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We calculate the capture (fusion) cross sections for nine reactions involving spherical nuclei: 16O + 16O, 28Si,
92Zr, 144Sm, 208Pb; 28Si + 28Si, 92Zr, 208Pb; 32S + 208Pb. For six of them precision data are available in the literature.
Analysis of these precision data within the framework of the single-barrier penetration model based on the Woods-
Saxon profile for the strong nucleus-nucleus interaction potential (SnnP) gave rise to the problem of the apparently
large diffuseness of the SnnP [Newton et al., Phys. Rev. C 70, 024605 (2004)]. Our fluctuation-dissipation
trajectory model is based on the double-folding approach with the density-dependent M3Y NN forces including
the finite-range exchange part. For the nuclear matter density the Skyrme-Hartree-Fock approach including the
tensor interaction is applied. The resulting nucleus-nucleus potential possesses rather small (normal) diffuseness.
The strength of the radial friction KR is used as the free parameter of the model. It turns out that for four of the
five reactions induced by 16O (except 16O + 208Pb) the calculated cross sections cannot be brought into agreement
with the data within the experimental errors. This suggests that the calculated nuclear density is incorrect for 16O.
For the reactions not involving 16O and, surprisingly, for the 16O + 208Pb reaction the agreement with the data
within 2-5% is achieved at KR = 1.2 × 10−2 to 3.0 × 10−2 MeV−1 zs which is in accord with the previous works.

DOI: 10.1103/PhysRevC.89.034601 PACS number(s): 25.70.Jj, 25.60.Pj, 24.10.−i

I. INTRODUCTION

The experimental data on the capture cross sections σ in
heavy-ion collisions have so far been systematically analyzed
mostly within the framework of the coupled-channels ap-
proach [1–3]. The nucleus-nucleus strong interaction potential
(SnnP) is the crucial ingredient of this approach. Convention-
ally, the Woods-Saxon (WS) profile

Un(R) = VWS

{
1 + exp

(
R − rWS

(
A

1/3
P + A

1/3
T

)
aWS

)}−1

(1)

is used for the SnnP. In Eq. (1) R denotes the distance between
the centers of mass of two spherical nuclei: the projectile
with the mass number AP and the target of the mass number
AT . The WS profile is defined by three parameters: the depth
VWS, the radius parameter rWS, and the diffuseness aWS.

It was recognized [3] that at collision energies well above
the Coulomb barrier the couplings to the excited states of
the colliding nuclei do not influence the value of the cross
section within 1%. Therefore the systematic analysis of the
experimental capture excitation functions for σ > 200 mb
was performed in Ref. [3] within the framework of the
single-barrier penetration model (BPM). This analysis led to
the values of aWS ranging between 0.75 and 1.5 fm with a
trend for aWS to increase as the system becomes heavier. This is
significantly larger than the value of 0.65 fm, which is required
by the elastic scattering data. It was pointed out in Ref. [3] that
the abnormally large diffuseness might be an artifact masking
some dynamical effects.

*Corresponding author: maira.chushnyakova@gmail.com

Following this idea, we undertook several efforts [4–6] to
analyze the experimental capture excitation functions using
the dynamical model based on Langevin-type dissipative
trajectories with the surface friction [7,8]. As in the case
of the BPM, the SnnP is again a key part of the approach.
In Refs. [7,8] the SnnP was calculated by means of folding
the nucleus-nucleon optical potential with the nucleon den-
sity (single folding). Presently, a more microscopic double-
folding (DF) SnnP with the density-dependent M3Y NN
(nucleon-nucleon) forces [9,10] is available. Moreover, the
data analyzed in Refs. [7,8] typically had an accuracy worse
than 10%. In Ref. [3] the high-precision data (typically 1%)
have been analyzed. Thus, it is tempting to apply the model
based on the semimicroscopic DF potential for the analysis
of these precision data in order to see whether accounting
for the dynamical effects allows reproducing quantitatively
the precision excitation functions without abnormally large
diffuseness of the SnnP. Let us note that in Ref. [4] it was
qualitatively shown that accounting for dissipation seems to
be the right way to resolve this problem.

In the folding approach to the SnnP the nucleon (matter)
density distributions are of great importance. For these
densities usually the two-parameter Fermi ansatz is used:

ρA(r) = ρ0

{
1 + exp

(
r − RA

aA

)}−1

. (2)

Here ρ0 is the parameter extracted from the normalization
condition, and the diffuseness parameter aA defines a surface
layer thickness. Parameters RA and aA can be associated
with those extracted from the experiments on the electron
scattering [11], but in many cases they are unknown. In
this paper we obtain the matter density distribution applying
the microscopic Skyrme-Hartree-Fock (SHF) approach with
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tensor forces. Thus the distribution is calculated without any
assumptions about its shape.

There are two more differences between the present paper
and Ref. [4]. First, the thermal fluctuations, ignored in Ref. [4],
are accounted for in the present work. Second, whereas in
Ref. [4] only qualitative comparison with the data was done,
in the present paper we perform a quantitative comparison.
This is of importance keeping in mind the small errors in the
data analyzed. We are not aware of any publications devoted to
the capture problem in which the results of a dynamical model
are compared quantitatively with the data.

The paper is organized as follows. In Sec. II the data selected
for the analysis are presented. The dynamical model as well
as the SHF nuclear matter density is described in Sec. III. In
Sec. IV the calculated cross sections are compared with the
data and adjustment of the friction strength coefficient is done.
In Sec. V conclusions are formulated.

II. SELECTING THE DATA FOR THE ANALYSIS

The capture cross section in the two spherical nuclei colli-
sion seems to be the simplest case for the analysis. We found
the data corresponding to σ > 200 mb with the relative error
about 1% on the following reactions [12]: 16O + 92Zr [13],
16O + 144Sm [14], 16O + 208Pb [15], 28Si + 92Zr [13],
28Si + 208Pb [16], and 32S + 208Pb [16]. Within the framework
of these reactions we need to calculate the density distribution
for the six nuclei: 16O, 28Si, 32S, 92Zr, 144Sm, and 208Pb.
For other possible reactions involving these nuclei the data
either are not found or possess the errors of about 10%. Since
in the region σ > 200 mb the quantum fluctuations of the
transmission coefficient are of minor importance, the data are
expected to follow the simple trend

σ = πR2
B0

(
1 − UB0

Ec.m.

)
, (3)

which is the limiting case UB0 < Ec.m. of the Wong for-
mula [17]. Here RB0 is the s-wave barrier radius, UB0 is
the s-wave barrier height, Ec.m. is the collision energy in the
center-of-mass frame. In Table I of Ref. [3] the values of RB0

and UB0 extracted from the data are presented. This enables us
to check whether the data follow the trend (3) indeed. Result
of such comparison is shown in Fig. 1. Reasonable universal
linear behavior is seen. The thin dashed line corresponds
to Eq. (3) times 0.9 whereas the thick solid line represents
Eq. (3). Whatever the calculation is, the calculated cross
sections must demonstrate the linear trend as the experimental
data do. In Ref. [3] the energy-dependent barrier radius
RE = RB0 − aWS ln[1 + 2(Ec.m. − UB0)/UB0] was used. We
cannot use this ansatz in our analysis (see Fig. 9 below) because
we do not employ the Woods-Saxon profile for the SnnP.

III. MODEL

In our model, the fictitious particle with the reduced mass
moves under the action of the conservative, dissipative, and
stochastic forces. We consider the collision process at the
energies well above the Coulomb barrier. So there is no need
to account for quantum effects such as tunneling and channels
coupling.

FIG. 1. (Color online) Reduced experimental cross sections
vs UB0expt/Ec.m.. Both RB0expt and UB0expt are taken from
Ref. [3]. Thin dashed line corresponds to Eq. (3) times 0.9;
the thick solid line represents Eq. (3). The data for the
different reactions are taken from the following references:
16O + 92Zr [13], 16O + 144Sm [14], 16O + 208Pb [15], 28Si + 92Zr [13],
28Si + 208Pb [16], and 32S + 208Pb [16].

The spherical nuclei whose collision is considered in this
work have usually at least one (proton or neutron) closed shell
and are rather stiff. That is why we account for only one degree
of freedom corresponding to the radial motion which is de-
scribed by the dimensionless coordinate q = R/RPT . Here R
is the distance between the centers of the colliding nuclei, and
RPT is the sum of the half density radii of the projectile (P) and
target (T) nucleus. The latter, being an important characteristic
of the two-parameter Fermi (2pF) distribution, does not exist
for the SHF distribution. Yet it is very convenient using the
dimensionless dynamical coordinate q. Thus we put RPT =
rGK(A1/3

P + A
1/3
T ) where rGK is defined below in Eqs. (11).

In our previous study [18] we accounted for the radial and
orbital degrees of freedom solving four dynamical equations.
We discussed there that ignoring two equations corresponding
to the orbital motion influences the resulting cross sections
within the framework of the statistical errors, which were
typically 1%. Therefore in the present work we model
dynamically only the radial motion, accounting, of course, for
the angular-momentum dependence of the collision barrier.

Presently more sophisticated time-dependent Hartree-Fock
(TDHF) [19–24] and quantum molecular dynamics [25]
calculations of the heavy-ion collisions are available. In these
works it was shown that the nucleon transfers [19] as well as the
dynamical reagents deformation and neck formation [21,22]
might be of importance. Although the probability of the
nucleon transfer is known to increase with the collision energy,
its effect on fusion is less important above the barrier [19]. In
our calculations [4] for the reactions 16O + 92Zr, 16O + 144Sm,
and 16O + 208Pb, capture was decided when q > 1.25 and the
density in the overlap region was less than 25% of its central
value (see, e.g., Fig. 9 of Ref. [26]). Thus, for the reactions
considered in the present work, the neck certainly appears and
the reagents deform but after the capture is decided (according
to our criteria) and therefore beyond the framework of our
model.

034601-2



QUANTITATIVE ANALYSIS OF PRECISE HEAVY-ION FUSION . . . PHYSICAL REVIEW C 89, 034601 (2014)

A. Dynamical equations

Our previous study demonstrated that the radial motion is
rather fast. Namely, the calculations performed in Refs. [4,18]
showed that the radial momentum was damped typically
during 0.5-1.0 zs, whereas during this time lapse the orbital
angular momentum lost at most several percent if its evolution
was described by the classical dissipative equation [see, e.g.,
Eq. (11a) of Ref. [18]]. Therefore one could think that the
stochastic equation for the radial degree of freedom has a
non-Markovian shape. However, in the recent study [25] it
was shown that retarding and non-Markovian effects appear
near the contact point, i.e., when the center-of-mass distance is
equal to the sum of the half density radii. Since in our model the
contact point is never reached, we prefer to use the stochastic
equation with the Gaussian noise and instant friction:

dp

dt
= FU + Fcen + FDq + b

√
2Dq, (4a)

dq

dt
= p

mq

, (4b)

FU = −dUtot

dq
, (5a)

Fcen = �
2L2

mqq3
, (5b)

FDq (t) = −p(t)

mq

KR

(
dUn[q(t)]

dq

)2

, (6a)

Dq = θKR

(
dUn

dq

)2

. (6b)

Here p stands for the linear momentum corresponding to the
radial motion ([p] = MeV · zs); FU , Fcen, and FDq are the
conservative, centrifugal, and dissipative forces, respectively
([Fi] = MeV). For the latter the surface friction expres-
sion [7,8] is used. Utot(q) is the total interaction energy of
two nuclei which consists of the Coulomb UC(q) and SnnP
Un(q) parts ([U ] = MeV); �L is the projection of the orbital
angular momentum onto the axis perpendicular to the reaction
plane ([�] = MeV zs); mq = mnAP AT · R2

PT (AP + AT )−1 is
the inertia parameter ([mq] = MeV zs2); mn is the bare
nucleon mass; KR denotes the dissipation strength coefficient
([KR] = MeV−1 zs). The diffusion coefficient Dq ([Dq] =
MeV2 zs) is related to the temperature θ and friction coefficient
KR · (U ′

n)2 by the Einstein relation (6b).
The temperature θ is supposed to be the same for both col-

lision partners. This assumption, although difficult to justify,
is conventional for the dissipative dynamical models [27–31].
The temperature θ is calculated as follows:

θ =
√

EDP (T )
(
a1AP (T ) + a2A

2/3
P (T )

)−1
, (7)

where a1 = 0.073 MeV−1 and a2 = 0.095 MeV−1 [32]. The
dissipated energy ED is calculated according to the energy
balance

ED = EDP + EDT = Ec.m. − p2

2mq

− �
2L2

2mqq2
− Utot. (8)

Equations (4) are solved applying the Runge-Kutta method
(see Appendix B of [18]).

B. Capture cross sections

These cross sections are calculated according to the
commonly used quantum-mechanical formula (see, e.g., [33])

σ = π�
2

2mREc.m.

Lmax∑
L=0

(2L + 1) TL. (9)

Here mR = mnAP AT /(AP + AT ), and Lmax is the maximal
angular momentum above which the transmission coefficient
becomes equal to zero. In our work the transmission coefficient
TL is evaluated using either the dynamical approach or the
single-barrier penetration model (BPM).

In the dynamical approach, typically 20 · (2L + 1) trajec-
tories are simulated for every partial wave until the number of
captured trajectories for the particular L becomes zero. The
transmission coefficient is defined as the ratio of the captured
trajectories number to the full number of trajectories for
particular L value. The capture conditions were as described in
Sec. II F of Ref. [4]. Namely, we assume the capture happens
in one of the following two cases. First, two conditions must be
fulfilled: (i) the radial coordinate of the particle must become
smaller than the particular share (0.98) of the L-dependent
barrier radius qBL; and (ii) the radial kinetic energy must
become smaller than the time-dependent temperature. The
second case is when the trajectory penetrates beyond the
barrier significantly deeper than in the first case: q(t) <
0.5(1 + qBL).

Within the framework of the BPM using the parabolic
barrier approximation the transmission coefficient reads [34]

TL = {1 + exp[2π (UBL − Ec.m.)/(�ωBL)]}−1. (10)

Here UBL and ωBL are the barrier height and the barrier
frequency for the particular L value. Typical transmission
coefficients calculated using the BPM (lines without symbols)
and the dynamical modeling (lines with symbols) are shown
in Fig. 2 for the six reactions under consideration. For each
reaction the BPM and dynamical modeling is done with the
same potential. The collision energy in these calculations is
about 10% larger than the s-wave barrier. One clearly sees
the impact of friction and thermal fluctuations. Namely, for
the reactions 16O + 92Zr and 16O + 144Sm both versions of the
calculations result in rather close transmission coefficients.
The only difference is that the dynamical transmission coeffi-
cient decreases steeper than the BPM TL does because fusion
at higher angular momenta is suppressed due to friction. In the
case of the reactions 16O + 208Pb and 28Si + 92Zr the dynamical
transmission coefficients (lines with symbols) are somewhat
shifted left due to dissipation in comparison with the BPM.
For the two heaviest reactions this shift and smearing due to
thermal fluctuations appear in the strongest way. This trend
is explained as follows. For the heavier system the barrier
appears for the smaller values of q where the derivative of the
SnnP is larger. This is seen in Table I. The longer is the path
with the significant SnnP passed by the fictitious particle, the
stronger is the resulting effect of the friction and fluctuations.
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FIG. 2. (Color online) Transmission coefficients TL calculated
using the dynamical model (lines with symbols) and the BPM (lines
without symbols). The values of UB0/Ec.m. corresponding to these
calculations are indicated in the panels. KR = 2.0 × 10−2 MeV−1 zs.

C. Potential energy and nuclear matter density

Whatever is the method of calculating the capture cross sec-
tion, the SnnP plays a key role. We use here the double-folding
potential (DFP) with the density-dependent M3Y NN forces.
The finite-range exchange forces are used. Description of this
potential can be found in many papers (see, e.g. [9,10]) there-
fore we do not repeat it here. The parameters of the DFP applied
in this work are exactly the same as in [18]. The least defined
ingredient of the DFP is the nuclear matter density. In many
works [4–6,9,10,35,36] the 2pF ansatz (2) was used for it. In
the present work the nuclear matter density is calculated using
the Skyrme-Hartree-Fock approach with the tensor forces as
described in [37,38] with the SKP parametrization of Ref. [39].

The resulting density distributions are displayed in Fig. 3. In
each panel three densities are shown: the proton (line without
symbols), neutron (line with dots), and nucleon (line with
triangles) densities. We see that the SHF proton densities rarely
possess the 2pF shape. Yet the SHF nucleon densities for 16O,
92Zr, 144Sm, and 208Pb resemble the 2pF profiles very much.
On the other hand, since the SnnP is defined by the tails of the
density distributions, one probably should not pay too much
attention to the difference between the SHF and 2pF densities
in the interior of the nucleus.

In order to compare the calculated densities with the experi-
mental ones we present in Fig. 4 the charge densities multiplied
by factor r2 for all six nuclei. Exactly this construction ρr2

enters the folding integrals used for nucleus-nucleus potential
calculations. As the experimental data, we use the results of the
Fourier-Bessel analysis made in [11]. Figure 4 demonstrates

FIG. 3. (Color online) Proton, neutron, and nucleon densities
obtained within the framework of the SHF approach.

rather good agreement of the calculated and experimental
densities, especially for the heavier nuclei.

An important characteristic of the distribution is the rms
charge radius on which precise and systematic data are
presently available [40]. Calculated rms charge radii are
compared to the data in Fig. 5. One sees that the agreement
is very good for the heavy nuclei (the target nuclei of our
reactions) whereas for the lighter (projectile) nuclei it becomes
worse. The maximum fractional error reaches 5% for 16O.

It is useful to investigate the influence of the tensor forces
applied in the SHF approach for the nuclear matter density
calculations on the final results of the dynamical modeling.
For this aim we present in Fig. 6 the ratio of the cross sections
calculated accounting for the tensor forces, σtens, over the cross
sections without those, σ0. One sees that accounting for the
tensor forces enhances the cross sections by 7–15% depending
upon the collision energy. This enhancement is significant for
the analysis of the data possessing 1% error.

For the dynamical modeling of the nucleus-nucleus colli-
sions, the DFP obtained by evaluation of the proper integrals
is approximated using the Gross-Kalinowski profile [7]:

Un (R) = − ln

{
1 + exp

(
−�R

aGK

)}

× [A0GK + A1GK�R + A2GK�R2], (11a)

�R = R − rGK
(
A

1/3
P + A

1/3
T

)
. (11b)

The coefficients rGK, aGK, A0GK, A1GK, and A2GK are
varied to fit the double-folding potential in the range 0.8qB0 <
q < 1.2qB0. Here qB0 refers to the position of the s-wave
Coulomb barrier. We need to use this approximation because
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FIG. 4. (Color online) Charge density multiplied by factor r2 calculated within the framework of the SHF approach (lines with dots)
compared with the experimental one (Fourier-Bessel coefficients are taken from [11]; lines without symbols).

it is difficult to calculate the double-folding M3Y integrals
accurately enough at large values of R and, consequently, q
as was discussed in Refs. [4–6,18]. The parameters of the
potential for these six reactions as well as for three extra
reactions (see below) considered in this work are displayed
in Table I.

It is interesting to compare the s-wave barrier parameters
obtained in the calculations with those extracted from the

FIG. 5. (Color online) (a) Rms charge radii Rrmsq obtained within
the framework of the SHF approach (squares) and the experimental
ones [40] (circles). (b) Ratio of the calculated rms charge radius to
the experimental one.

analysis of the precision excitation functions [3]. This is
performed in Table I. We see that the DFM potential barriers
are mostly lower then the experimental ones: 16O + 208Pb is the
only exception. The opposite is expected in the BPM approach
because the couplings to the excited states should result in
even lower barriers. In the dynamical picture the effective
s-wave barrier height is defined not only by the potential
energy, but by the dissipation as well. These calculated
dissipative barrier heights UB0diss, shown in Table I, too, are
larger than the potential barrier heights. For the reactions
16O + 208Pb, 28Si + 208Pb, and 32S + 208Pb, UB0diss > UB0 exp.
This circumstance moves the whole picture closer to the
reasonable and expected framework.

The last column of Table I includes the parameter aGK which
can be interpreted as the effective diffuseness of the potential.
Indeed when �R in Eq. (11) becomes equal to, e.g., 3aGK, the
exponential function becomes a small parameter, and

Un = −A0GK exp

(
−�R

aGK

)
(12)

FIG. 6. (Color online) Influence of the tensor forces on the
capture excitation function for the reaction 28Si + 92Zr.
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TABLE I. Parameters of the potentials for the reactions under consideration. UB0expt and RB0expt are taken from Ref. [3] where they were
extracted from the data analysis. UB0pot and RB0 are the potential barrier height and radius obtained in the present calculations. qB0 is the
dimensionless potential barrier radius (for each reaction, it is different from that of Ref. [4] because q is defined differently). UB0diss is the
minimum collision energy (the height of the dissipative barrier) at which the nonfluctuating dissipative trajectory overcomes the s-wave barrier
(this value is obtained using KR = 2.0 × 10−2 MeV−1 zs). The parameters of the Gross-Kalinowski profile are included, too.

Reaction UB0expt RB0expt UB0pot RB0 qB0 UB0diss Coefficients of the GK approximation

(MeV) (fm) (MeV) (fm) (MeV) A0GK (MeV) A1GK (MeV fm−1) A2GK (MeV fm−2) rGK (fm) aGK (fm)

16O + 92Zr 41.96 10.02 40.9 10.56 1.12 41.1 20.5 4.2 2.2 1.34 0.50
16O + 144Sm 61.03 10.85 59.8 11.24 1.10 60.2 23.0 0.2 0.0 1.32 0.58
16O + 208Pb 74.52 11.31 74.7 11.95 1.09 75.3 26.0 1.6 0.0 1.30 0.56
28Si + 92Zr 70.93 10.19 69.7 10.84 1.11 70.3 28.5 1.2 0.0 1.30 0.58
28Si + 208Pb 128.07 11.45 127.7 12.23 1.06 129.8 25.5 0.2 0.0 1.30 0.56
32S + 208Pb 144.03 10.91 143.9 12.39 1.05 146.6 28.0 1.0 0.0 1.30 0.56
16O + 16O – – 9.69 8.83 1.31 9.8 20.5 4.6 0.2 1.34 0.56
16O + 28Si – – 16.43 9.14 1.25 16.5 22.5 4.8 0.0 1.32 0.56
28Si + 28Si – – 27.88 9.44 1.18 27.9 21.5 3.6 0.0 1.32 0.56

(here we take into account that A0GK is much larger than two
other terms of the polynomial). Equation (12) resembles very
much the limiting shape of the Woods-Saxon profile (1) at
�R = R − rWS(A1/3

P + A
1/3
T ) >> aWS:

Un = VWS exp

(
−�R

aWS

)
. (13)

Thus our double-folding potential indeed possesses normal
(small) diffuseness of about 0.5-0.6 fm.

IV. COMPARING CALCULATED CROSS SECTIONS
WITH THE DATA

The calculated capture excitation functions are compared
with the data (semi-open circles) in Fig. 7. Results ob-
tained with KR = 2.0 × 10−2 MeV−1 · zs (which is close to
3.5 × 10−2 MeV−1 · zs reported in [8]) are shown by triangles,
the BPM cross sections are presented by the thick black lines.
The typical statistical error of the dynamical calculation is 1%,
and the typical number of trajectories resulting to capture is
5 × 104 to 1 × 106. The BPM cross sections obtained with the
SnnP possessing small diffuseness are known to exceed the
data. This is observed in all the panels of Fig. 7.

The dynamical cross sections lie below the BPM ones as
it is expected. In the case of 16O + 92Zr the dynamical cal-
culation significantly overestimates the data; for 16O + 144Sm,
16O + 208Pb, and 28Si + 92Zr the dynamical excitation func-
tions are in qualitative agreement with the data; whereas for
28Si + 208Pb and 32S + 208Pb the calculated cross sections lie
below the data. This might suggest the dependence of the
friction strength coefficient upon the system.

Following this indication we varied the value of KR

searching for the minimal value of χ2 averaged over the
number of points ν, χ2

ν :

χ2
ν = 1

ν

ν∑
i=1

(
σi theor − σiexpt

�σiexpt

)2

. (14)

Here σi theor is the theoretical value of the cross section
at the particular value of Ec.m. i , σiexpt and �σiexpt are the
experimental values of the cross section and its error at the
same energy. The resulting cross sections divided by the
experimental ones, ξ = σtheor/σexpt, are shown in Fig. 8. The
values of KR providing the minimal χ2

ν values are indicated
in the figure. First, all the points but four lie within the 10%
interval. This in our opinion indicates that the model reflects
the correct physics in general. Second, more than half of

FIG. 7. (Color online) Calculated cross sections compared to the
data (semi-open circles). Lines without symbols display results of
the BPM calculations; lines with triangles are for the dynamical
calculations. KR = 2.0 × 10−2 MeV−1 zs.
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FIG. 8. (Color online) Ratio ξ = σtheor/σexpt as the function of
UB0/Ec.m.for the six reactions for which the precision data are
available: (a) for two lighter systems; (b) for four heavier systems.
These calculations were done with the values of KR (shown in the
figures) providing the minimum value of χ 2

ν for each reaction.

the points come out beyond the 2% interval required by the
high-precision data. This means that some ingredients are still
missing in our model.

In Fig. 8(a) the results for 16O + 92Zr and 16O + 144Sm
reactions are shown. The corresponding curves cross the
horizontal line ξ = 1 from left-bottom to right-top. They
cannot be brought closer to unity because of the monotonic
dependence upon UB0/Ec.m.. We checked whether the reduced

FIG. 9. (Color online) Calculated reduced cross sections for
16O + 92Zr and 16O + 144Sm. Thin dashed line corresponds to Eq. (3)
times 0.9; thick solid line represents Eq. (3).

cross sections for these two reactions followed the expected
linear behavior as functions of UB0/Ec.m. (see Fig. 1). Results
of the calculations shown in Fig. 9 clearly demonstrate that
they do not.

We suggest that the reason for this failure is the incorrect
density distribution for 16O resulting from the present SHF
calculations. This suggestion is in accord with the maximum
deviation of the calculated rms charge radius from the
data observed for 16O in Fig. 5. In order to confirm or
disprove this hypothesis we invoked the data on three more
reactions: 16O + 16O, 16O + 28Si, and 28Si + 28Si. Calculations
are compared to those data in Fig. 10. Specific features of the
symmetric reactions with the nuclei in 0+ states are accounted

FIG. 10. (Color online) Calculated cross sections compared to
the data (open and semi-open symbols). Solid thick line displays
results of the BPM calculations. Triangles up, triangles down, and
diamonds correspond to dynamical calculations with KR = 3.0, 4.0,
and 5.0 (in units of 10−2 MeV−1zs), respectively. The data are taken
from [43,44] for 16O + 16O, from [45] for 16O + 28Si, and from [46]
for 28Si + 28Si. Digits next to lines with symbols indicate the values
of χ 2

ν .
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FIG. 11. (Color online) Reduced cross sections for 16O + 208Pb,
28Si + 92Zr, 28Si + 208Pb, and 32S + 208Pb. Thin dashed line corre-
sponds to Eq. (3) times 0.9; thick solid line represents Eq. (3).

for in these calculations. Although the data possess rather
large errors (about 10%) one clearly sees that the calculated
excitation function cannot be brought into agreement with the
data for the 16O + 16O reaction. For this reaction the cross
sections are not sensitive to the value of KR .

In order to understand the oscillations of the dynamical
cross sections at low collision energies for the 16O + 16O
reaction let us inspect Eq. (9). Consider first the situation
without thermal fluctuations and keep in mind that L is
considered as the discrete variable (which it is in reality).
As the collision energy increases, the multiplier in front of
the sum decreases in a continuous manner whereas Lmax

and consequently the whole sum abruptly increase. This
inevitably results in the kinks in the excitation function.
Thermal fluctuations smear out these kinks for heavier systems
and for higher collision energies (we saw in Fig. 2 that
fluctuations are more pronounced for the heavier systems).
More details can be found in Refs. [4,41,42].

For the 16O + 28Si reaction the situation looks some-
what better: the minimal value χ2

ν = 16 at KR = 5.0 ×
10−2 MeV−1 zs results from the calculation (digits next to lines
with symbols indicate the values of χ2

ν ). Finally, for 28Si + 28Si
reaction, minimal χ2

ν = 6 at KR = 5.0 × 10−2 MeV−1 zs is
achieved. Note that in Ref. [41] the experimental fusion
excitation function in reaction 16O + 16O is well described
by the TDHF calculations.

Let us now come back to the reactions on which the high-
precision data are available. For the remaining four reactions
the reduced cross sections versus UB0/Ec.m. are presented in
Fig. 11. They are significantly closer to the expected linear
trend. Inspecting the curves ξ (UB0/Ec.m.) for these reactions
in Fig. 8(b) more attentively one sees that the corresponding
ratios are approximately parallel to unity for UB0/Ec.m. < 0.9
and decrease for smaller collision energies (right parts of the
curves). Let us recall that our model does not account for the
couplings to the vibrational states, which is expected to play
an increasingly important role for lower collision energies.
Selecting the data for our analysis we followed Ref. [3] where
rather arbitrary border σ > 200 mb was taken. Comparison of
our results with the data presented in Fig. 8(b) suggests that

FIG. 12. (Color online) The ratio ξ = σtheor/σexpt of the calcu-
lated cross section to the experimental one for UB0/Ec.m. < 0.90.
Digits left of lines indicate the values of the dissipation strength
coefficient KR/(10−2 MeV−1 zs). Digits right of lines indicate the
values of χ 2

ν . The error bars represent the experimental errors. The
number of trajectories is large enough to make the statistical errors
of the calculations negligible.

a criterion UB0/Ec.m. < 0.9 probably is to be used instead of
σ > 200 mb.

One can argue that if the density distribution for 16O
resulting from the present SHF calculations is incorrect, the
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agreement of our calculations with the data should be poor
for the reaction 16O + 208Pb also. We cannot disprove this
objection. However, the reaction 16O + 208Pb is known to be
a hard nut as discussed in the Introduction of Ref. [3] and in
Ref. [15]. This reaction is one of few (if not the only one)
for which in Ref. [15] no reasonable fit of the above- and
below-barrier data was reached with the same diffuseness of
the potential.

We varied again the value of KR , searching for the minimum
of χ2

ν for the sets of the data for 16O + 208Pb, 28Si + 92Zr,
28Si + 208Pb, and 32S + 208Pb cut at UB0/Ec.m. = 0.9. Results
of these calculations are displayed in Fig. 12 along with the
values of KR and χ2

ν . It turns out that the values of χ2
ν from

8 down to 1 can be achieved with rather reasonable values of
KR ranging from 3.0 × 10−2 to 1.2 × 10−2 MeV−1 zs.

Comparing the panels corresponding to different reactions
we can conclude that the calculated cross sections become
more sensitive to the value of KR as ZP ZT increases.
Moreover, the value of KR providing the minimal value
of χ2

ν seems to decrease as ZP ZT increases (although the
value of KR for the reaction 32S + 208Pb is somewhat larger
than for the lighter reaction 28Si + 208Pb). The value KR =
(4 − 5) × 10−2 MeV−1 zs at which the minimal χ2

ν = 7 to 6 is
reached for 28Si + 28Si reaction [Fig. 10(c)] corroborates this
conclusion. This decrease correlates with the decrease of the
qB0 value.

Presently, we do not have a physical explanation for the
decrease of the KR value with ZP ZT . Trying to think about
such an explanation, one has to keep in mind that the friction
coefficient in the dissipative force is defined not only by its
strength KR but also by the form factor (dUn/dq)2 which
becomes larger due to the smaller qB0 value as ZP ZT increases.
We prefer not to go deeper into this question before more
systematic calculations (for the reactions involving deformed
target nuclei) are made and the effect of the KR decrease is
firmly established (if it is done).

V. CONCLUSIONS

We calculate the capture (fusion) cross sections for nine
reactions involving spherical nuclei: 16O + 16O, 28Si, 92Zr,
144Sm, 208Pb; 28Si + 28Si, 92Zr, 208Pb; 32S + 208Pb. For six
of these reactions the experimental errors are about 1%,

whereas for the 16O + 16O, 16O + 28Si, and 28Si + 28Si reac-
tions the errors are about 10%. When the high-energy parts
(σ > 200 mb) of the six high-precision experimental excitation
functions were analyzed earlier within the framework of
the single-barrier penetration model based on the Woods-
Saxon profile for the SnnP, the problem of the apparently
large diffuseness of the SnnP appeared [3]. We applied our
fluctuation-dissipation trajectory model to the quantitative
analysis of these high-precision data varying the radial friction
strength coefficient. The core of the model is the double-
folding approach with the density-dependent M3Y NN forces
including the finite-range exchange part. The nuclear matter
densities required to evaluate the folding integrals are obtained
using the Skyrme-Hartree-Fock approach including the tensor
interaction [37,38,39]. The resulting nucleus-nucleus poten-
tials have rather small (normal) diffusenesses. Our calculations
demonstrated that

(1) The high-precision data on six reactions can be repro-
duced within 10% in the framework of our model at the
collision energies 10% above the calculated potential
barrier.

(2) For the reactions induced by 16O (except 16O + 208Pb)
the calculated cross sections cannot be brought into
agreement with the data within the experimental errors.
This suggests that the nuclear density calculated for
16O is incorrect. This statement is confirmed by the
comparison between calculated and experimental rms
charge radii and by the analysis of the less precise
capture data on 16O + 16O and 16O + 28Si reactions.

(3) For reactions not involving 16O and, surprisingly,
for the 16O + 208Pb reaction the agreement with the
data within 3% is achieved with KR ranging from
3.0 × 10−2 to 1.2 × 10−2 MeV−1 zs which does not
contradict the previous works [4,7,8].

(4) The calculated capture cross sections become more
sensitive to the value of KR as ZP ZT increases.

(5) A trend of KR to decrease as ZP ZT increases is
revealed.
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