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Investigation of collective radial expansion and stopping in heavy ion collisions at Fermi energies
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We present an analysis of multifragmentation events observed in central Xe + Sn reactions at Fermi energies.
Performing a comparison between the predictions of the stochastic mean-field (SMF) transport model and
experimental data, we investigate the impact of the compression-expansion dynamics on the properties of
the final reaction products. We show that the amount of radial collective expansion, which characterizes the
dynamical stage of the reaction, influences directly the onset of multifragmentation and the kinematic properties
of multifragmentation events. For the same set of events, we also undertake a shape analysis in momentum space,
looking at the degree of stopping reached in the collision, as proposed in recent experimental studies. We show
that full stopping is achieved for the most central collisions at Fermi energies. However, considering the same
central event selection as in the experimental data, we observe a similar behavior of the stopping power with the
beam energy, which can be associated with a change of the fragmentation mechanism, from statistical to prompt
fragment emission.
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I. INTRODUCTION

Nuclear matter equation of state (EoS) and transport prop-
erties play a fundamental role in the understanding of many
aspects of nuclear physics and astrophysics. For instance,
neutron star genesis and cooling, as well as the possible
occurrence of hybrid structures, transition to the deconfined
phase, and black-hole formation, are strongly influenced by
nuclear compressibility and viscosity [1]. Heavy ion collisions
(HIC) offer the unique possibility to create, in terrestrial
laboratories, transient states of nuclear matter in a wide range
of density, temperature, and N/Z asymmetry, thus making it
possible to access information on fundamental properties of
nuclear systems far from normal conditions. Indeed, relevant
indications on the stiffness of the EoS at suprasaturation
densities and on in-medium modifications of the two-body
nucleon-nucleon cross section have emerged from the study of
collective flows and the degree of stopping measured in heavy
ion reactions at relativistic energies [2]. It is worth mentioning
that collective flows are also widely investigated in the context
of ultrarelativistic HIC, in connection with the occurrence of
phase transitions to the deconfined quark-gluon-plasma phase
and its viscosity [3].

Generally speaking, reaction mechanisms in the
Fermi energy domain (20–50 MeV/nucleon) reflect
an interesting interplay between mean-field (one-body)
properties, dominant at low energies, and the increasing
importance of two-body correlations such as nucleon-nucleon
collisions. In particular, the combined action of nuclear
compressibility and nucleon-nucleon cross section governs
the compression-expansion dynamics typically observed in
central collisions. The reaction path can then bring the formed
excited nuclear system to low-density regions where the mean
field becomes unstable. In this case, two-body correlations
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and fluctuations are expected to provide the seeds for fragment
formation leading to the occurrence of multifragmentation
phenomena, which can be described in the framework of a
liquid-gas-type phase transition [4].

Observed first by the FOPI collaboration [5–8] and in-
terpreted as an “extra push” with respect to the thermal
pressure of an equilibrated composite system, a collective
expansion energy has been extracted from the experimental
data over a wide range of beam energy [9]. Several studies
of the multifragmentation process, and of the corresponding
role of the collective expansion, have been undertaken in
the framework of transport theories [4,10–12], and some
analyses [13–15] have pointed out the importance of this
effect on fragment formation, looking at, for example, the
balance between the amount of radial collective flow and
recombination probability [13].

However, to our knowledge, estimates of the radial collec-
tive energy present in experimental multifragmentation data
have been mostly obtained by employing statistical models
[16–18], which treat fragment production and collective
expansion effects separately [19–24]. The main justification is
the small contribution of the collective expansion energy [25]
with respect to the total excitation energy characterizing the
Fermi energy domain (around 20–30%). Nevertheless, even
for this amount of expansion, recent experimental analyses
showed a significant influence on the fragment production [26].

Particularly sensitive to the interplay between one- and
two-body effects are also observables characterizing the shape
of the reaction events in momentum space. For instance, the
so-called stopping power, which was first investigated by the
FOPI collaboration at higher beam energies [27], measures
the efficiency of the conversion of the initial beam energy
into transverse directions, as quantified by taking the ratio
of total transverse to parallel energy-based quantities. In
Ref. [28], a similar analysis was done for collisions at the Fermi
energy domain, and one result was that full stopping was not
achieved.
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The aim of this paper is to bring information on the
connection between fragmentation features and the underlying
collective expansion mechanism, with the help of a transport
theory description of the reaction dynamics. Moreover, we will
discuss the existence of the possible correlations between the
evolution of the fragmentation regime and the experimentally
observed trend for the amount of stopping reached in heavy
ion reactions at Fermi energies. A combined study of the two
features appears as a promising tool to learn about relevant
nuclear matter properties. The reaction dynamics is described
in the framework of a semiclassical microscopic transport
model, the stochastic mean-field (SMF) approach [29,30].
This choice fits the requirement to have a well-implemented
nuclear mean-field dynamics together with the effects of
fluctuations induced by two-body scatterings. Central and
midcentral collisions will be investigated, taking, as reference,
the INDRA data [19,20,31,32] for the reactions 129Xe + 119Sn
at 25, 32, 39, 45, and 50 MeV/nucleon.

The paper is organized as follows. In Sec. II we first review
the main ingredients of the SMF model, then we briefly
present the systems analysed before discussing SMF results
concerning phase diagram trajectories, prefragment formation,
and recombination. Section III is devoted to the comparison to
the INDRA data: For this purpose we first test, on simulated
events the validity of the adopted central collisions selection,
based on the flow angle observable [19]. Treating in the
same way simulations and the experimental data, we show a
comparison of fragment partition properties looking at charge
and velocities. The observables related to stopping power in
nuclear collisions are introduced and discussed in Sec. IV.
Finally, conclusions and perspectives are drawn in Sec. V.

II. RESULTS OF THE SMF MODEL

A. Description and ingredients

We consider, as a starting point, the Boltzmann-Langevin
(BL) equation for the time evolution of the semiclassical one-
body distribution function f (r,p,t):

∂f

∂t
+ p

m

∂f

∂r
− ∂U

∂r
∂f

∂p
= Icoll[f ] + δI [f ]. (1)

The coordinates of isospin are not shown for brevity.
Equation (1) essentially describes the evolution of the system
in response to the action of the self-consistent mean-field
potential U , whereas the effects of two-body correlations and
fluctuations are incorporated in the collision integral Icoll and
its stochastic part δI . The average term Icoll[f ] takes into
account the energy, angular, and isospin dependence of free
nucleon-nucleon cross sections [33].

The SMF model represents an approximate approach to
solve the BL equation, where phase-space fluctuations are
projected in coordinate space. Thus the fluctuating term δI [f ]
is implemented through stochastic spatial density fluctuations
[29,30].

We adopt the following parametrization of the mean-field
potential:

Uq = A
ρ

ρ0
+ B

(
ρ

ρ0

)α+1

+ C
ρn − ρp

ρ0
τq, (2)

where ρ denotes the density, q = n,p, and τn = 1,τp = −1.
The coefficients A = −356 MeV, B = 303 MeV, and the
exponent α = 1

6 , characterizing the isoscalar part of the
mean field, are fixed, requiring that the saturation properties
of symmetric nuclear matter ρ0 = 0.16 fm−3 and E/A =
−16 MeV/nucleon, with a compressibility of 200 MeV, are
reproduced. This choice corresponds to a Skyrme-like effective
interaction, namely SKM∗, for which we consider the effective
mass as being equal to the nucleon bare mass. As far as
the isovector part of the nuclear interaction is concerned, we
take a constant value of C = 36 MeV, corresponding to a linear
(stiff) behavior of the potential part of the symmetry energy
C

pot
sym = 36ρ/(2ρ0) [33,34].

Equaton (1) is solved adopting the test particle method.
The inclusion of fluctuations in the dynamics allows one to
address the mechanisms governed by the growth of mean-field
instabilities, such as spinodal decomposition, which lead to a
multifragmentation process [4]. The products generated by the
reaction dynamics are reconstructed from the one-body density
distribution by applying a coalescence procedure, connecting
nearby cells with a density larger than a cutoff value. At the
end of the dynamical stage (i.e., at the so-called freeze-out
time) the primary fragments are still hot. Hence the dynamical
events are plugged in a statistical deexcitation code to get
the properties of the final reaction products. We adopt the
SIMON code [35], which describes the in-flight secondary
deexcitation through the Coulomb field. A drawback of our
mean-field-based approach is that the production of light
charge particles (Z < 3, A > 1) is not well described. Indeed
the primary yield of such particles is largely underesti-
mated in the code, thus favoring free nucleon emission.
In the following we will concentrate on the properties of
intermediate mass fragments (IMF) with charge (Z) greater
than 4.

B. Details of the calculations

We performed, for the system 129Xe + 119Sn, two runs of
the calculation as follows.

(i) The first one is dedicated to central collisions. The
range of impact parameter (b) is [0;4] fm by a step of
0.5 fm, the beam energies are 25, 32, 35, 39, 45, and
50 MeV/nucleon. For the lowest beam energies (25 and
32 MeV/nucleon), the possible contribution of larger
impact parameters, up to b = 6.5 fm, is considered.
We use 30 test particles per nucleon and run 1000
events for each system in a 40 × 40 × 40 fm3 box until
t = 400 fm/c.

(ii) The second run is dedicated to the investigation of the
stopping power. We take the same beam energies and
enlarge the impact parameter range b ∈ [0.5; 6.5] fm.
We run 100 events for each system in a 80 × 80 ×
80 fm3 box until t = 440 fm/c.

We consider two values for the density cutoff employed
in the coalescence procedure: 0.03 and 0.09 fm−3. The first
value corresponds to the standard parameter used in the model
[33]. According to this choice, all regions with density lower
than 0.03 fm−3 (about 1/5 of the saturation density) are
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associated with free nucleon emission. The large cutoff density
of 0.09 fm−3 is used for exploratory purposes. Indeed, it allows
one to identify high-density peaks (a kind of early recognition
of fragments) even at early times, when the system is still
rather compact, and to investigate the recombination effects
during the expansion phase. The coalescence procedure is
applied at each step of 20 fm/c from t = 0 fm/c to follow
the evolution of the composite system up to fragmentation,
and deduce properties such as density and excitation energy.
Thus we have access to the corresponding trajectory followed
by the composite system in the nuclear matter phase diagram
and to the properties, in both position and velocity space, of
the formed fragments. The freeze-out time, defined as the time
when the primary fragments are well formed and the nuclear
interaction among them is almost negligible, corresponds to
t ≈ 260 fm/c. The subsequent propagation in the Coulomb
field is treated inside the SIMON code; 20 SIMON decays per
SMF event are performed.

C. First stage of the collision: Trajectories of the composite
system in the phase diagram

We address the time evolution of the hot composite sources
formed in central collisions (b = 0.5 fm). Such collisions
are characterized by a compression phase due to the initial
collisional shock, with a subsequent expansion and fragment
formation. The role of the compression and expansion phases
is studied by looking at the mean trajectory of the composite
source in the excitation energy (E∗)-density (ρ) plane. E∗ rep-
resents the thermal excitation energy of the composite source,
which is evaluated by subtracting the kinetic energy associated
with the Fermi motion (where the Fermi momentum depends
on the local density) from the total kinetic energy. Density
is normalized to the value ρinit = 0.10 fm−3, corresponding
to the average density of the colliding nuclei in their ground
state. Such a trajectory is plotted in Fig. 1(a), for the reaction
at 45 MeV/nucleon.

From these trajectories, we extract the maximum density
(ρmax) reached by the system and the maximum radial
expansion energy (E0), corresponding to the time when the
system returns to normal density, just before the beginning
of the expansion phase. To extract the radial expansion
energy [14], we use the radial velocity [Eq. (3)] profile of
the ensemble of test particles belonging to the composite
source and apply a fit procedure using Eq. (4). An example
of such a profile is shown in Fig. 1(b). After extracting
the root-mean-square radius [R0, Eq. (5)] of the test-particle
distribution, we then obtain E0 (in MeV/nucleon), as written
in Eq. (6)

βrad =
�β · �r
‖�r‖ , (3)

βrad(r) = a · r + b, (4)

R2
0 =

∑
k

Akr
2
k

/ ∑
k

Ak, (5)

E0 = 1

2
mu β2

rad(r = R0). (6)

In the equations above �β denotes the local velocity field, Ak

is the number of test particles located at the distance rk , and
mu is the unified atomic mass unit. In Fig. 1(c) the extracted
values are shown for all simulated bombarding energies (from
25 to 50 MeV/nucleon), as a function of the maximum
density reached by the composite source. The radial expansion
energy is normalized to the available kinetic energy in the
center of mass of the reaction. The almost linear dependence
indicates that to first order the potential energy associated
with the compression of the system is converted into radial
expansion energy in a similar way. However, it seems that
from Eproj = 39 MeV/nucleon we see a transition with more
efficiency to convert the initial compression to a subsequent
expansion. We also notice that, for the highest energy, the
radial expansion energy reaches 30% of the available kinetic
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FIG. 1. (Color online) Left panel: Mean trajectory in the density (ρ)-excitation energy (E∗) plane; each black marker stands for a time
from t = 0 to t = 260 fm/c by a step of t = 20 fm/c. The markers indicate the mean values while red scatter plots indicate the population
for the set of events. Middle panel: Mean evolution of density (ρ, red circles) and radial velocity (βrad, black squares) as a function of the
distance from the center of the source (r); the continuous line indicates the results of the fit procedure of the radial velocity profile [Eq. (4)] and
the vertical dashed line indicates the value of the root-mean-square radius of the source [Eq. (5)]. Right panel: Correlation between the radial
expansion energy [E0, see Eq. (6)] and the maximum density (ρmax) reached by the source during the compression phase; each point stands for
each reaction energy from 25 to 50 MeV/nucleon. For normalization of observables see text.
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TABLE I. From left to right: Expansion energy at the time when the system goes back to normal density, after the compression phase (see
Sec. II C for details). SMF calculation at t = 260 fm/c. Expansion energy with associated root-mean-square radius of fragment distribution in
r space. Estimation of the missing expansion energy using experimental fragment velocities as a reference (see Sec. III C for details). The last
column displays the expansion energy values added as a free parameter in the simulation done by the authors of Ref. [23].

Eproj E
ρ=ρinit
0 (MeV/nucleon) ESMF

0 (MeV/nucleon) RSMF
0 (fm) δE0 (MeV/nucleon) [23] (MeV/nucleon)

39 1.65 0.26 6.4 0.39 0.9+0.45
−0.45

45 2.73 0.65 10.4 1.04 1.1+0.55
−0.55

50 3.30 0.92 12.7 1.82 1.7+0.20
−0.55

energy, which is in good agreement with the experimental
estimates deduced from the multifragmentation data [9]. The
absolute values are also reported in Table I (see Sec. III.C).
After this direct evaluation of the collective radial expansion
we will now focus on the production of fragments and its time
scale.

D. Expansion phase, nascent fragment partition, and
recombination effects

When the hot expanding source reaches the low-density
regions, density fluctuations start to play an important role.
Indeed they are amplified by the unstable mean field, leading
to the possibility to observe multifragmentation. Multifrag-
mentation is characterized by a simultaneous production of
many fragments (defined in this work as elements with charge
Z � 5). The excitation energy required for the onset of multi-
fragentation has been derived from comparisons to statistical
models [36–38], and more recently, by measuring the fragment
emission time using model-independent Coulomb chronome-
try [39]. These studies showed that multifragmentation occurs
above E∗ = 4 MeV/nucleon, which corresponds to a beam
energy of 25 MeV/nucleon for the Xe + Sn central collisions.
However, in SMF calculations the multifragmentation regime
is achieved above Eproj = 39 MeV/nucleon. At lower energies,
the fragments produced in the calculations mainly come from
secondary decay processes.

As an illustration, we show in Fig. 2(a), the mean evolution
with time of the multiplicity of the primary fragments (Mfrag)
identified through the coalescence procedure for two beam en-
ergies, 35 MeV/nucleon (full symbols) and 50 MeV/nucleon
(open symbols), respectively, below and above this threshold.
For each beam energy, the two curves stand for two values
of the density cut (ρcut) used in the coalescence procedure:
The normal one (0.03 fm−3, black squares) and a greater one
(0.09 fm−3, red triangles), aiming at an easier recognition of
fragments in the case of compact configurations.

Let us consider the normal density cut (0.03 fm−3). At
35 MeV/nucleon, the mean fragment multiplicity increases
slowly up to Mfrag ∼ 1.7. At 50 MeV/nucleon, fragments are
produced quickly and the multiplicity reaches its maximum
(Mfrag ∼ 6) around t = 240 fm/c. To go more into the details
of the fragment production during the dynamical stage, we
now investigate the evolution of Mfrag with ρcut = 0.09 fm−3.
At 50 MeV/nucleon, a similar evolution is observed, but
faster by about 60–80 fm/c. The main difference concerns
Eproj = 35 MeV/nucleon: High values of Mfrag compatible
with multifragmentation are observed around t = 120 fm/c
(i.e., on short time scales). Then the multiplicity decreases
and reaches the values corresponding to ρcut = 0.03 fm−3 at
larger times. This indicates that, during the expansion phase,
some prefragments are formed, but they do not survive and
recombine, leading to the observation of one or two big
fragments in the exit channel.
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FIG. 2. (Color online) Left panel: Multiplicity of the fragments’ (Mfrag) time evolution for two density cutoffs (black squares and red
triangles, respectively, for ρcut = 0.03 and 0.09 fm−3) and for two beam energies (full and open symbols, respectively, for Eproj = 35 and
50 MeV/nucleon.). Middle panel: Evolution with beam energies of the maximum value (Mmax) reached by multiplicity of fragments for the
two density cutoffs. Right panel: Evolution with beam energies of time (Tmax) when the maximum of fragment multiplicities is reached for the
two density cutoffs.
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This transient state consisting of nascent partitions that
then recombine is observed from Eproj = 32 MeV/nucleon.
To extract its properties, we search event by event for the time
(Tmax) where the number of fragments reaches its maximum
value or saturates (Mmax) and then compute the mean values.1

In Figs. 2(b) and 2(c), the evolution of these two quantities
is shown for the two ρcut values for Eproj between 32 and
50 MeV/nucleon. We see that by using ρcut = 0.09 fm−3,
significant values of the multiplicity are achieved (3.5–6) even
at low energy, corresponding to nascent fragment partitions.
For the standard ρcut = 0.03 fm−3, multifragmentation events
are dominant above 39 MeV/nucleon. Indeed, increasing
the beam energies, we observe closer values for the two
density cuts. In Fig. 2(c), the time (Tmax) associated with the
maximum multiplicity is plotted. It exhibits an opposite trend
for the two cutoffs and the values converge with increasing
beam energies. For ρcut = 0.09 fm−3 and lower energies, very
short times are observed, indicating that the recombination of
nascent partitions is rather fast. However, at higher energies
time scales are longer, but coherent with the picture of a slower
continuous evolution towards the final fragment partitions in
the exit channel.

We conclude that the density fluctuations in the low-
density composite system are sufficient to lead to prefragment
formation at early times. From this common stage, two
scenarios are observed: Nascent partitions recombine into a
composite source or survive leading to multifragmentation.
The amount of the collective radial expansion appears to
be the main discriminator. The shift of the multifragmentation
threshold towards higher beam energies, as compared to the
experimental results, indicates an underestimation of the radial
expansion. As will be shown in the next section, fragment
velocities are underestimated also when multifragmentation
is observed. These observations are linked to the known
limitations of semiclassical models, with respect to a full
quantum treatment: Indeed semiclassical models are char-
acterized by a reduced capability of the excited nuclear
systems to keep particles inside the potential well due to the
lack of quantum reflection effects [40]. Instead of expanding
under the effect of the thermal pressure, the hot system
generally emits a large number of particles, reducing its
excitation energy and temperature. To quantify the damping of
collective flow, we go now into a realistic comparison between
the SMF + SIMON outputs and INDRA multifragmentation
data.

III. COMPARISON TO EXPERIMENTAL DATA

A. Simulated cross section and freeze-out time

We now present a comparison between SMF calculation
outputs and INDRA data obtained from selected central
collisions. We will seek, in the experiment and in the
simulations, for the events that correspond to the disassembly
of a unique composite source (denoted as “fusion” events

1It has to be noted that to compute the maximum multiplicity and
associated-time-only events having, at a given time, two or more
fragments are taken into account.

in the following). To do so, we consider SMF simulations
mainly in the impact parameter (b) range between 0.5 and
4 fm. In the following we will show that for beam energies
above 39 MeV/nucleon this range is sufficient to select
all fusion events while, for lower energies, fusion events
contribute also at a greater impact parameter. Starting from
a flat b distribution and taking the total reaction cross section
given by the Kox formula [41], we apply a renormalization
to mimic the typical triangular distribution of the impact
parameter. For the considered impact parameter range, it
corresponds to around 10% of the reaction cross section.2

As stated above, we consider that freeze-out is achieved at
time t = 260 fm/c. A this time, for fusion events at beam
energies above 39 MeV/nucleon, fragment production and
relaxation in momentum space is almost achieved in SMF.
The excitation energy (E∗) and density (ρ) of the primary
fragments are independent of their charge, with mean values
between 3.4 and 3.8 MeV/nucleon for E∗ and 1.0 and 1.1
for ρ/ρinit. The angular momentum values are between 0
and 30 �. In the SIMON code, the primary hot fragments are
assumed spherical and at normal density. These assumptions
are thus reasonable for fusion events at beam energies above
39 MeV/nucleon. For the lowest energies, the time evolution
indicates that SMF events that do not break into pieces are not
completely relaxed in r space and the passage between SMF
and SIMON could lose some coherency. In any case, for the
present work, the main goal is to compare to the experimental
data the cases when complete multifragmentation is achieved
and we take t = 260 fm/c as the freeze-out time for all energies
and all impact parameters. For each SMF event, we perform
20 SIMON deexcitations and obtain a comparable set of data
to study the central collisions. The first step is to test the
assumptions made in the data to select the so-called central
collisions.

B. Selection of central collisions in SMF + SIMON

To study the fragmentation properties of hot primary
sources in the experimental data one has to focus on the
most central collisions (low impact parameter range) and try
to extract them from the entire set of collected reactions.
Before that, a preliminary selection has to be made on the
total detected charge [Ztot, Eq. (7)] in the experimental events.
We keep only the so-called complete events, with Ztot greater
or equal than 90% of the total charge of the system (104).
The fragment properties of the selected set of events are
compared directly to the results of the simulations, without
filtering. We will focus in the following on the selection based
on the orientation of events in momentum space, which has
been widely used by the INDRA collaboration [19,20,31]. We
calculate event by event the kinetic energy tensor [Eq. (8)]
of the fragments. From its eigenvalues, an ellipsoid is defined
that describes the matter distribution. In this way the flow angle
[θflow, Eq. (9)], is defined as the angle between the main axis

2The reaction cross section values are in the range [5.7;6.0]
barn, with an associated maximum impact parameter in the range
[13.4,13.8] fm.
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FIG. 3. (Color online) Left panel: Distributions in mb of the flow angle cosinus (cos θflow) distribution [black line distribution is for
SMF + SIMON events and the three colors stand for the relative contribution of three impact parameter (b) ranges]. Black squares distribution
is for INDRA data after normalization to the simulated cross section (see text for details). Middle panel: Probability for each impact parameter
(b) that the simulation events fulfill the condition θflow > 60◦. Right panel: Cross section contribution of each impact parameter to the selected
sample of events.

of the ellipsoid �e3 and the beam direction �k

Ztot =
Mtot∑
i=1

Z(i), (7)

Qij =
Mfrag∑
ν=1

p(i)
ν p

(j )
ν

mν(γν + 1)
, (8)

θflow = arccos( �e3 · �k) ∈ [0; 90◦]. (9)

In the equation, mν and pν denote the fragment mass and
momentum, and γ the Lorentz factor. The main justification
of the use of this observable is the following: An equilibrated
system that undergoes multifragmentation will produce an
isotropic distribution of fragments leading to a flat distribution
for the cos θflow observable while a system that keeps a
memory of the entrance channel favors orientation along
the beam axis and will produce a distribution peaked at
cos θflow = 1.

In Fig. 3(a) flow angle distributions are shown for SMF
+ SIMON (black line) and INDRA events (black squares)
for Eproj = 45 MeV/nucleon. The data are normalized to the
distribution of simulated events, using the ratio of the cross
section of a posteriori selected events (see Table II). The
good agreement of the shape indicates a good reproduction
of the topology of events by SMF. The distribution is made
from two components: The most central collisions (blue area)
produce a rather flat distribution, while a more forward-peaked
distribution is due to more peripheral collisions (green and
purple areas). In the experimental data, the binary collisions are
rejected by the requirement on the total detected charge. This
is the reason why considering impact parameters below 4 fm
in the simulations is sufficient to reproduce the experimental
flow angle distribution. In the following, we apply the same

criterion to the simulation outputs as for experimental data:
θflow > 60◦.

In Figs. 3(b) and 3(c), the effects of the selection on the
simulated events statistics in terms of probability and cross
section are shown. Looking first at the evolution of probabil-
ities with the impact parameter, two regimes appear located
below and above 39 MeV/nucleon. For higher energies, the
probability that events are selected becomes negligible above
b = 1.5 fm, indicating a rather sharp transition between fusion
and binary collisions. Moreover, it has to be noted that, for
b = 0.5 fm, events with perpendicular orientation with respect
to the beam axis (cos θflow = 0) are favored, indicating a full
stopping. Concerning lower energies, fusion events are also
produced in midcentral reactions (b∈ [3; 6] fm) that explain the
important part of the selected events. Indeed mean-field-based
approaches tend to overestimate mean-field dissipation and
orbiting effects. Instead of reseparating after a short interaction

TABLE II. Second and third columns: Cross sections in mb
of selected SMF + SIMON and experimental INDRA events. Val-
ues for SMF + SIMON are scaled to the experimental value at
Eproj = 45 MeV/nucleon (see text for details). Three last columns:
Probabilities that the multiplicity of fragments are greater than or
equal to 3 for SMF primary events, SMF + SIMON final events, and
experimental INDRA events.

Eproj σθflow>60◦ (mb) PMfrag�3

SMF + SIMON INDRA SMF SMF + SIMON INDRA

25 39.3 18 0.0 0.64 0.94
32 30.4 4.3 0.0 0.58 0.98
39 3.3 2.3 0.45 0.73 0.98
45 1.9 (30.3) 1.9 0.98 0.98 0.99
50 1.7 1.8 1.00 1.00 0.98
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FIG. 4. (Color online) Comparison between INDRA (black full squares) and SMF + SIMON (full red line) data. The same θflow cut is
applied to select central collisions. Left panels: Evolution with beam energy (Eproj) of the mean values of fragment multiplicity (Mfrag, top)
and charge bound in fragments (Zfrag, bottom); error bars indicate the standard deviation of distributions. Middle panels: Distribution of the
fragment multiplicity (Mfrag, top) and charge bound in fragments (Zfrag, bottom). Right panels: Charge distribution of the biggest fragment
(Zmax, top) and of the other fragments (Zrest, bottom). For the experimental distributions, the Y -axis scale is in mb, and calculations are scaled
on it.

time, the projectile and target stay stuck and produce high spin
composite systems. For Eproj = 39, 45, and 50 MeV/nucleon,
the chosen impact parameter range b ∈ [0.5; 4.] fm is sufficient
to collect all events that fulfill the condition θflow > 60◦
while for Eproj = 25 and 32 MeV/nucleon, a wider range is
necessary.3

In the first part of Table II, we report the total cross section
of the selected events, as observed in the data and in the
simulations. Since only almost complete events are retained in
the experimental data analysis, the associated cross section
depends on the detection efficiency. Cross sections in the
simulations have to be normalized to get comparable values.
We consider the beam energy Eproj = 45 MeV/nucleon, where
the simulations (SMF + SIMON) provide a good description of
the data: From the corresponding cross section values, in the
data (1.9 mb) and in the simulations (30.3 mb), we define a
normalization factor as the ratio between the two. This factor
is used in Figs. 3 and 4. After this renormalization, the cross
section values for the highest energies are close to 2 mb. For

3For Eproj = 25 MeV/nucleon, the maximum of the selected cross
section distribution is located at b = 5 fm.

lower energies, the overestimation of simulated cross sections
is coherent, with the contribution coming from the midcentral
reactions mentioned before.4

The first step to evidence multifragmentation processes in
the simulations is the presence of events with Mfrag � 3, at
the primary level. We report in the second part of Table II the
probability that events fill this criterion (PMfrag�3 ). The fourth
and fifth columns stand for SMF primary events and SMF +
SIMON final events. The entire fragment production for Eproj =
25 and 32 MeV/nucleon comes from the sequential splitting
calculated by the SIMON code. The greater values of PMfrag�3

for 25 MeV/nucleon, with respect to 32 MeV/nucleon, is
due to the exploration of high spin regions by the composite
system in the midcentral reactions. Indeed such exotic events
are less important for Eproj = 32 MeV/nucleon. For Eproj =
39 MeV/nucleon, half of the events are multifragmentation
events while for greater energies full multifragmentation is
achieved. The last column reports the same information for

4The overestimation is less important for 25 MeV/nucleon than
32 MeV/nucleon because, for 25 MeV/nucleon, the INDRA detector
is more efficient to detect the so-called complete events.
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the INDRA data: The probability is close to 1 on the entire
considered beam energy range.

C. Fragment charge and velocity distributions for Eproj = 39,
45, and 50 MeV/nucleon

In the following we will compare fragment properties, as
given by the SMF + SIMON simulations, to the INDRA data.
We will focus on the comparison for the beam energies 39,
45, and 50 MeV/nucleon, where SMF calculations lead to
multifragmentation events.

Figures 4(a) and 4(d) show the evolution of the final
fragment multiplicity (Mfrag) and the total charge bound in
fragments (Zfrag) with beam energy. The error bars indi-
cate the standard deviation of the distributions. At Eproj =
39 MeV/nucleon, we see that multiplicity is still underes-
timated in SMF, but becomes fully compatible with data
for higher energies. The average Zfrag values are in good
agreement with the data at all energies. However, it should
be noted that more stringent constraints on the completeness
of the selected events could lead to larger experimental values.

For both observables, the width of the distribution is
underestimated in SMF and the general trend is that the
high value tail of the distributions is less well reproduced
[see Figs. 4(b) and 4(e), where these distributions are shown
for Eproj = 45 MeV/nucleon)]. This indicates that the most
explosive events are less present in the SMF calculations,
pointing to a too intense primary nucleon emission during the
fragmentation process. In Figs. 4(c) and 4(f) are plotted the
charge distribution of the biggest fragment (Zmax) and of all
the other fragments (Zrest), at 45 MeV/nucleon, as obtained in
the simulations and in the data. The comparison is rather good,
showing that the sharing of charge among fragments is well
managed by the SMF approach. This feature is all the more
important, as the good reproduction of the whole distribution
of the charge of the biggest fragment is mandatory in the study
of the signature of the phase transition or critical phenomena
done in experimental analyses [42,43].

In the following we discuss fragment kinematic proper-
ties, focusing on the radial flow, which, as was shown in
Ref. [44], is underestimated in SMF calculations. To undertake
a quantitative analysis, we present in Fig. 5, the fragment
mean velocity as a function of the fragment charge. Three
profiles, calculated before (t = 260 fm/c in SMF) and after
the Coulomb propagation (SMF + SIMON), and finally the
experimental one (INDRA), are displayed. We also represent
the average radial distance of fragments, evaluated at t =
260 fm/c. The hierarchy observed for the radial distance and
the velocity is the same: The largest charge is associated with
the smallest distance and velocity. The velocity and distance
trends have a similar slope after the Coulomb propagation,
whereas the slope of the SMF velocities is lower, indicating
the impact of Coulomb effects on the final (SMF + SIMON)
distribution. From the radial distance and velocity SMF
profiles, the radial expansion energy [ESMF

o , Eq. (6)] can
be extracted, using the same method described in Sec. IIC.
The values are reported in Table I (second column). The
comparison to the values measured at the early stages of
the expansion (first column) indicates a decrease by a factor
between 4 and 8, depending on the beam energy. The values of
the root-mean-square radius [R0, Eq. (5)] are also reported. To
estimate the missing radial energy (δE0) in the calculations,
we adopt the following procedure. We consider the average
charge corresponding to the distance R0 (the horizontal and
vertical dashed lines in Fig. 5 indicate these values) and we
evaluate the Coulomb contribution to the radial energy as
E(clb) = E

(SMF+SIMON)
kin − E

(SMF)
0 , where E

(SMF+SIMON)
kin is the final

kinetic energy, per nucleon, for the charge considered. As the
trend of the velocity profiles for the SMF + SIMON and INDRA
data is similar, the charge partitions are well reproduced and the
fragment spatial distribution at freeze-out is well described by
SMF [32], thus the final Coulomb repulsion should contribute
in the same way to the fragment velocity spectra. Then,
knowing E(clb), from the experimental kinetic energies one
can deduce the corresponding kinetic energy at freeze-out
and estimate the missing radial energy (δE0) in SMF. The
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FIG. 5. (Color online) From left to right: Energies 39, 45, and 50 MeV/nucleon, the same θflow cut is applied to select central collisions.
Evolution of the mean values of velocity (β in c unit) of fragments with respect to their charge (Z): black full squares are for INDRA data,
dashed red line for SMF data at t = 260 fm/c, and full red line for SMF + SIMON data. In addition the blue line shows the evolution of the
mean values of the distance of fragments (r in fm, right axis) with respect to their charge (Z). The horizontal dashed blue line indicates the
value of the root-mean-square radius of fragment distribution in r space (R0 in fm) at t = 260 fm/c and the vertical line indicates the value of
the charge of the fragments located, on average, at this position.
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FIG. 6. (Color online) Left panel: Evolution of total multiplicity (Mtot) with the impact parameter. Middle panel: For Eproj =
45 MeV/nucleon, correlation between the isotropic ratio (RE) and Mtot in black contours (logarithmic scale), the full red triangles are
the deduced profile. The profile for b = 0.5 fm is plotted in blue circles. The vertical violet dashed line indicates where the Mtot cut is performed
(see text for details). Right panel: Evolution with beam energies (Eproj) of mean values of RE for b = 0.5 fm (blue line) and for events selected
using the Mtot cut (violet line). INDRA data, taken from [28], are plotted in black squares.

values obtained are also reported in Table I. Estimates of radial
energies performed by Piantelli and co-workers [23] are added
in the last column of the table. It is worth noting that the
simulation developed by the authors of Ref. [23] is based on the
same experimental data and allow one to constrain the freeze-
out configuration, treating the radial expansion as a parameter.
We observe that the values obtained by the authors of Ref. [23]
are in good agreement with the δE0 derived from our analysis.

Putting together all the results shown in Secs. II and III, we
clearly observe in the SMF calculations a transition between
sequential deexcitation and full multifragmentation around
39 MeV/nucleon. At lower energies, the radial expansion
energy is not sufficient to bring the observed nascent partitions
to a final multifragmentation of the system. At the same
energies, fusion and orbiting effects are overestimated at larger
impact parameters. Two features can explain this behavior.
The additional expansion driven by the thermal pressure is not
well treated. Second (but related to this), the expansion phase
of the system, where fluctuations should develop, could be
too dissipative in terms of nucleon emission. For instance,
for the reaction at 50 MeV/nucleon we observe that our
calculations overestimate, by about a factor of 2, the proton
yield due to more abundant pre-equilibrium nucleon emission,
whereas the yield of charges Z = 2–4 is underestimated by
a factor of 2. This problem can only be partially cured
by an improved description of many-body correlations and
fluctuation dynamics in semiclassical approaches [45]. In any
case, we believe that the analysis considered here, which
couples a detailed study of the ingredients and limitations
of the model to a realistic comparison of observables, should
improve our comprehension of the role of the radial expansion
energy along the multifragmentation process.

IV. STOPPING POWER ANALYSIS: COMPARISON
BETWEEN SIMULATIONS AND DATA

The stopping power in nuclear collisions measures the
efficiency of conversion of the initial beam energy into

transverse directions and it is a useful tool to investigate the
interplay between mean-field (one-body) properties and two-
body correlations such as nucleon-nucleon collisions. This
observable has been experimentally investigated at relativistic
[27] and intermediate [28] beam energies. At relativistic
energies [27], maximum stopping is reached between 0.2
and 0.8 GeV/A for heavy systems (Au + Au), with a shift
to higher energies for smaller systems. In coincidence, a
maximum side-flow is also measured, making coherent the
picture of the initial beam energy converted into transverse
energy.

We will now discuss the stopping analysis on the Xe +
Sn system at intermediate energies. The authors of Ref. [28]
aimed at measuring the stopping power in nuclear systems
formed in heavy ion symmetric collisions. They adopted the
isotropy ratio [RE , Eq. (10)] as a related observable and used
the total charged particle multiplicity (Mtot) to sort the events
according to their degree of dissipation:5

RE = 1

2

∑Mtot
i=1 E

(i)
⊥∑Mtot

i=1 E
(i)
//

∈ [0; ∞[, (10)

where E// and E⊥ denote, respectively, the parallel and trans-
verse energy of the detected particles. For each beam energy,
the events corresponding to the largest multiplicity (Mtot)
region, where 〈RE〉 is rather constant, are considered. Then
the associated average RE value is extracted. The evolution of
RE , as a function of the beam energy, is reported in Fig. 6(c)
(black full squares). Starting at Eproj = 12 MeV/nucleon, a RE

value close to 1 is observed, indicating a complete stopping,
whereas, increasing the beam energy, the ratio decreases and

5In this work and related ones, the isotropic ratio is also computed
with the linear momentum Rp = 2/π

∑Mtot
i=1 p

(i)
⊥ /

∑Mtot
i=1 p

(i)
// . To keep

it simple, we only use in the present analysis the RE ratio and discuss
the results and comparisons assuming that these two ratios give the
same quantitative results.
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reaches a minimum, around 0.55, at 40 MeV/nucleon. A small
increase to 0.6, at 100 MeV/nucleon, is finally observed. From
these results, it was argued that, in the Fermi energy domain,
stopping is not achieved because mean-field dissipation is not
sufficient and that, starting from 40 MeV/nucleon, the effect of
in-medium nucleon-nucleon collisions becomes predominant,
increasing the degree of stopping.

Recently, results from isospin-dependent quantum molec-
ular dynamics (IQMD) calculations, performed for the same
reactions, have been reported in Ref. [46]. The authors applied
the same selection as considered in the data analysis to the sim-
ulated events, and showed that this leads to impact parameter
mixing. Moreover, in Ref. [46] it was stressed that fragment
configurations, rather than the nucleon phase space, have to
be used to compare to the experimental results. Such a link
between clusterization and stopping evaluation is also reported
in Ref. [47]. Finally, a qualitative agreement with the general
trend of the data is observed, however, the minimum of RE

appears at higher energies (with a shift of 20 MeV/nucleon)
and the rise at beam energies of 100–150 MeV/nucleon is more
pronounced.

In the following we will present the results obtained
within the SMF + SIMON approach. From the flow angle
distribution studied in the previous section (Fig. 3), we have
already observed the favored prolate orientation for events
at small impact parameters, indicating the presence of full
stopping and a loss of the entrance channel memory. To
complete this observation, we perform an analysis similar
to the one in Ref. [28], on the impact parameter range [0.5;
6.5] fm.

First, in Fig. 6(a), we show the evolution of Mtot (which
excludes pre-equilibrium particles) with the impact parameter
(b). A different behavior is observed for energies below and
above 39 MeV/nucleon with first an increasing and then a
decreasing trend of Mtot with respect to b. At small beam
energies, the largest Mtot is observed at large impact parameters
(b = 5–6 fm), corresponding to high spin sequential splitting,
whereas the opposite holds at high beam energies. We notice
that at the “transition energy” (39 MeV/nucleon) we also
observe a transition, at small impact parameters, from the se-
quential decay of heavy residue to multifragmentation events.
Figure 6(b) shows the correlation between RE and Mtot, as pro-
posed by the authors of Ref. [28], at Eproj = 45 MeV/nucleon.
We observe the same trend, as seen in the data, for the global
population of the diagram (black contour plot) and for the
mean (red full triangles): The saturation of RE for the highest
Mtot values and large fluctuations for multiplicities around half
of the maximum-reached value. However, this picture is valid
for beam energies above 39 MeV/nucleon, whereas, at lower
energies, the trend of RE as a function of Mtot is rather flat in the
considered impact parameter range. Indeed, low multiplicity
corresponds to small impact parameters [see Fig. 6(a)] and at
larger impact parameters (large Mtot in this case) the dynamics
is still rather dissipative, thus RE is around 1 in all cases.

We also plot in Fig. 6(b) the same correlation just
considering b = 0.5 fm (blue points). We observe that a wide
Mtot region is populated and that RE values are greater than

1, indicating that full stopping is achieved for the most central
collisions.6

In Fig. 6(c), we report the RE mean values, corresponding
to b = 0.5 fm, for all beam energies (blue lines). An almost
flat behavior is observed. To perform a similar Mtot cut in
the SMF events, applicable to the whole beam energy range,
we consider the value of Mtot above which the cross section
of the selected events is equal to the value associated with
b = 0.5 fm (which corresponds to 3% of the simulated cross
section). In Fig. 6(b), the violet vertical line indicates the Mtot

cut obtained at Eproj= 45 MeV/nucleon. The violet line in
Fig. 6(c) represents the evolution of RE with beam energies,
according to this selection. The results from Ref. [28] are
reported as black full squares. At the lowest energies, the
values are still close to 1, indicating important dissipative and
orbiting effects at large impact parameters. Then, increasing
the beam energy up to 39 MeV/nucleon, RE decreases,
but this is due to the impact parameter mixing and to the
contribution of intermediate impact parameters. In fact,
as one can see in Fig. 6(a), at 39 MeV/nucleon the total
multiplicity exhibits a rather flat behavior with b. Clearly,
for midcentral collisions, the reaction dynamics becomes
more transparent, leading to a reduction of RE . The impact
parameter mixing is less pronounced at beam energies larger
than 39 MeV/nucleon, where the total multiplicity decreases
significantly with b. This leads to the small increase observed
for RE in Fig. 6(c). In the low beam energy region, the results
overestimate the data due to the overestimation of mean-field
dissipation. In the high beam energy region, where complete
multifragmentation is achieved, SMF events reproduce well
the experimental data, with values between 0.5 and 0.7.
We also observe a systematic small underestimation of the
mean values of RE in the calculations, with respect to the
experimental data. As there is a difference in the definition
of Mtot in this work (where pre-equilibrium particles are
excluded) and in Ref. [28], we have checked if similar events
are actually selected in the data and in the calculations. We
present in Fig. 7(a) a comparison of charge distributions for
beam energies above 39 MeV/nucleon. One can see that a
rather good agreement is obtained. The absence of heavy
fragment production in the calculations is due to the lack of
statistics. The overestimation of fragment production in the Z
range [10;30], at 39 and 45 MeV/nucleon, is a consequence
of the Mtot criterium. Being pre-equilibrium particles
excluded in the theoretical analysis, the corresponding
Mtot ranges are compressed by about 30% with respect
to the experimental ones. This induces a loss of sensitivity
in the selection and larger impact parameters may be kept in
the selected calculated events, with respect to the data. These
larger impact parameters contribute to the charge distribution
mainly by fission of the quasiprojectile, leading to fragment
production in the Z range [10;30] and to a small decrease of the

6The computation of RE for b = 0.5 fm case is done on all events
while for the other cases it has been computed event by event. This
allows to avoid spurious fluctuations due to the ratio between small
numbers, especially at lower beam energies where, in the majority of
events, there is a big residue located near the center of mass.

034608-10



INVESTIGATION OF COLLECTIVE RADIAL EXPANSION . . . PHYSICAL REVIEW C 89, 034608 (2014)

Z
0 10 20 30 40 50

 (
m

b)
S

M
F

+
S

IM
O

N
σ

-5
10

-410

-3
10

-210

-110

1

 cut
tot

Sn@39MeV/nucleon, M119Xe+129

(a)

INDRA
SMF+SIMON

Z
0 10 20 30 40

 (
m

b)
S

M
F

+
S

IM
O

N
σ

-5
10

-410

-3
10

-210

-110

1

 cut
tot

Sn@45MeV/nucleon, M119Xe+129

(b)

Z
0 5 10 15 20 25 30 35

 (
m

b)
S

M
F

+
S

IM
O

N
σ

-5
10

-410

-3
10

-210

-110

1

 cut
tot

Sn@50MeV/nucleon, M119Xe+129

(c)

FIG. 7. (Color online) From left to right: Energies 39, 45, and 50 MeV/nucleon, the Mtot cut is applied to select the most dissipative
collisions. Charge (Z) distribution: Black full squares are for INDRA data and full red line for SMF + SIMON calculations. For the simulated
distributions, the Y -axis scale is in mb, and experimental data are scaled on it.

RE value. Nevertheless, in the high beam energy region, the
Mtot selection gives similar sets of events in the calculations
and in the data (see the right panel of Fig. 7) and general trends
are not affected by the difference in the definition of Mtot.
Looking at Fig. 6(c) (violet line), the simulation results appear
shifted to the right, with respect to the data. A similar shift has
been observed for the multifragmentation threshold. In fact, the
results obtained for RE in the simulations (a decrease followed
by a mild increase) can be associated with the transition
from statistical sequential decay of equilibrated sources,
dominating at the lowest energies over the whole range of
considered impact parameters, to full multifragmentation of
central collisions, observed at the highest beam energies. The
same mechanism could be present in the data, but with a
lower “transition” beam energy (around 20 MeV/nucleon).

Finally, we stress that, according to our simulations, the
behavior obtained for RE [Fig. 6(c), violet line] comes
essentially from the fact that the event selection based on the
Mtot cutoff induces some impact parameter mixing. Indeed,
looking at the results corresponding to b = 0.5 fm, we observe
full stopping in central collisions at Fermi energies, in the beam
energy range considered. This indicates that a full stopping
scenario could be compatible with the experimental results,
though it cannot be taken as a conclusive proof of the reaction
dynamics. Thus the centrality selection in the experimental
data has to be carefully considered before proper conclusions
can be drawn.

V. CONCLUSION

The issue of the link between the compression-expansion
cycle, the collective radial expansion, and the multifragmenta-
tion pattern observed in central collisions at Fermi energies has
been addressed comparing the predictions of the semiclassical
SMF transport model to INDRA multifragmentation data.

The simulations allow one to extract the maximum radial
expansion energy reached in reactions at beam energies in
the Fermi domain. This can be used as a reference in flow
estimation analyses based on statistical models. Looking at
the time evolution of fragment formation, we show that
for all considered energies above 32 MeV/nucleon, density
fluctuations occur and lead to prefragment formation already

at t = 100 fm/c. These nascent partitions have then different
stories depending on the strength of the velocity fields. For
energies below 39 MeV/nucleon, the nascent partitions do not
survive, leading to evaporation residue or fission fragments
in the exit channel, while for higher energies one observes
multifragmentation events. Looking at the properties of these
events, we obtain a good reproduction of the data as far as
the charge partitions are concerned. Concerning kinematical
properties, we observe and quantify the underestimation of
velocities, which suggests a weakening of the initial radial
expansion along the fragment formation process due to the
lack of thermal pressure effects, which is a typical drawback
of semiclassical models.

We have also investigated the issue of stopping power in
nuclear reactions and performed the same analysis proposed
by the authors of Ref. [28]. We observe that for very central
collisions, b = 0.5 fm full stopping is achieved at all energies.
However, if a selection of centrality is done as in the experi-
mental data, we recover the experimental results, which exhibit
a lesser degree of stopping. We then point out the essential
coherence needed in the comparison between the data and mi-
croscopic simulations to give unbiased indications on the mi-
croscopic ingredients of the considered models. Within our ap-
proach, a good reproduction of the experimental data, at beam
energies above the multifragmentation threshold, is obtained
by employing the free (angle and energy dependent) NN cross
section and a soft EoS (compressibility K = 200 MeV).

Following the definition given in experimental studies, we
find that the evolution of the RE ratio with the beam energy can
be associated with a change in the fragmentation mechanism,
from statistical decay to prompt multifragmentation. At the
highest beam energies central events, where large fragment
multiplicities are observed, start to dominate the selection ex-
perimentally considered (based on particle multiplicity cuts),
thus leading to the small increase observed for the stopping
power. The simulation results appear shifted with respect to
the experimental data, in analogy with the shift to the higher
energies observed in the model, for the multifragmentation
threshold.

We conclude by mentioning that, in the framework
of mean-fields approaches, new methods to improve the
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treatment of fluctuations, in the isovector channel [48] and
in full phase space [45], have recently been introduced.
A more effective fluctuating term is expected to lead to a
faster fragmentation process, thus lowering the fragmentation
threshold and enhancing fragment velocities. Further studies
based on the comparison to the experimental data are in
progress.

ACKNOWLEDGMENTS

The authors thank the INDRA Collaboration for providing
them the high-quality data presented in this work. They also
thank M. F. Rivet for fruitful discussions. E.B. acknowledges
the IN2P3 Computing Centre for providing huge amounts of
CPU time and data storage for the calculations.

[1] J. M. Lattimer and M. Prakash, Phys. Rep. 442, 109 (2007);
A. W. Steiner, J. M. Lattimer, and E. F. Brown, Astrophys. J.
722, 33 (2010).

[2] P. Danielewicz, R. Lacey, and W. G. Lynch, Science 298, 1592
(2002).

[3] G. Ferini et al., Phys. Lett. B 670, 325 (2009), and references
therein.

[4] P. Chomaz, M. Colonna, and J. Randrup, Phys. Rep. 389, 263
(2004).

[5] S. C. Jeong et al., Phys. Rev. Lett. 72, 3468 (1994).
[6] W. C. Hsi et al., Phys. Rev. Lett. 73, 3367 (1994).
[7] G. Poggi et al., Nucl. Phys. A 586, 755 (1995).
[8] G. J. Kunde et al., Phys. Rev. Lett. 74, 38 (1995).
[9] B. Borderie and M. F. Rivet, Prog. Part. Nucl. Phys. 61, 551

(2008), and references therein.
[10] Q. Li, C. Shen, C. Guo, Y. Wang, Z. Li, J. Lukasik, and

W. Trautmann, Phys. Rev. C 83, 044617 (2011).
[11] K. Hagel et al., Phys. Rev. C 50, 2017 (1994); ,62, 034607

(2000).
[12] S. Chikazumi et al., Phys. Lett. B 476, 273 (2000).
[13] S. Pal et al., Nucl. Phys. A 608, 49 (1996); ,586, 466 (1995).
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