area. Here we
introduce the scattering radius RSC from L̄ and incident wave
number k as

L̄(ε) = kRSC → RSC = L̄(ε)

k
, (4)

where the wave number k is measured in a laboratory system.
This relation is just a simple classical relation between an
incident orbital spin L̄ and a radius of RSC, corresponding
to an impact parameter. Because L̄(ε) represents the effective
orbital spin of the incident wave scattered to a final channel
with a label of ε, the scattering radius in Eq. (4) corresponds
to the size of the spatial area, where a specific reaction occurs.
Therefore, the scattering radius can characterize the radius of
an exclusive reaction in contrast to a radius for an inclusive
reaction derived for deuteron-induced reactions [20].

In the present formulation of the scattering radius, we have
restricted a system to a nucleon scattering by a spinless target,
but the definition of the scattering radius can be easily extended
to general two-body scattering systems, which contains a target
spin, rearrangement channels, and so on. Furthermore, the
partial cross sections are always defined in a standard scat-
tering calculation, which employs the partial-wave-expansion
method. Therefore, the calculation of the scattering radius is
available in a general scattering calculation similar to the
method of coupled-channels and the distorted-wave Born
approximation.

B. High-energy limit of the scattering radius in a
black sphere model

Let us discuss a quantitative feature of the effective orbital
spin, given by Eqs. (1) and (3), and the respective scattering
radii in the case of a simple potential scattering of a point
particle. Here we consider the limit of the high-energy
scattering by a black sphere potential with a radius of RBS.
The black sphere is assumed to have a uniform distribution
with a sharp edge; hence, the maximum orbital spin Lmax,
which can contribute to the scattering cross section, is exactly
determined by the relation of Lmax = kRBS with an incident
momentum k. All the partial waves below Lmax are completely
absorbed, and a scattering matrix SL with the partial wave L
satisfies SL = 0 for L � Lmax. In this situation, the partial
cross section σBS(L) is proportional to 2L + 1.

The explicit value of the effective orbital spin can be
calculated for the scattering by the black sphere. For simplicity,
L̃ is replaced by L in Eqs. (1) and (3). By substituting
σBS(L) ∝ 2L + 1 in Eqs. (1) and (3), the summation over
L = 0 ∼ Lmax can be explicitly evaluated. If we take the
high-energy limit of k → ∞, we can obtain the relation of
RSC and RBS

L̄I ∼
√

2

3
kRBS → RSC(I) ∼ 0.82RBS, (5)

L̄II ∼
√

1

2
kRBS → RSC(II) ∼ 0.71RBS. (6)

The scattering radii derived from the effective orbital spins
reach about 70%–80% value of the black sphere radius in the
high-energy limit.

Furthermore, the scattering radius in Eqs. (5) and (6) can
be directly connected to the matter radius of the target nucleus
on the basis of pioneering work of the black sphere model
by Kohama et al. [10]. In the black sphere model, there is a
relation between the real radius of the black sphere RBS and
its root-mean-square radius rBS,

rBS =
√

3

5
RBS. (7)

According to the sophisticated analysis of the proton elastic
scattering in Ref. [10], the root-mean-square radius of a target
nucleus, r̄ , is almost the same as rBS. Specifically, a relation of

rBS ∼ r̄ (8)

has been established, at least, for the target mass A � 50 and
Ep ∼ 800 MeV. From the relations of Eqs. (7) and (8), we can
obtain a relation between RSC and r̄ such that

RSC(I) =
√

2

3
RBS =

√
2

3

√
5

3
r̄ ∼ 1.05r̄ , (9)

RSC(II) =
√

1

2
RBS =

√
1

2

√
5

3
r̄ ∼ 0.91r̄ . (10)

These results clearly show a direct relation between the
scattering radius and a root-mean-square radius of the target
nucleus. In the high-energy limit of an elastic scattering by a
black sphere, the scattering radius naturally gives almost the
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same value as the matter radius of the target nucleus with a
deviation of 5%–10%. Therefore, the black sphere evaluations
of the scattering radius support the validity of the concept of
the scattering radius introduced here.

In the high-energy limit of a realistic elastic scattering, RSC

should give a radius at least comparable to or considerably
larger than the matter radius r̄ of the target nucleus. This is
because the elastically scattered projectile feels the nuclear
potential generated by the target nucleus, which has a longer
range than the range of the matter radius. This condition on
the scattering radius is a moderate criterion in which either
measure (I) or measure (II) is chosen.

C. Coupled-channel equations and folding potential

To calculate the partial cross section, we solve a set of the
coupled-channel equation for the proton-12C system, which is
given in the symbolic form

[Tf (R) + Vf,f (R) − Ef ]χf (R) = −
∑
i �=f

Vf,i(R)χi(R). (11)

Here the subscripts of f and i design a channel. This coupled-
channel equation is solved in a subspace of the total spin of J
and the orbital spin of L, and the partial cross sections σ (JLε)
are obtained.

Tf (R) represents the kinetic energy of the relative motion
of the p + 12C system with a relative coordinate R, while
Vf,i(R) denotes the coupling potential for the transition from
channel i to channel f . The total energy in the channel f ,
Ef , is given by the relation of Ef = E − εf with the proton’s
incident energy E and the target internal energy of εf . χf (R)
is the proton-12C relative wave function for the channel f ,
which should be solved in the coupled-channel equation. In the
present calculation, we restrict the computational channels to
the incident and exit channels to pin down the essential feature
of the scattering radius. Thus, the subscripts f and i represent
either the ground 0+

1 channel or the Hoyle 0+
2 channel.

There are also possible transitions beyond the two-channel
calculation, such as 0+

1 → 2+
1 (or 3−

1 ) → 0+
2 , which passes

through the collective 2+
1 (or the 3−

1 ) state. However, such
two-step transitions have been found to play minor roles in
the α + 12C scattering at E/A = 43 and 60 MeV [17,18].
In the proton plus 12C scattering going to the Hoyle 0+

2
state, therefore, a major transition process is expected to
be at least a direct excitation of 0+

1 → 0+
2 in the energy

region of Ep � 40 MeV. Thus, the two-channel calculation
of 0+

1 and 0+
2 can cover the essential feature of the inelastic

scattering to the 0+
2 state. In fact, we have also performed the

coupled-channel calculation including the 2+
1 and the 3−

1 states,
but the coupling effect of 2+

1 and 3−
1 just changes the magnitude

of the differential cross section in the two-channel calculation
by about 20% at a maximum. The oscillating pattern of the
two-channel calculation is almost unchanged even if the 2+

1
and the 3−

1 states are coupled.
The real part of the diagonal (f = i) and coupling potentials

(f �= i), Vf,i(R), is calculated by the folding model [16,21],
which is expressed symbolically as

Vf,i(R) = NR

∫
ρf,i(r)vNN (r − R) dr, (12)

where r denotes the coordinate measured from the center
of the mass in the 12C nucleus. Here ρf,i(r) represents the
diagonal (f = i) or transition (f �= i) densities of 12C, which
are calculated by the microscopic 3α cluster model, resonating
group method (RGM) [2]. In general reaction calculations, a
normalization constant NR is introduced because the folding
potential contains a theoretical ambiguity in its strength.

In Eq. (12), vNN represents the effective nucleon-nucleon
(NN ) interaction which acts between a nucleon contained in
12C and an incident proton. In the present calculation, we adopt
the M3Y (Michigan 3-range Yukawa) interaction [22]. The
central part of the coupling potentials, V CE

f,i (R), are calculated
by folding the central part of M3Y, which is given by

vM3Y
NN (s) = 7999

e−4s

4s
− 2134

e−2.5s

2.5s
− J0δ(s). (13)

In the central part, there is no contribution from the long-range
attractive potential generated by the one-pion exchanges. The
third term simulates the single nucleon’s knock-on exchange
with the strength of J0 = −262 MeV fm3 [21].

In addition to the central potential, we introduce the spin-
orbit interaction. If we adopt the short-range property of the
NN spin-orbit potential, the folded spin-orbit potential for a
nucleon-nucleus system has the following simple form [23]:

V LS
f,i (R) = ULS

f,i (R)L · σ, (14)

ULS
f,i (R) = −π

2

1

R

∂ρf,i(R)

∂R

∫
vM3Y

TO (s)s4ds. (15)

Here ρf,i(R) denotes the monopole (spherical) transition
density, while L and σ denote the vectors of the orbital spin and
Pauli’s spin matrices, respectively. In Eq. (15), vM3Y

TO represents
the triplet-odd part of the M3Y spin-orbit interaction, and its
explicit form is

vM3Y
TO (s) = −3733

e−4s

4s
− 427.3

e−2.5s

2.5s
. (16)

This effective spin-orbit potential is obtained from the Reid
NN potential [22]. In the derivation of Eq. (15), the cancella-
tion of the triplet-even part and knock-on exchange is assumed
[23].

The M3Y interaction is a density-independent g matrix
calculated in infinite nuclear matter at a fixed nucleon
density [22]. In modern studies of nuclear reactions, density-
dependent g matrices, such as the density-dependent version
of M3Y [24,25], the Melbourne interaction [26], and complex
effective Gaussian form factor [27], are often employed in cal-
culations of folding potentials. The density-dependent g matrix
seems to be more sophisticated than the density-independent
interaction, M3Y. However, nuclear potentials generated from
a density-dependent force still need a considerable normaliza-
tion factor to reproduce the experimental data [12–14]. Thus,
a density-dependent nucleon-nucleon interaction is not perfect
in the present application of folding models. Furthermore, in
the density-independent force, there is a great advantage in
Eq. (15); the folded spin-orbit potential has a separable form
of the density-derivative part and a volume-integral part of the
nucleon-nucleon (triplet-odd) spin-orbit force. From Eq. (15),
we can deduce a relation between the density distribution and
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the spin-orbit splitting if we calculate the energy spectra with
the same interactions. Because we intend to conduct future
studies on spin-orbit splitting for a nucleon-nucleus system, we
apply the density-independent M3Y interaction to the present
scattering problem.

D. Phenomenological complex potential

Because the M3Y NN interaction is real, the resultant
folding potential only includes a real part. In the usual
treatment of scattering phenomena, imaginary potentials are
introduced, and their parameters are optimized so as to
reproduce the experimental observables. Generally speaking,
the imaginary potential simulates a part of the dynamic
polarization potential (DPP), which is a coupling with channels
outside of computational model space. Here we introduce the
complex potential for a diagonal transition in the incident and
exit channels to take into account the DPP effect. Because
the nuclear structures of 12C are very different between the
incident 0+

1 channel (spatially compact structure) and the
exit 0+

2 channel (well-developed 3α structure), the strong
channel dependence of DPP is expected. The parameters of
the complex potentials are basically searched to reproduce the
experimental data, but the obtained parameters are tuned to
simulate the qualitative features expected from the internal
structure of the 12C nucleus.

In the elastic channel, we add the central imaginary
potential −iW (R) to the M3Y folding potential such that

Vi,i(R) = V CE
i,i (R) + V LS

i,i (R) − iWi(R), (17)

Wi(R) = WV (R) + WS(R), (18)

with i = elastic channel (p + 12Cg.s.). Here Wi(R) is given
by the summation of the Woods-Saxon (WS) potential with
volume-type WV (R) and surface-type WS(R) form factors.
The subscripts of V and S denote the volume-type and
surface-type WS potentials, respectively. The three parameters
strength (W0), radius (RI ), and diffuseness (aI ) are included
in each of the WS potentials: (W0V ,RIV ,aIV ) in WV (R) and
(W0S,RIS,aIS) in WS(R).

In the exit 0+
2 channel, we do not consider a simple

absorptive potential, but the complex potential,

Vf,f (R) = V CE
f,f (R) + V LS

f,f (R) + Vf,S(R) − iWf (R), (19)

with f = inelastic channel (p + 12C(0+
2 )). Here a form factor

of Wf (R) is taken to be the same form in Eq. (18). In
this channel, we include the real attractive WS potential
Vf,S(R) with the surface form factor, which contains the three
parameters (V0S,RS,aS). Because the 0+

2 state corresponds to
a resonant state with a strong deformation, the excitation to its
rotational unbound state, 2+

2 , strongly occurs. The B(E2) value
for the transition of 0+

2 → 2+
2 is 25 times stronger than that

for the respective yrast transition, 0+
1 → 2+

1 [2]. Therefore,
the strong excitation of 0+

2 → 2+
2 is expected in the proton

scattering. If the channel coupling is extremely strong, DPP
cannot be simulated by a simple attractive imaginary potential,
and a strong real potential is generated in DPP [28]. Thus, we
introduce the real potential in the final 3α channel owing to its
strong coupling to the unbound rotational excitations.

FIG. 1. (Color online) Incident-energy dependence of the mean
radius of the imaginary potentials. The solid squares show the radii
for the 0+

2 channel, while the crosses are the radii for the ground 0+
1

channel.

The parameter sets for the incident and exit 3α channels,
which are determined so as to reproduce the experimental
cross sections as much as possible, are listed in the Appendix
(Tables IV and V). In these calculations, the normalization
factor in the folding potential is set to NCE

R = 1 for the central
part and NLS

R = 1.1 for the spin-orbit part. In Fig. 1, the energy
dependence of the mean radius of the imaginary potential,

R̄W =
√∫

R2W (R)dR∫
W (R)dR

, (20)

are plotted.
The solid squares and the crosses represent the mean radius

for the 0+
2 channel and the ground 0+

1 channel, respectively.
Both potentials have a weak energy dependence, and the mean
radius for the 0+

2 channel is larger by about 1 fm than that
for the ground channel in the whole incident-energy region.
This means that the 0+

2 channel feels a strong and long-range
absorption, and this feature is consistent with the DPP analysis
in the 12C + 12C system at the molecular-resonance energy
region [29]. The similar long-range properties of absorption
in the 0+

2 channel are also reported in the inelastic scattering
of α + 12C [12,13,30] and 3He + 12C [14]. The strong and
long-range absorption for the 0+

2 channel originates from the
weak binding property of the 0+

2 state, which finally breaks up
into continuum states. The density distribution of 0+

2 is more
extended than that of the ground state. Therefore, the absorp-
tion for the 0+

2 channel occurs at the outer region in comparison
to the ground 0+

1 channel, and the resultant absorption potential
has a long range in the 0+

2 channel as shown in Fig. 1.

III. PARTIAL-WAVE ANALYSIS AND
THE SCATTERING RADIUS

A. Calculation of the differential cross section

In this section, we compare the theoretical calculation with
the experimental differential cross section. Figure 2 shows
the results of the differential cross sections at Ep = 65 MeV.
In this calculation, we keep NCE

R = 1 and NLS
R = 1.1 in the

central and spin-orbit folding potentials, respectively. Panel
(a) shows the comparison in the elastic scattering, while panel

034619-5



M. TOMITA, M. IWASAKI, R. OTANI, AND M. ITO PHYSICAL REVIEW C 89, 034619 (2014)

FIG. 2. (Color online) Differential cross section at Ep =
65 MeV. Panel (a) shows the result of the elastic (0+

1 ) channel, while
the result of the inelastic (0+

2 ) channel is plotted in panel (b). In both
panels, the asterisks and curves represent the experimental data and
the theoretical calculations, respectively.

(b) displays the inelastic scattering to the 0+
2 state. In the elastic

scattering, the present MCC calculation nicely reproduces the
experimental cross sections over the observed angular range.
On the contrary, the calculation for the 0+

2 channel reproduces
a global tendency observed in the inelastic scattering, although
the oscillation of the calculated cross section is out of phase
in comparison to the experiments.

To obtain a better fit, we must vary the normalization
constant NR considerably in the folding potential. By changing
the NR and the parameters in the complex potential, we can
obtain several parameter sets, which can reasonably reproduce
the observed angular distributions. The existence of the several
parameter sets means that an ambiguity arises in the calculation
of the effective orbital spin L̄ and the scattering radius
RSC. Specifically, several L̄ and RSC can be obtained for
the individual parameter sets. In the following sections, we
discuss L̄ and RSC derived from the calculation with NCE

R = 1
and NLS

R = 1.1 (Fig. 2), and the ambiguity of L̄ and RSC is
discussed in Sec. V.

B. Evaluation of the scattering radius

In the previous section, we confirmed that the MCC cal-
culation can reasonably reproduce the scattering observables
at Ep = 65 MeV. In this section, we show the partial-wave
analysis and derive the scattering radius for both the elastic
and the 0+

2 channels at this incident energy. In Fig. 3, the
partial cross sections for the elastic (asterisks) and the inelastic
scattering (squares) are shown. In the elastic scattering, the
nuclear part of the partial cross sections are plotted in Fig. 3.
Each of the partial cross sections, σ (JLε), has the labels of
the total spin J and the orbital spin L. In Fig. 3, σ (JLε)
with an allowed L is summed up for a fixed J such that
σ (Jε) = ∑

L σ (JLε).

FIG. 3. (Color online) Distributions of partial cross sections at
Ep = 65 MeV. The asterisks represent the partial cross sections σ (J )
for the elastic scattering, while the distribution with the squares shows
the cross section for the inelastic scattering. The inelastic partial cross
sections are multiplied by a factor of 200 to be shown in the same
scale as the elastic scattering.

We can clearly confirm a prominent difference in a
comparison of the elastic partial cross section with the inelastic
partial cross section. The elastic partial cross section has a
peak at J = 7/2, and its magnitude is monotonically damped
at J = 15/2. On the contrary, double peak structures are
observed in the inelastic scattering going to the 0+

2 state. There
is a strong peak at J = 7/2 and J = 13/2, and considerable
magnitude continues up to J = 19/2. Because the scattered
orbital spin has a close connection to the spatial size of a
potential produced by the target, the distribution shown in
Fig. 3 strongly suggests that a spatial area of scattering is
prominently different in these two channels.

From the distributions of the partial cross section, we
evaluate the effective orbital spin L̄ and the scattering radius
RSC according to the definitions given in Eqs. (1), (3), and (4).
The obtained values are summarized in Table I. In the top row,
the L̄ and RSC for the elastic channel, derived from measure
(I) [Eq. (1)] and measure (II) [Eq. (3)] are shown. In measure
(I), L̄I = 4.69 and RSC(I) = 2.65 fm, while L̄II = 3.66 and
RSC(II) = 2.07 fm in measure (II). In measure (I), the elastic
RSC(I) is larger by about 10% than the matter radius of the
ground-state density calculated by the 3α RGM (r̄ = 2.40 fm)
[2], which is comparable to the charge radius (r̄ch = 2.53 fm).
On the contrary, in the case of measure (II), RSC(II) for the
elastic channel is smaller by about 15% than the ground
matter radius.

TABLE I. Effective orbital spins L̄I,II and the scattering radius
RSC(I,II) calculated from the definition in Eqs. (1), (3), and (4). The
theoretical mean radius of the density distribution (r̄) for the ground
0+

1 (Ex = 0.00 MeV) and 0+
2 (Ex = 7.65 MeV) states are also shown

in the second column from the right. In the rightmost column, the
diffraction radii obtained in Ref. [11] are shown for a comparison.
RSC and r̄ are shown in units of fm, while the excitation energy (Ex)
is shown in units of MeV.

Channel Ex L̄I RSC(I) L̄II RSC(II) r̄ Ref. [11]

0+
1 0.00 4.69 2.65 3.66 2.07 2.40 2.75 ± 0.06

0+
2 7.65 6.13 3.46 4.26 2.41 3.47 3.20 ± 0.07
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The results for the 3α cluster states, 0+
2 , are shown in the

bottom row: [L̄I ,RSC(I)] = (6.13,3.46 fm) for measure (I) and
[L̄II,RSC(II)] = (4.26,2.41 fm) for measure (II). The RSC in
measure (I) is comparable to the matter radius of the 0+

2
state obtained in 3α RGM(r̄ = 3.47 fm) [2]. In accordance
with the broad structure in the inelastic partial cross section
shown in Fig. 3, RSC in the inelastic 0+

2 channel is enhanced
in comparison to that in the elastic channel. This enhancement
is common feature in both measures of (I) and (II). The
enhancements of the scattering radius in the 0+

2 channel
amount to ∼30% in measure (I) and ∼20% in measure (II).

Because it is reasonable that the scattering radius in the
elastic channel is comparable to or considerably larger than
the matter radius of the ground state, measure (I) is considered
to be appropriate to characterize the size of the scattering
area. In the rightmost column, the diffraction radii obtained
from the proton scattering at Ep = 1040 MeV are shown
for comparison [11]. The proton incident energies are very
different between the present calculation and the analysis of the
diffraction model. Nevertheless, the scattering radii obtained
from measure (I) give almost the same values as the diffraction
radii. Thus, in the following analysis, we use measure (I) to
calculate the scattering radius, although measure (II) is not
inadequate in the discussion of the scattering radius.

C. Distortion effect in the exit channel

As we have just confirmed in Table I, the scattering radius
for the inelastic 0+

2 channel is prominently enhanced in both
measures (I) and (II). This enhancement strongly suggests that
the spatial extension of the 3α structure is directly reflected in
inelastic scattering. However, inelastic scattering corresponds
to a transition from an incident channel to an exit channel,
and its cross section does not necessarily directly reflect the
size of a potential in an exit channel. Therefore, we need a
careful analysis for the origin of this strong enhancement in
the scattering radius of the inelastic 3α channel.

In this section, we discuss the main origin of the enhanced
scattering radius confirmed in the inelastic scattering to the 0+

2
state. In elastic scattering, the diagonal (distortion) potential of
the incident channel mainly determines the differential cross
section. Thus, the scattering radius obtained from the elastic
scattering directly provides size information of the distortion
potential in the incident channel. In inelastic scattering,
however, there are two main ingredients which determine
the scattering cross section: a coupling potential inducing the
transition from an incident channel to an exit channel, and the
distortion potential in an exit channel.

The effect of the distortion potential in the exit 0+
2 channel

can be seen in Fig. 4. This figure shows the distribution of the
inelastic partial cross sections with and without the distortion
effect in the exit channel. The solid squares show the result
of the full MCC calculation, which has already been shown in
Fig. 3 (squares), while the circles represent the restricted MCC
calculation without the distortion potential in the exit channel.
As can clearly be seen in Fig. 4, distribution of the higher
partial waves is almost unchanged, but the lower partial-wave
contribution increases in the restricted MCC calculation as
shown by the circles.

FIG. 4. (Color online) Partial cross sections for inelastic scatter-
ing at Ep = 65 MeV. The squares show the results of the full CC
calculation, while the circles show the results without any potentials
in the exit 0+

2 channel. The distribution with the squares is the same
as the distribution with the squares shown in Fig. 3.

Let us discuss the behavior of the partial cross section based
on the transition amplitude of the distorted-wave Born ap-
proximation (DWBA), T JL

DWBA = 〈χJL
0+

2
|Vcp|χJL

0+
1

〉, where χJL
α

denotes the distorted wave for the partial wave JL in the
channel α (α = 0+

1 or 0+
2 ). The magnitude of the transition

amplitude is determined by the overlap of the final distorted
wave χJL

0+
2

and the coupling potential Vcp. In Fig. 5, the central

part of the diagonal folding potential (Vdg) of the 0+
1 (dashed

curve), 0+
2 (thick curve) channels and the coupling potential

(Vcp) of 0+
1 → 0+

2 (dotted curve) are plotted. The squares
and the circles in Fig. 4 correspond to the calculations with
and without the diagonal potential of the 0+

2 channel (thick
curve in Fig. 5), respectively. The results in Fig. 4 demonstrate
that the squared magnitude of T JL

DWBA for the lower JL are

FIG. 5. (Color online) Radial shape of the coupling [Vcp(R)] and
diagonal [Vdg(R)] potentials. The diagonal potential multiplied by
R2 for the elastic 0+

1 channel is shown by the dashed curve, while
that for the inelastic 0+

2 channel is shown by the thick solid curve.
The coupling potential of 0+

1 → 0+
2 is shown by the dotted curve.

The right-side ordinate corresponds to the strength of the diagonal
potentials, while the coupling potential is plotted with the left-side
ordinate. The magnitude of both diagonal potentials are multiplied by
the factor 1/8. The arrow at R = 4 fm shows the distance, at which
the absorption effect becomes strong. See text for details.

034619-7



M. TOMITA, M. IWASAKI, R. OTANI, AND M. ITO PHYSICAL REVIEW C 89, 034619 (2014)

TABLE II. Effective orbital spin L̄ with measure (I) and scattering
radius RSC for the 0+

2 channel. In the top row, the results of the full
MCC calculation are shown, while the results without the distortion
potential in the exit 0+

2 channel are shown at the bottom row. See text
for details.

Channel L̄ RSC (fm) r̄ (fm)

0+
2 (Full calculation) 6.13 3.46 3.47

0+
2 (No distortion potential) 5.46 3.09 3.47

prominently reduced if the distortion potential in the final 0+
2

channel is switched on.
The radial distribution of Vcp (dotted curve) has negative

and positive peaks at r ∼ 2 fm and r ∼ 4 fm, respectively.
The transition to the 0+

2 state mainly occurs around these two
distances. The diagonal potential in the final 0+

2 channel (thick
curve) is longer range than the range of the elastic potential
(dashed curve), and the attraction of the final 0+

2 channel covers
the entire range of the coupling potential. Therefore, the final
distorted wave χJL

0+
2

is trapped around the peak positions of the
coupling potential when the absorptive potential is switched
off. Because there is strong absorption at the inner region of
r � 4 fm, shown by the arrow (see also the solid squares
in Fig. 1), the amplitude of χJL

0+
2

trapped at r ∼ 2 fm is
strongly absorbed. This inner absorption for the final distorted
wave leads to reduction of the product of Vcpχ

JL
0+

2
; hence, the

magnitude of T JL
DWBA. The absorption of the inner distorted

wave is strongly masked for the higher JL because of the
large effect of the centrifugal potential. Therefore, a strong
reduction in the partial cross section arises in the lower JL
region, but the distribution is almost unchanged in the higher
JL.

The L̄ and RSC obtained with and without the distortion
potential in the exit 3α channel are summarized in Table II.
Here we use measure (I) in calculating L̄ and RSC. The
RSC without the distortion is 3.09 fm, which is smaller
by about 10% than the result of the full MCC calculation,
RSC = 3.46 fm. Although the distortion effect in the exit
channel changes the distribution of the partial cross section
considerably, the distortion effect can be negligible in deter-
mining the magnitude of the scattering radius. Therefore, we
can conclude that the main factor in determining the scattering
radius is not the distortion potential in the exit 0+

2 channel,
but the coupling potential for the transition of 0+

1 → 0+
2 . The

enhancement of the scattering radius in the 0+
2 channel is

mainly attributable to the spatial extension of the coupling
potential. These results are completely consistent with the
analysis by Takashina et al. [17,18].

IV. 3α CLUSTER EXCITATION VERSUS GMR
EXCITATION

A strong enhancement has been clearly observed in the
scattering radius of the 3α exit channel. The scattering radius
for the inelastic scattering basically reflects the spatial range
of the transition potential for 0+

1 → 0+
2 . In this section, we

discuss whether the enhanced scattering radius is a peculiar

phenomenon in the 3α excitation, which involves a spatially
extended structure, or not. To investigate the peculiarity of the
3α excitation, we should introduce a completely different type
of the monopole 0+ excitation and compare it with the 3α
monopole excitation. A cluster excitation should be compared
with a collective motion generated by coherent excitations of
nucleons moving in a uniform mean field, for example.

In a mean-field picture, a monopole excitation of 0+
1 →

0+
2 is induced by a monopole compression mode, which

is a small spherical oscillation of a nuclear surface [19].
Experimentally, such a monopole compression mode has been
observed as a GMR. In the following analysis, we assume an
isolated monopole compression mode located at the empirical
excitation energy of GMR, and the scattering radius for the
inelastic scattering going to GMR (0+

2 ) is calculated.
According to systematic experimental studies, an empirical

excitation energy of GMR for a mass number A is known to
be

EGMR
x ∼ 80A−1/3(MeV). (21)

In the case of 12C, EGMR
x becomes about 35 MeV. As for

the transition density to the GMR state (0+
2 ), the so-called

Bohr-Mottleson (BM) model [31],

ρBM
0+

1 →0+
2
(r) = −β

[
3ρ0+

1
(r) + r

dρ0+
1
(r)

dr

]
, (22)

is usually employed in analysis of the hadronic excitation
of GMR [32,33]. According to Eq. (22), we can obtain
the transition density for the GMR excitation in a quite
simple manner, but several RPA calculations have resulted
in transition densities that are very similar to this BM form
in the heavier mass region [34]. In this model, the density
distribution of the excited GMR state (0+

2 ) is simply obtained
as

ρBM
0+

2
(r) = ρ0+

1
(r) + ρBM

0+
1 →0+

2
(r). (23)

The mean radius calculated from the density in Eq. (23) is
r̄ = 2.62 fm. The strength β is generally determined so as to
reproduce the magnitude of the experimental cross section of
GMR. In the present analysis, the transition strength β is fixed
so as to reproduce the magnitude of the isoscalar monopole
matrix element for the 3α excitation, which is given by

M(IS,0+
1 → 0+

2 ) =
∫ ∞

0
ρ3α

0+
1 →0+

2
(r)r2dr. (24)

Here ρ3α
0+

1 →0+
2
(r) is a transition density calculated from the 3α

RGM [2]. We found that β = 0.09 can reproduce M(IS,0+
1 →

0+
2 ) in Eq. (24). However, β = 0.09 is much stronger than a

realistic strength for the GMR excitation. In the 3α RGM, the
monopole strength going to the 0+

2 state at Ex = 7.65 MeV
exhausts about 23% of the energy-weighted sum rule (EWSR).
If we directly use the monopole strength obtained by Eq. (24)
for GMR assumed at EGMR

x = 35 MeV, this GMR completely
exhausts the EWSR value (∼100%); hence, the assumed
strength, β = 0.09, is too strong. According to the analysis
of the α scattering by 58Ni [33], the EWSR fraction for GMR
is about 20%–30%. Therefore, a realistic strength β may be
reduced to about half of the strength fixed here.
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FIG. 6. (Color online) Radial part of the transition density for
0+

1 → 0+
2 . The squared radius r2 is multiplied to the transition density.

The solid curve shows the density calculated by the microscopic 3α

cluster model, while the dotted curve represents the density obtained
by the BM model. The BM density is multiplied by a minus sign.

The radial part of the transition densities, ρ0+
1 →0+

2
(r),

obtained by the 3α cluster model and the BM model are shown
in Fig. 6. Here the radial part of the transition density is defined
by ρ0+

1 →0+
2
(r) = ρ0+

1 →0+
2
(r)Y00(r̂) with a spherical harmonics

of Y00(r̂). The radial behaviors are quite similar to each other,
and both densities have one node around r ∼ 2.8 fm. This
behavior is attributable to the conservation condition on the
nucleon number. Although the transition density in the 3α
cluster model (solid curve) has a slightly extended distribution
in comparison to the BM density (dotted curve), the difference
in the range is not so large (about 0.5 fm). The transition
potentials calculated by the folding procedure in Eqs. (13)
and (15) also reveal similar behavior in these two model
because of the similarity of the transition density.

We assume an isolated GMR at EGMR
x = 35 MeV with

the densities given by Eqs. (22) and (23), and the MCC
calculation for the GMR excitation by the proton scattering
at Ep = 65 MeV is performed. In the MCC calculation for
GMR, the phenomenological complex potentials, optimized
to reproduce the experiments of the cluster excitations, is
unchanged for simplicity. The differential cross section for
the GMR excitation is shown in Fig. 7. In this figure, the
dotted curve shows the differential cross section going to the
GMR state, while the solid curve represents the excitation to
the 3α cluster state. In the backward region, the cross section
for the GMR excitation has a large yield; hence, the angular
distribution for the GMR excitation shows more isotropic
behavior than the distribution for the 3α excitation.

The differences observed in the differential cross section
suggest that the distribution of the partial cross section is
very different in these two excitation schemes, the 3α and
GMR excitations. The partial cross sections for the inelastic
scattering are shown in Fig. 8. We can clearly confirm a
different distribution in these two excitation models. The
partial cross section for the GMR excitation (squares) is
rapidly damped around J = 15/2, while the result for the

FIG. 7. (Color online) Comparison of differential cross sections
for inelastic scattering at Ep = 65 MeV. The solid and dotted curves
represent the calculation based on the cluster and BM transition
densities, respectively.

cluster excitation (stars) has an extended structure ranging
up to J = 19/2. This difference in the distribution can be
naturally understood from the angular distribution shown in
Fig. 7. The differential cross section for GMR increases at a
backward angle. This means the fluctuation of the scattering
angle (�θ ) becomes large in the GMR excitation. Therefore,
the fluctuation of the scattered angular momentum (�L) for the
GMR excitation is reduced more than �L (and �J ) for the 3α
excitation according to the uncertainty relation of �L�θ ∼ �.

The obtained L̄ and RSC in the elastic, 3α inelastic and GMR
inelastic scattering are summarized in Table III. In accordance
with the reduction of �L in GMR, the effective orbital spin
L̄ and the scattering radius RSC are reduced to L̄ = 4.09 and
RSC = 2.31 fm for GMR. The scattering radius for GMR is
almost the same as its matter radius of r̄ = 2.62 fm. These
values are considerably smaller than the results obtained by
the 3α excitation, RSC = 3.46 fm and L̄ = 6.13. As shown in
Fig. 6, the transition densities for the GMR and 3α excitations
reveal almost the same behavior. Thus, the main origin of the

FIG. 8. (Color online) Distributions of the partial cross section
in the inelastic scattering at Ep = 65 MeV. The asterisks show the
distribution for the 3α cluster state, 0+

2 , while the squares show that
for the GMR state.
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TABLE III. Effective orbital spin L̄ and scattering radius RSC

calculated from the definition in Eq. (1). At the rightmost column, the
mean matter radii are presented for comparison. See text for details.

State Energy (MeV) L̄ RSC (fm) r̄ (fm)

0+
1 (Elastic) 0.00 4.69 2.65 2.40

0+
2 (3α) 7.65 6.13 3.46 3.47

0+
2 (GMR) 35.0 4.09 2.31 2.62

difference in RSC between the 3α excitation (3.47 fm) and the
GMR excitation (2.31 fm) is not a difference of the radial shape
of the transition density. The difference in RSC is attributed to
the difference of the excitation energies between the 3α state
(7.65 MeV) and the GMR state (35.0 MeV). In a high-energy
scattering theory, such as Blair’s phase rule [15], the internal
excitation energy of colliding nuclei is usually neglected, but
the difference in the excitation energy plays an important role
in determining the scattering radius. Specifically, there is a
Q-value effect on the magnitude of the scattering radius.

To investigate the Q-value effect for the monopole transi-
tion from 0+

1 to 0+
2 more clearly, we artificially vary the excita-

tion energy of the 0+
2 state in the range of Ex = 0 − 45 MeV,

and the coupled-channels for p + 12Cg.s. → p + 12C(0+
2 ) are

solved for the individual excitation energies of the 0+
2 state. In

this calculation, the transition density obtained by the 3α RGM
is used for the monopole excitation. The excitation energy
dependence of RSC is shown in Fig. 9. The curve with the solid
squares is the result of the scattering radius at the proton’s
incident energy of Ep = 65 MeV, while the curve with the
crosses show the same result at Ep = 200 MeV.

In the case of Ep = 65 MeV, RSC for the 0+
2 state reaches a

maximum value of about 3.6 fm at the zero excitation energy

FIG. 9. (Color online) Excitation energy dependence of scatter-
ing radius. The abscissa represents the excitation energy, while the
ordinate represents the scattering radius RSC. The solid squares
and crosses denote the RSC calculated for Ep = 65 and 200 MeV,
respectively. The dotted line at Ex = 7.65 MeV represents the
excitation energy of the 3α cluster excitation, while the line at
Ex = 35 MeV shows the energy of the GMR excitation.

limit. However, RSC monotonically decreases as the excitation
energy is taken to be higher. The RSC at the 3α limit at
Ex = 7.65 MeV is almost the same as the maximum value
at Ex = 0 MeV, while RSC at the GMR limit at Ex = 35 MeV
is strongly reduced. Therefore, the Q-value effect as well as the
radial shape of the coupling potential plays an essential role in
the determination of the scattering radius, which characterizes
the spatial size of the reaction area. However, this Q-value
effect becomes weak in the scattering at Ep = 200 MeV. As
shown by the crosses, RSC reveals an almost constant behavior
with respect to the variation of the excitation energy. If the
proton incident energy becomes quite high, the difference of
the excitation energy can be negligible in determining the
scattering radius. The resultant RSC at Ep = 200 MeV is about
3.2 fm at the 3α excitation energy, which is the same value as
the radius obtained by the diffraction model [11].

V. ENERGY SYSTEMATICS OF THE
SCATTERING RADIUS

We extend the analysis of the scattering radius at Ep =
65 MeV to other incident energy, Ep = 29.95, 35.2, 39.95, and
200 MeV. In the calculation of 65 MeV, a fit to the experimental
data of the 0+

2 channel is not so good if NR is set close to 1.
Furthermore, in the lower-energy region of Ep = 29.95, 35.2,
39.95 MeV, the reproduction of the experimental data becomes
more difficult in the calculation of NR ∼ 1. Therefore, in the
whole energy region, we search possible parameter sets, which
reasonably reproduce the observed angular distributions, by
varying NR in the range of NCE

R = 0.7–1.5 for the central part
and NLS

R = 0.6–3.0 for the spin-orbit part. For all the obtained
parameter sets, we derive the effective orbital spin L̄ and the
scattering radius RSC. To clarify the ambiguity of RSC, which
originates from the variation of the employed parameter sets,
we average all the scattering radii obtained for the different
parameter sets at a fixed energy.

Energy systematics of the averaged RSC are shown in
Fig. 10. The solid circles and solid squares show the RSC of the
elastic and inelastic channels, respectively. The ambiguity of
RSC at a fixed energy is determined by the standard deviation
of an obtained set of RSC, which is shown by the error
bar attached to the circles and the squares. RSC contains
the ambiguity of about 11% at a maximum (3α channel at
Ep = 35.2 MeV). In the low-energy region of Ep � 40 MeV,
RSC reveals energy-dependent behavior with a considerable
ambiguity, while the energy dependence seems to be weak in
the high-energy region of Ep � 65 MeV, although data points
do not exist between 65 and 200 MeV.

The white circle and white square represent the diffraction
radii obtained from elastic and inelastic scattering at Ep =
1040 MeV, respectively [11]. The magnitude of the scattering
radii at Ep = 200 MeV is consistent with the magnitude of the
diffraction radii. The scattering radius for the 3α excitation
is systematically larger than that for the elastic scattering.
This means that the scattering radius can be treated as a
characteristic size for a nucleus. The values of the scattering
radius for the elastic and 0+

2 channels distribute around the
respective matter radius, shown by the dotted lines, although
the scattering radius does not necessarily represent the matter
radius itself.
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FIG. 10. (Color online) Energy dependence of scattering radius
RSC. The solid squares show RSC for the 3α excitation, while the
solid circles show the radius for the elastic scattering. The asterisks
represent RSC for GMR excitation. The upper and lower dotted lines
show the matter radius of the 0+

2 and 0+
1 states, respectively. The

white symbols are the diffraction radii derived from proton scattering
at Ep = 1040 MeV [11]. See text for details.

The scattering radius for the GMR excitation is shown by
the asterisk. The GMR scattering radius is smaller than the 3α
scattering radius, and it shows a strong energy dependence. At
Ep = 29.95 and 35.2 MeV, there is no plot of RSC. In these
energies, the GMR channel is closed because the proton’s
incident energy in the center-of-mass system is lower than
the GMR excitation energy. In such a low incident energy, no
partial waves are scattered to the GMR state; hence, the calcu-
lation of RSC is meaningless. If the incident energy is just above
the GMR excitation energy, the range of the scattered partial
waves is sensitive to the variation of the incident energy. Thus,
RSC has an energy dependence around the incident energy just
above the threshold of GMR, for example, Ep � 50 MeV.

VI. SUMMARY AND DISCUSSION

In this paper, we have introduced the scattering radius on the
basis of the partial-wave expansion method, which is a standard
technique in a scattering problem. The scattering radius is
defined by the partial cross section. In the high-energy limit
of an elastic scattering by a black sphere, we have found a
clear relation of the scattering radius and the matter radius.
Therefore, the scattering radius introduced in the present study
characterizes the radius of a spatial region, where a scattering
or an exclusive reaction occurs. The MCC calculation has been
performed for the p + 12C scattering at Ep = 29.95–200 MeV,
and the differential cross sections for both the elastic and the
inelastic scattering are reasonably reproduced.

From the partial-wave analysis of the MCC calculation,
the scattering radii are evaluated for individual exit channels:
the elastic channel and the 0+

2 channel with a well-developed
3α structure. We have introduced two kinds of scattering
radius, which depend on the moment of the orbital spin. In

the elastic scattering, the scattering radius, calculated from the
fourth and second moments of the orbital spin, is considerably
larger than the radius of the matter density in the ground state;
hence, the scattering radius with the four and second moments
is employed as a measure of the scattering area. We have
found a clear enhancement of the scattering radius for the
inelastic scattering going to the Hoyle 0+

2 state. Because the
distortion potential in the exit 0+

2 channel plays a minor role,
the scattering radius for the inelastic scattering mainly provides
information on the spatial size of the transition potential for
12Cg.s. → 12C(0+

2 ). This result is consistent with Takashina’s
pioneering works [17,18].

We have also assumed the existence of an isolated GMR
at Ex = 35 MeV, and the differential cross section of the
monopole transition of 12Cg.s. → 12C(GMR) has been cal-
culated. The angular range of the differential cross section
for the GMR excitation is extended to the backward angle.
This extension of angular distribution leads to a reduction of
the distribution width in the partial cross sections. Because
the distribution of the partial cross section is more localized
within a small range of the angular momentum, the RSC for
GMR is prominently reduced in comparison to the result
of the 3α cluster excitation. The difference in the scattering
radius between the 3α excitation and the GMR excitation is
attributable to the large difference of their excitation energy
because no prominent difference can be seen in the shape
of the transition densities for these two transitions. Thus, the
difference in the scattering radius arises from the Q-value
effect of reactions.

The Q-value effect on the scattering radius can be summa-
rized as follows. After an incident proton hits the 12C nucleus,
12C is excited to the 3α state or GMR. In the case of the 3α
excitation, the excitation energy is low; hence, the scattered
proton can carry the higher partial-wave components, which
have a good overlap with the transition potential at a large
distance. The components of the higher partial waves lead
to the enhancement of the scattering radius. On the contrary,
the incident proton largely loses incident energy in the GMR
excitation. In such a situation, the proton cannot penetrate the
effective barrier for the higher partial waves, and only the lower
partial waves can contribute to the scattering process. This is
the main reason why the partial cross section is limited to the
lower partial-wave components in the GMR excitation. This
Q-value effect becomes weak in the limit of the high-energy
scattering, but a considerable difference of the scattering radius
still can be seen at Ep = 200 MeV between the 3α excitation
and the GMR excitation.

Although the spatial shape of the transition density or
the coupling potential is a main ingredient for the enhanced
scattering radius in the 3α excitation, the small excitation
energy of the 3α state is also an important factor for the
enhancement of the scattering radius. The low energy of the
cluster monopole excitation is an anomalous feature, which
can never be seen in a uniform mean-field picture. Because
an incompressibility of nuclear matter is quite high, about
200 MeV, large excitation energy is always required to produce
the monopole compression mode of a nuclear surface. That
is, the compression mode has quite a high frequency. In
marked contrast to this high-frequency mode, the excitation
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energy of cluster states is quite small, and clusters are weakly
coupled to each other because cluster states appear around the
threshold energy for decay into corresponding subunits. This
weak-coupling feature leads to the formation of the clusters’
monopole oscillation with much a smaller frequency than the
uniform compression mode. This small frequency of the cluster
monopole oscillation indeed causes the enhancement of the
scattering radius in the excitation going to the cluster state.

In the present study, we restricted the MCC calculation
to the two-channel problem, including only the incident and
exit channels, to investigate the essential features of the
scattering radius. Although the essential dynamics for the
elastic and inelastic scattering to the 0+

2 state can be covered
in the two-channel calculation, the scattering radius for the
other inelastic channels, such as the rotational 2+

1 excitation
and the vibrational 3−

1 excitation, should be analyzed in
the same MCC framework. In addition, the reproduction of
the experimental cross section is not so successful in the
present MCC calculation. We have tried to reproduce the
observed cross section by varying the strength of the folding
potential, but the precise reproduction has not been obtained.
Of course, the qualitative features of the scattering radius are
not expected to be particularly sensitive to a detailed structure
of the calculated angular distribution, but the MCC calculation
should be revised to obtain better fitting data.

For future study, therefore, we perform a more realistic
MCC calculation, in which the low-lying collective 2+

1 , 3−
1

states and the 2+
2 state, which correspond to the rotational

excitation of the Hoyle 0+
2 state, are explicitly coupled.

To improve the reproduction of the scattering observables,
the density-dependent nucleon-nucleon interaction should
be employed. By performing the revised MCC calculation,
the scattering radius should be discussed in other collective
excitation channels. The improved MCC calculation will be
reported in forthcoming papers.

Finally, we need to comment on the definitions of an
effective orbital spin. In the present study, we have assumed
simple definitions to extract a representative value of orbital
spins from a set of the partial cross sections, but the present
assumptions are not completed, and there could be other pos-
sible variations in defining an effective orbital spin. Therefore,
establishing an empirical rule for an effective orbital spin
from systematic studies is important. In particular, the relation
between matter radii and the scattering cross sections has
been extensively discussed in high-energy elastic scattering
[10]. Therefore, an analysis of the scattering radius should be
applied to a wide range of elastic scattering. Systematic studies
of elastic scattering are now under way.
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TABLE IV. The parameter set of the absorptive potentials for
the elastic channel. The diffuseness parameters are taken to be a
constant of aIV = aIS = 0.6 fm except for the surface potential
at Ep = 200 MeV (aIS = 0.8 fm). The leftmost column show the
proton’s incident energy. W0V and RIV show the strength and radius
parameters for the volume type potential, respectively, while W0S and
RIS show the respective parameters for the surface type potential.
Incident energy and W0 are shown in units of MeV, while RI is
shown in units of fm.

Energy W0V RIV W0S RIS

29.95 6.5 3.0 2.0 2.0
35.2 6.2 3.0 3.6 2.0
39.95 6.0 3.0 5.0 2.0
65.0 5.0 2.8 10.0 2.5
200.0 25.0 2.5 23.0 2.5

APPENDIX

In this Appendix, we show the parameter set of the
phenomenological complex potentials, which are introduced
in the diagonal transition in the coupling potentials. In the
following parameter sets, the strength of the folding potentials
are fixed at NCE

R = 1 (central part) and NLS
R = 1.1 (spin-orbit

part). In Table IV, the parameter set for the elastic channel
is shown. The employed imaginary potentials have the form
factors of the volume (V ) and surface (S) WSs. Each potential
contains the parameters of the depth (W0) and the radius (RI ),
which are distinguished by the subscripts of V and S for
the volume and surface parts, respectively. The diffuseness
parameters are commonly fixed to 0.6 fm except for the energy
of Ep = 200 MeV. At Ep = 200 MeV, the diffuseness of the
surface potential is extended to aIS = 0.8 fm.

In Table V, the parameters introduced in the inelastic
channels are shown. In addition to the volume + surface
imaginary potentials, we introduced the surface-type real
potential to simulate a dynamic polarization effect originates
from the excitation to the 2+

2 state, which is the 3α rotational
excited state of the 0+

2 state. The depth and radius of the real
potential are shown by V0S and RS , respectively. In the inelastic
channel, all the diffuseness parameters are set to 0.6 fm.

TABLE V. The same as Table IV, but for the exit 0+
2 channel. The

diffuseness parameters are set to aIV = aIS = aS = 0.6 fm. V0S and
RS are the parameters for a real potential with a surface WS form
factor.

Energy W0V RIV W0S RIS V0S RS

29.95 3.0 2.0 5.0 3.5 9.0 4.2
35.2 3.0 2.4 5.5 3.0 8.5 4.2
39.95 3.0 2.8 6.0 2.8 8.0 4.2
65.0 3.0 5.0 9.0 2.4 6.0 4.2
200.0 8.0 5.0 6.0 4.0 0.0 4.2
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