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Inclusive reaction 93Nb( �p,α) at an incident energy of 160 MeV
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The inclusive 93Nb( �p,α) reaction to the continuum was investigated at an incident energy of 160 MeV.
Emission-energy angular distributions for cross sections as well as analyzing powers were explored. A range
of scattering angles from 15◦ to 60◦ (lab.) was covered and α-particle emission energies from ≈30 MeV to the
kinematic limit were measured. As in our earlier work, the experimental distributions were compared with a
multistep direct theory combined with a knockout reaction mechanism as the terminating step in the α-particle
emission. Reasonable agreement between the theoretical predictions and the experimental double-differential
cross section and analyzing-power angular distributions were obtained.
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I. INTRODUCTION

Pre-equilibrium nuclear reactions have been studied exten-
sively over many years, as represented by a few examples
[1–3], and impressive progress in our understanding of
the basic mechanism has been made. Nevertheless, some
important details of the reaction mechanism are still obscure
and, consequently, need to be better explored. Recently it was
pointed out that at incident energies in the 100- to 200-MeV
range, proton-induced α-particle pre-equilibrium emission
seems to display an enhanced cross-section yield towards
lower emission energies compared to standard theoretical
predictions [4,5]. It was speculated that this is due to inelastic
excitations to states which subsequently undergo α-particle
decay. It would be useful to investigate this idea further,
and this is implicitly explored in the present work, which
could show the need for inclusion of an additional reaction
mechanism as postulated in Refs. [4,5].

For (p,3He) pre-equilibrium reactions in the same incident
energy range, the reaction mechanism is described fairly
accurately in terms of a series of multiple intranuclear
nucleon-nucleon collisions, which finally end in a dinucleon
pickup step to produce the emitted 3He [6–9]. The analyzing
power proves to be especially sensitive to the progression of
intranuclear collisions, and the number of steps preceding
the pickup affects the appearance of the analyzing angular
distributions very prominently. The systematic trends of the
cross section, as well as analyzing-power angular distributions
with incident and emission energy, are predicted reasonably
accurately. Although the trends with incident and emission
energy of the analyzing-power distributions differ markedly
for two target nuclei (59Co and 93Nb) which were investigated,
the predictions of the theoretical formulation clearly point to
involvement of the same basic reaction mechanism in both
cases [8]. It is reasonable to assume that the two targets are
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representative of atomic nuclei in general in their response to
the (p,3He) reaction and that reaction mechanism dependence
on target mass is trivial.

A similar multiple intranuclear scattering reaction model
has also previously been successfully tested for the 59Co(p,α)
reaction in the same range of incident energies [10]. However,
instead of a final two-nucleon pickup as in (p,3He), based on
dynamical and kinematic arguments, it was postulated that
cluster knockout would be a more likely final step in the
(p,α) process. Only experimental cross-section data, which
were to a certain extent predicted reasonably well by the
theoretical formulation, were available for the earlier studies.
Because of the greater sensitivity of analyzing power to the
reaction mechanism, it is desirable to extend the work to the
investigation of the (p,α) reaction with polarized protons as
presented in this paper. The reaction 93Nb(p,α) at an incident
energy of 160 MeV was selected as a representative choice for
this purpose.

In Sec. II the experimental setup and design considerations
are presented. Section III comprises a brief overview of the
salient features of the theoretical treatment, with a description
of the folding technique to generate optical potentials used to
calculate appropriate distorted waves for the incident proton
and the outgoing α particles. The results are presented and
discussed in Sec. IV. Finally, a summary and conclusions are
given in Sec. V.

II. EXPERIMENTAL PROCEDURE

The cyclotron facility iThemba Laboratory for Accelerator
Based Sciences (LABS), Faure, South Africa, was used in the
study. An external source fed a polarized ion beam into an
injector cyclotron which accelerated protons to a maximum
energy of 8 MeV. Further acceleration in the main separated
sector cyclotron delivered a polarized proton beam of 160 ±
0.5 MeV. The accelerator system and the experimental equip-
ment used in this study have been described elsewhere [11].

The current ( �p,α) data were collected simultaneously with
the ( �p, 3He) study reported previously [9], and we followed
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the techniques described in our earlier work very closely [7,8].
Consequently, only a brief description is given here for ease
of reference. Note that we use the symbol p interchangeably
also for polarized protons, as would be clear from the context.

Two detector telescopes, mounted inside a 1.5-m-diameter
scattering chamber, were used. Each telescope consisted of
a 500-μm silicon surface barrier detector followed by a
NaI(T�) crystal which was connected to a photomultiplier
tube. Standard �E–E particle identification techniques were
employed to select particles scattered from a target mounted
at the center of the scattering chamber. Tantalum collima-
tors, thick enough to stop scattered particles of interest
(approximately 3 mm thick with a 14-mm-diameter hole)
defined an active solid angle of 1.13 msr for each telescope.
Lighter reaction products (protons, deuterons, and tritons)
would normally penetrate the tantalum and therefore enter
the telescopes. The flux of these particles was attenuated
by brass collimators with a slightly larger hole in front of
the tantalum.

Systematic errors on the measurement of the analyzing
power were minimized by following standard methods, such
as placing the two detector telescopes at symmetric scattering
angles on opposite sides of the beam during data taking and
switching the direction of the polarization of the incident
protons from up to down at 10-s intervals.

The polarization of the beam was determined regularly by
scattering of the beam from a 12C foil in the scattering chamber
at 19◦ where the analyzing power for p+12C elastic scattering
at 160 MeV is large (0.92) and accurately known [12]. The
difference in the polarization between the two orientations
was usually less than 10%, but different values as determined
experimentally were used for the two polarization orientations
to calculate analyzing-power values. The polarization ranged
from 65 to 85% during the experiment and changed slowly as
ion source operating conditions drifted.

Energy response of the silicon surface barrier detectors was
calibrated with a 228Th α-particle source, and those of the
NaI(T�) detector elements were based on the kinematics of
the elastic-scattering reactions 1H(p,p)1H and 12C(p,p)12C
from a thin polyethylene target. These calibrations for protons
in the telescope also provide energy values for α particles if the
difference in the response of these ejectiles with the NaI(T�)
assembly is taken into account [13]. A light-emitting diode
pulser system monitored gain drifts in the photomultiplier
tubes of the NaI detectors, allowing corrections to be made
during analysis. Overall uncertainty was approximately 4% in
the α-particle energy scale.

Two self-supporting foils of natural isotopic composition
(100% occurrence of the isotope of interest) 93Nb targets which
were used. These had thicknesses of 2.6 and 8.6 mg/cm2. The
uncertainty in the thicknesses of the targets (up to 7%) is the
main contribution to the systematic error on the cross-section
data.

Standard electronics were used and data were collected
and monitored on an online system and stored for subsequent
offline replay of the data. Data were obtained for α-particles
emission energies from a threshold of ≈30 MeV up to the
kinematic limit and scattering angles from 15◦ to 60◦ (lab.)
were covered.

III. THEORETICAL ANALYSIS

Analogously to the calculation of the (p,3He) inclusive
reaction in our previous work [6–9], we also treat the (p,α)
reaction as occurring in a series of intranuclear N -N steps
preceding a final process in which the α particle is emitted.

For a (p,α) reaction in the present work, in addition
to the possibility of three-nucleon pickup, knockout has to
be considered as an important component of the reaction
mechanism. As the simplest process leading to α-particle
emission, the incident proton can knock out an α cluster (or,
alternatively, pick up three nucleons) directly from the target
in a single step. We refer to such an event as a first-step (p,α)
reaction.

In higher-order steps, final emission of an α particle
takes place after a variable number of intranuclear nucleon
collisions. In our notation a two-step reaction is symbolically
indicated as (p,p′,α) and a three-step reaction as (p,p′,p′′,α).

The theory applied to the (p,α) reaction is based on the
multistep direct theory of Feshbach, Kerman, and Koonin
(FKK) [14] for the intranuclear collisions, which lead up
to a final α-particle emission. The last step is treated in a
distorted-wave Born approximation (DWBA).

The theoretical formulation has been described extensively
in our earlier publications and references therein. However,
to highlight some subtle, but inconsequential, modifications
required for application to this study, we describe the main
expressions describing the theory in the subsection which
follows. For clarity we use a notation which is analogous to
that of Refs. [8,9]. Of course, the notation is adjusted to be
appropriate for the present application to a (p,α) reaction.

A. Differential cross sections

The double-differential cross section is written in the
standard way to emphasize its relationship to solid angle d�
and emission energy dE acceptance. This is expressed as

d2σ

d�dE
=

(
d2σ

d�dE

)1−step

+
(

d2σ

d�dE

)2−step

+ · · · , (1)

where, as mentioned earlier, the first step cross section is taken
as a direct reaction calculated in terms of the DWBA. This term
is given by

(
d2σ

d�dE

)1−step

=
∑

N,L,J

(2J + 1)

�E

dσ DW

d�
(θ,N,L,J,E), (2)

at scattering angle θ , where the summation runs over the target
states with single-particle energies within a small interval
(E − �E/2,E + �E/2) around the excitation energy E. If
the DWBA calculation is treated as a knockout, quantum
numbers N , L, and J refer to the α cluster bound in
the target, otherwise to those of the three-nucleon system
which is picked up. The differential cross sections dσ DW

d�
to particular (N,L,J ) states are calculated using the code
DWUCK4 [15].
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The multistep cross sections, which are appropriate for the
second and higher steps of the (p,α) reaction, are expressed as

(
d2σ

d�dE

)multistep

=
nmax∑
n=2

n+1∑
m=n−1

∫
dk1

(2π )3

∫
dk2

(2π )3
. . .

∫
dkn

(2π )3

×
(

d2σ (kf ,kn)

d�f dEf

)
×

(
d2σ (kn,kn−1)

d�ndEn

)
× . . .

×
(

d2σ (k2,k1)

d�2dE2

)
×

(
d2σ (k1,ki)

d�1dE1

)1−step

p,p′
, (3)

where ki , kn, and kf are the momenta of the initial, nth and
final steps. The number of reaction steps is indicated with the
symbol n, the maximum number of reaction steps is nmax, and
m is the exit mode. Therefore the cross section associated with
m is given leading to the emission of an α particle, and all
steps prior to the final step are nucleon-nucleon collisions.

Clearly, the formalism separates calculation of multistep
processes, such as one-step (p,α), two-step (p,p′,α), and
three-step (p,p′,p′′,α) reactions. As in previous work [7,8],
intermediate steps which involve neutrons, such as (p,n,α),
are ignored because we assume that different nucleons may be
treated on an equal footing in the multistep part of the reaction.
The effect of this approximation can be compensated for by
a single renormalization of the relevant (p,p′) and (p,p′,p′′)
cross sections used in the calculations. The magnitude of the
theoretical cross section is refitted to the experimental data
anyway, as will be explained later, thus simplifying the earlier
renormalization.

The theoretical (p,p′) and (p,p′,p′′) double-differential
cross section distributions which are required to calculate the
contributions of the second- and third-step processes were
derived from Refs. [10,16]. These cross-section distributions
were extracted by means of a FKK multistep direct reaction
theory, which reproduce experimental inclusive (p,p′) quan-
tities [16] on target nuclei which are close to those needed
for this work, and in an appropriate incident energy range.
Interpolations and extrapolations in incident energy and target
mass were introduced to match the specific requirements
accurately.

B. Analyzing-power distributions

The analyzing power in terms of protons polarized to a
value P+ in the positive (up) direction as defined by the Basel
[17] and Madison [18] conventions, is given by

Ay = 1

P+

(
σL − σR

σL + σR

)
, (4)

where σL and σR are the double-differential cross sections for
the emission of α particles to the left L and right R of the
incident particle beam, respectively. An analogous expression
holds when the proton polarization is flipped relative to the
scattering plane. A fully polarized beam has a magnitude of
unity.

The extension of the FKK theory from cross sections to
analyzing power is described by Bonetti et al. [19]. The
multistep expression for the analyzing power becomes

Amultistep = A1
(

d2σ
d�dE

)1−step + A2
(

d2σ
d�dE

)2−step+ · · ·(
d2σ

d�dE

)1−step+ (
d2σ

d�dE

)2−step+ · · ·
, (5)

with Ai , {i = 1,2, . . .} referring to analyzing powers for the
successive multisteps.

C. Optical potentials in the DWBA calculation

Important ingredients in the theoretical description of the
nuclear reaction properties are the optical potentials, which
take into account the interaction between projectile and target,
and between the ejectile and the heavy residual nucleus,
respectively. In general, the potentials contain volume V and
spin-orbit VSO parts, which are both complex and expressed as

U (r) = V (r) + VSO(r) L · S, (6)

where r is the relative radial coordinate, L the angular
momentum, and S the intrinsic spin of the projectile. Note
that, in the 4He case, S = 0, and therefore the spin-orbit term
falls away.

We treat the volume part of the optical potentials in the
initial and the exit channels on the same footing by application
of the hybrid nucleus-nucleus optical potential.

The hybrid nucleus-nucleus optical potential [20] has real
and imaginary parts,

U (r) = NRV DF(r) + iNIW (r), (7)

which generally depend on the radius-vector r connecting
centers of the interacting nuclei. The parameters NR and NI

correct the strength of the microscopically calculated real V DF

and imaginary W constituents of the whole potential. The real
part V DF is a double-folding potential that consists of direct
and exchange components,

V DF(r) = V D(r) + V EX(r), (8)

with

V D(r) =
∫

drp drt ρp(rp)ρt (rt )v
D
NN (s). (9)

The exchange potential is

V EX(r) =
∫

drp drt ρp(rp,rp + s)ρt (rt ,rt − s)

× vEX
NN (s) exp

[
iK(r) · s

M

]
, (10)

where s = r + rt − rp is the vector between the projectile
and target nucleons. The reduced mass coefficient is M =
ApAt/(Ap + At ), where Ap and At refer to the projectile and
target atomic mass numbers. The radial part of the nucleus-
nucleus momentum K(r) is determined as follows:

K(r) =
{

2Mm

�2
[E − V DF(r) − Vc(r)]

}1/2

. (11)
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where Vc is the Coulomb potential and m is the nucleon mass.
The quantities ρp(rp) and ρt (rt ) are their density distributions,
ρp(rp,rp + s) and ρt (rt ,rt − s) are the density matrices, which
are approximated as in Ref. [21]. The effective NN potentials
vD

NN (of CDM3Y6-type) are based on the Paris NN potential,

vD
NN (E,ρ,s) = g(E)F (ρ)

3∑
i=1

Ni

exp(−μis)

μis
. (12)

The energy and density dependencies are, respectively,

g(E) = 1 − 0.003E/Ap,

F (ρ) = C[1 + αe−βρ − γρ], (13)

ρ = ρp(rp) + ρt (rt ).

The parameters in Eq. (12) and Eq. (13) are defined in
Ref. [22].

For the potential in the p+93Nb channel, in Eqs. (9), (10),
and (13) one should exclude the respective functions ρp(rp)
together with the elementary volumes d(rp). Also, in Eqs. (14)
and (15) below, ρp(q) will not appear.

For the initial channel calculations, ρt for 93Nb was taken
as the standard Fermi form, with parameters from Ref. [23].
In the exit channel a Fermi-form density with parameters from
Ref. [24] was adopted for 90Zr, and the 4He density from
Ref. [25] was used.

The imaginary part of the optical potential W (r) in Eq. (7)
may have the same form as its real counterpart V DF or can be
calculated separately within the high-energy approximation
[26] as it was developed in Ref. [20].

The microscopic optical potential obtained in the high-
energy approximation in the momentum space has the fol-
lowing form:

UH
opt(r) = −E

k
σ̄N (i + ᾱN )

1

(2π )3

×
∫

dqe−iq · rρp(q)ρt (q)fN (q) . (14)

Here the NN total scattering cross section σ̄N and the ratio
of real to imaginary parts of the forward NN amplitude ᾱN

are averaged over the isospins of the projectile and target
nuclei. They are parameterized as given in Refs. [27,28]. The
NN form factor is taken as fN (q) = exp(−q2βN/2) with the
slope parameter βN = 0.219 fm2 [29]. In fact, we used only
the imaginary part of Eq. (14) transformed to the form

WH (r) = − 1

2π2

E

k
σ̄N

∫ ∞

0
j0(qr)ρp(q)ρt (q)fN (q)q2dq.

(15)

Details about the calculations of the hybrid optical potential
are presented in Refs. [20,22,30,31].

The hybrid optical potential as described above has already
been successfully applied, e.g., in Refs. [32–35] for the
analysis of elastic-scattering data of light exotic nuclei.

The shape of the analyzing power is rather sensitive to the
spin-orbit part of the optical potential in the initial channel.
Good agreement with the experimental data was obtained
by using for protons a Woods-Saxon shape of the real part

TABLE I. Values of the renormalization constants NR and NI in
Eq. (7) for the outgoing channel.

Eout (MeV) 158 142 130 82

NR 1.0 0.8 0.8 0.8
NI 0.5 0.1 0.1 0.1

of VSO(r). We used the parameters listed in Ref. [36]. The
renormalization constants NR and NI in Eq. (7) in the initial
channel are kept equal to unity, while their values for the exit
channel were adjusted to follow the emission-energy trend of
the experimental analyzing-power data [see Table (I)].

Our treatment of NR and NI in the exit channel as free
parameters which are fitted to the data is consistent with the
procedure followed in Ref. [34]. Note that we find a need to
use a value of NI of 0.5 at Eout = 158 MeV, as opposed to
values of 0.1 for all other sets. This is counterintuitive and
not understood at all. Clearly, the values found in our present
investigation, and the trend observed as a function of emission
energy, need further theoretical analysis and complementary
experimental studies for proper evaluation and interpretation.

D. Reaction mechanism

The mechanism of the direct (p,α) reaction has been
debated intensively over the years. For example, in Ref. [37]
the authors show that calculations assuming pickup of a triton
and knockout of an α particle equally well fit the angular
distribution and the analyzing power of the 90,92Zr(p,α)
reaction to the ground state and the first few excited states,
while in Ref. [38] the knockout mechanism is preferred for
describing transitions to the continuum.

To address this problem for the reaction which we study
we perform DWBA calculations assuming both reaction
mechanisms and compare the theoretical results with the
experimental data for the differential cross section and the
analyzing power for 158-MeV outgoing energy, where the first
step process dominates and for 130 MeV, where the second step
plays an important role. Numerically the difference between
both types of calculations lies in the form factor, and the
incoming and the outgoing distorted waves are calculated using
the same optical model potentials for protons and α particles,
respectively. The proton-triton binding potential has a Woods-
Saxon shape with geometrical parameter r0 = 1.488 fm
and a = 0.144 fm as recommended in Ref. [39], whereas
to generate the α-particle form factor we use the generally
accepted geometrical parameter values of r0 = 1.25 fm and
a = 0.65 fm. The theoretical double-differential cross sections
are scaled to fit the experimental data for Eout = 158 MeV at
low outgoing angles θ in both cases. The scaling factors are
kept unchanged throughout the rest of the calculations at other
emission energies.

In Fig. 1 we compare the results for both reaction mech-
anisms at high outgoing energy. The slope of the differential
cross section calculated assuming α-particle knockout is closer
to the experimental data, while for the analyzing power the
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FIG. 1. (Color online) Double-differential cross sections (a) and
analyzing power (b) as a function of scattering angle θ for the
93Nb(p,α) reaction at an incident energy of 160 MeV and an
α-outgoing energy of 158 MeV. Theoretical calculations assuming
a knockout mechanism are denoted by solid lines and those using a
pickup mechanism by dashed lines.

available experimental data do not provide enough information
for an exclusive choice.

For reactions with lower outgoing energies for which
the (p,p′α) process starts to dominate, like in the Eout =
130 MeV case, the difference between the predicted results
for the two mechanisms becomes more prominent, as shown in
Fig. 2. Although the indicated theoretical cross-section values
are considerably too low for both postulated mechanisms,
it should be kept in mind that the overall absolute scale
is fairly arbitrary, as will be discussed later. However, the
relative difference in cross section for the two processes is
as shown. Of course, the normalization does not directly
affect the analyzing power, which consists of a ratio of cross
sections. Clearly the comparison between the theory and the
experimental distributions appears to be somewhat better for
the knockout mechanism. Thus we will adopt the knockout
mechanism as appropriate to the rest of our study of the
93Nb(p,α) pre-equilibrium reactions.

IV. RESULTS AND DISCUSSION

Double-differential cross section and analyzing-power an-
gular distributions for the 93Nb(p,α) reaction at an incident
energy of 160 MeV are displayed in Fig. 3 for various outgoing
energies of the α particles.

Experimental data are available for outgoing energies
starting from 158 MeV (with 166 MeV as a kinematic limit due
to a positive Q value) down to about 30 MeV. We have chosen
the ones shown in the figure because they are representative for
the contribution of the different steps to the total differential

FIG. 2. (Color online) The same as in Fig. 1 for Eout = 130 MeV.

cross section and analyzing power respectively. The theory
reproduces the general trend of the experimental quantities
reasonably well, especially if we keep in mind that the accuracy
of the calculations is limited to some extent by uncertainties
inherent to the input ingredients of the theory, as implied in
Sec. III.

All the theoretical cross-section distributions were normal-
ized with a single factor extracted from the most forward
angles of the angular distribution at an emission energy Eout

of 158 MeV, for which the one-step reaction dominates, as
explained in Sec. III D. Although this procedure is based
on theoretical considerations, it is still somewhat arbitrary.
Experimental uncertainties in, for example, the emission
energy calibration would result in a systematic error in the
measured cross section which rapidly gets worse towards
the top end of emission energies. The reason is that the
energy distribution of the cross section as function of emission
energy drops very rapidly to zero as the kinematic limit
is approached, whereas it varies considerably more slowly
at lower emission energies. Our cross-section data at the
highest emission energy is already in an energy range where a
rapid variation occurs. This, combined with the experimental
uncertainty in emission energy, could affect the reliability
of the normalization procedure. Consequently, the fact that
the cross sections appear to be mostly underestimated by
the theory, especially at a lower outgoing energy, could to
a large extent be an artifact of our normalization procedure.
Of course, for relatively low emission energies there are
other processes kinematically allowed which differ from only
the ones we consider. Consequently, difficulties to reproduce
the magnitude of the differential cross section is not very
surprising. Of course, as was mentioned earlier, fortunately the
analyzing power is unaffected by most of these complications.

Nevertheless, the fact that our present calculations for
93Nb(p,α) at an incident energy of 160 MeV suggest a more
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FIG. 3. (Color online) Double-differential cross sections [(a)–
(d)] and analyzing power [(e)–(h)] as a function of scattering angle
θ for the 93Nb(p,α) reaction at an incident energy of 160 MeV and
various α-particle outgoing energies Eout as indicated. Theoretical
cross-section calculations for one step (− − −), two steps (· · · · ·),
and three steps (− · − · −) are shown, with the sums of the contribu-
tions plotted as continuous curves. The experimental analyzing-power
distributions are compared with theoretical calculations for a one-step
reaction (− − −), a one-step plus a two-step reaction (· · · · ·), and a
one- plus two- plus three-step reaction (solid lines). The experimental
data are averaged over emission energy bins of 4 MeV and statistical
error bars are shown where those exceed the symbol size.

rapid decrease of the cross section towards lower emission
energy than observed experimentally, is consistent with an
earlier study on 59Co(p,α) at the same incident energy [10].
The results of the latter work were discussed in Ref. [5] and
it was speculated that the observed phenomenon could be
an indication of an additional reaction mechanism, namely
inelastic excitation followed by sequential α-particle decay.
However, whether such a process as postulated could be
significant at emission energies as high as those of Fig. 3
still needs to be explored.

As may be seen in Fig. 3, the theory predicts that the relative
contribution of the first-step reaction decreases as the emission
energy drops, with higher steps becoming progressively more
important towards lower emission energy. This is a general
feature of multistep calculations, as was also found in our
previous work [6–9]. Although the actual step which is
dominant at a specific emission energy only influences the
shape of the cross section relatively slightly, an appreciable
contribution of higher steps affects the analyzing-power
distribution profoundly. The trend is that the analyzing power
tends towards zero at lower emission energy where higher
steps become more important.

At the incident energy of 160 MeV of the present work,
the analyzing power of the 93Nb(p,α) reaction approaches
zero very rapidly as the emission energy drops. It should be
noted that results are only shown down to an emission energy
of 82 MeV in Fig. 3, but below this outgoing energy the
analyzing power remains essentially zero, thus conveying the
same information regarding the dominant step in the reaction
mechanism.

It is noteworthy that the experimental analyzing-power
angular distributions do not follow the predicted trend as well
as would be desirable, nor are the shapes of the experimental
cross-section angular distributions accurately reproduced by
the theory. However, one should keep in mind, as mentioned
before, that the implementation of the theory suffers from
uncertainties in the input ingredients of the formulation.
Nevertheless, the overall prediction for analyzing power is
reasonable.

For reasons which were mentioned in Sec. III D, we exclude
the possible contribution of a pickup process. As may be
concluded from the results shown in Figs. 1 and 2, inclusion of
such a process is unlikely to resolve the observed problem with
the relative cross-section magnitudes as a function of emission
energy.

V. SUMMARY AND CONCLUSIONS

The reaction 93Nb(p,α) at an incident energy of 160 MeV
leading to ejectiles into the continuum of excitation was
investigated. Double-differential cross section and analyzing-
power angular distributions were measured between 15◦ and
60◦ at various emission energies.

The target nucleus was selected because it is a naturally
occurring monoisotopic nuclide which is readily available and
because earlier work suggests that the postulated reaction
mechanism should not suffer from a drastic target-mass
dependence.

The experimental results were compared with calculations
of statistical multistep formulation in which each individual
intra nucleon-nucleon collision in the sequence of steps may
be terminated with emission of an α particle. The ejectile
is assumed to originate from an α-cluster knockout in the
final stage. The theoretical predictions roughly reproduce
the angular distributions of the measured cross section and
analyzing power as a function of α-particle emission energy.
However, the trend of the absolute cross section appears to
be a problem. Fortunately, this problem does not affect the
analyzing power, which is essentially a ratio of cross sections.
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Although not producing results which provide evidence of
the reaction mechanism as clearly as our previous work on
(p,3He) reactions, the observed signatures of cross section
and analyzing power are nevertheless reasonably consistent
with those earlier conclusions. This suggests related reaction
mechanisms for (p,3He) and (p,α) reactions at comparable
incident energies. It is tempting to speculate that the cross-
section behavior points to the importance of an additional
reaction mechanism, but this interpretation is not supported
by the emission-energy trend of analyzing-power angular
distributions.

Further studies of proton-induced α-particle emission into
the continuum of outgoing energies are desirable. Additional
theoretical refinement and development would also be very
useful. In addition, experimental work at lower incident
energy, where cross sections and analyzing powers are larger,

together with polarized beams of much higher intensity, should
provide data with improved accuracy. Such lower-uncertainty
data would provide better guidance in the comparison with
theoretical predictions.
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S. V. Förtsch, G. C. Hillhouse, N. M. Jacobs, R. Neveling, F. D.
Smit, J. A. Stander, G. F. Steyn, and J. J. van Zyl, Phys. Rev. C
75, 054617 (2007).

[9] A. A. Cowley, J. J. van Zyl, S. S. Dimitrova, E. V. Zemlyanaya,
and K. V. Lukyanov, Phys. Rev. C 85, 054622 (2012).

[10] A. A. Cowley, G. J. Arendse, J. W. Koen, W. A. Richter,
J. A. Stander, G. F. Steyn, P. Demetriou, P. E. Hodgson, and
Y. Watanabe, Phys. Rev. C 54, 778 (1996).

[11] J. V. Pilcher, A. A. Cowley, D. M. Whittal, and J. J. Lawrie,
Phys. Rev. C 40, 1937 (1989).

[12] H. O. Meyer, P. Schwandt, W. W. Jacobs, and J. R. Hall, Phys.
Rev. C 27, 459 (1983).

[13] D. M. Whittal, A. A. Cowley, J. V. Pilcher, S. V. Förtsch, F. D.
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