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We apply the complex scaling method to the calculation of scattering phase shifts and extract the contributions
of resonances in a phase shift and a cross section. The decomposition of the phase shift is shown to be useful
in understanding the roles of resonant and nonresonant continuum states. As examples, we apply this method to
several two-body systems: (i) a schematic model with the Gyarmati potential, which produces many resonances,
(ii) the α-α system, which has a Coulomb barrier potential in addition to an attractive nuclear interaction, and
(iii) the α-n system, which has no barrier potential. Using different kinds of potentials, we discuss the reliability
of this method to investigate the resonance structure in the phase shifts and cross sections.
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I. INTRODUCTION

Nuclear scattering is the most important phenomena from
which we can obtain information on and knowledge of
various nuclear properties. Many theoretical approaches and
experimental techniques have been developed to extract
physics from the scattering phenomena. Resonances observed
as some peaks in scattering cross sections provide us with
precious information for understanding nuclear interactions
and structures. In particular, it is indispensable in recent
developments of unstable nuclear physics to investigate the
resonances involved in the unbound states located above the
many-particle decay thresholds, because the unstable nuclei
barely have bound states and most of the excited states are
resonances. Furthermore, to understand weakly bound states in
unstable nuclei, such as a halo structure, we need to investigate
continuum states together with bound states because of the
strong coupling between them [1].

Study of resonances in the scattering problem of light nuclei
has been carried out using various methods, one of which is the
complex scaling method (CSM) [2]. The theory of the complex
scaling was proposed mathematically [2] and it has been exten-
sively applied to the atomic and nuclear physics [3–5]. In the
CSM, resonant states of the many-body systems are described
using the appropriate L2 basis functions. The resonance wave
functions are obtained as eigenstates together with bound states
by carrying out the diagonalization of the complex scaled
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Hamiltonian. Hence, we can calculate expectation values of
physical quantities for resonances [6]. Recently, resonances
decaying up to five-body systems have been studied in the
CSM and successfully compared with experiments [7,8].

We have also shown that the CSM is very useful in studies
not only of resonant states but also of scattering states [5]. The
complex scaling separates the resonant states with resonance
energies Eres and widths � [tan−1(�/2Eres) < 2θ ] from the
continuum states obtained on a 2θ line, where θ is a scaling
angle in the CSM [2]. We can extract scattering properties
from the continuum solutions on the 2θ line together with the
resonance solutions. Calculations of the phase shifts of contin-
uum states with complex energies along the 2θ line provide the
background phase shifts exclusive of the resonances existing
in the energy region between the 2θ line and the real energy
axis [6]. As examples of applications of the CSM to scattering
problems, response functions for external electric fields and
breakup cross sections of two-neutron halo nuclei have been
discussed and shown for observed data to be well described
by a two-neutron-plus-core three-body model [9–11]. In their
results, it is concluded that a sequential breakup process is
dominant rather than a direct three-body breakup.

In these calculations, a complex scaled Green’s function
has been introduced to obtain the response functions as
observables. We can also calculate scattering quantities such
as phase shifts in a form of sum of resonances and background
terms. It is possible to investigate the resonance contributions
and to obtain a deep understanding of resonance structure
by separation of a scattering quantity. Suzuki et al. [12]
showed that scattering phase shifts can be calculated from
the continuum level density (CLD), which is expressed using
the complex scaled Green’s function. The CLD is also called a
time delay and has a relation with the S matrix [13,14]. In the
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CSM, we obtain the discretized continuum states as complex
energy eigenstates. Using those complex eigenenergies, we
can evaluate the CLD as a smoothed real-energy function.

In this paper, we discuss the explicit relation between the
scattering phase shifts and complex-energy eigenvalues in
the CSM via the CLD. The results provide us with deeper
understanding of the role of resonant states characterized by
the widths described as an imaginary part of the eigenenergy.
We show the results of typical potential scattering, which
has many resonances near the real energy. We also analyze
several realistic systems and compare the results with the
observed data. The observed scattering cross sections have
various energy distributions as a result of interference between
resonance and background terms of phase shifts [15]. We see
this interference in the α-n and α-α systems.

The outline of the paper is as follows. In Sec. II, the
method is briefly explained, and the scattering phase shifts
are explicitly shown using the complex energy solutions in
the CSM. In Sec. III, the present method is applied to several
two-body systems; a typical potential problem, the so-called
Gyarmati potential [16], is discussed. The phase shifts of α-α
and α-n systems are presented together with experimental
ones. Finally, in Sec. IV, discussion and summary are given.

II. DECOMPOSITION OF PHASE SHIFTS

A. Complex scaling method

We take up two-body systems, which are described by the
Schrödinger equation

H� = E�, (1)

where the Hamiltonian H consists of kinetic energy T and
potential V for the relative motion between two bodies. The
eigenvalue problem is generally solved under a boundary
condition of asymptotic outgoing waves for bound states
and resonances. The outgoing boundary condition directly
enables us to solve bound states in an L2 functional

basis set because the states have negative energies and a
damping behavior in the asymptotic region. Resonant states
are unbound and defined as the eigenstates belonging to
the complex eigenenergy, which corresponds to a complex
momentum value in the lower half plane (unphysical plane [5]).
The resonant states cannot be solved in the L2 functional
space due to asymptotically divergent behavior. Furthermore,
continuum states of arbitrary positive energies cannot also be
obtained under the outgoing condition.

The complex scaling has been introduced to solve resonant
states within L2 basis functions and is defined by the following
complex-dilatation transformation for relative coordinate �r and
momentum �k [2];

�r → �reiθ , �k → �ke−iθ , (2)

where θ is a scaling angle and 0 < θ < θmax. The maximum
value θmax is determined so as to keep analyticity of the
potential. For example, θmax = π/4 for a Gaussian potential.
This transformation makes every branch cut rotated by −2θ
on the complex energy plane. In the wedge region pinched by
the rotated branch cut and the positive energy axis, resonance
eigenstates are obtained by solving the following eigenvalue
problem:

N∑
j=1

〈φi |H (θ )|φj 〉cα
j (θ ) = Eα

N∑
j=1

〈φi |φj 〉cα
j (θ ),

(3)

�α(θ ) =
N∑

i=1

cα
i (θ )φi,

within an appropriate nonorthogonal L2 basis set {φi,i =
1,2, . . . ,N}. The index α is to distinguish the eigenstates
�α(θ ) of the complex scaled Hamiltonian H (θ ). The bound
states are obtained on the negative-energy axis independently
from θ as well as the ordinary bound states. Because of a finite
number of basis states, the continuum states are discretized
with complex energies distributed on the rotated branch cut
(2θ line).

The eigenvalues and eigenstates of the complex scaled
Schrödinger equation (3) are classified as

[Eα,�α(θ )] =
⎧⎨
⎩

(Eb, �b) b = 1, . . . ,Nb; bound states
(Er, �r ) r = 1, . . . ,Nθ

r ; resonant states
(Ec(θ ), �c) c = 1, . . . ,N − Nb − Nθ

r ; continuum states
, (4)

where Nb and Nθ
r are the number of bound states and the

number of resonant states which depend on θ , respectively.
The complex energies of resonant states are obtained as Er =
Eres

r − i�r/2, when tan−1 (�r/2Eres
r ) < 2θ . The discretized

energies Ec(θ ) of continuum states are θ dependent and
expressed as Ec(θ ) = εr

c − iεi
c.

These three-kind solutions of the complex-scaled
Schrödinger equation construct the extended completeness
relation [9]:

Nb∑
b=1

|�b〉〈�̃b| +
Nθ

r∑
r=1

|�r〉〈�̃r | +
∫

Lc

dEc|�c〉〈�̃c| = 1, (5)

where the tilde (˜) in bra states means the biorthogonal states
with respect to the ket states due to non-Hermitian property
of H (θ ). The integration of the third term is taken along the
rotated branch cut Lc. The extended completeness relation has
been proven for single- and coupled-channel systems [17,18].
In the case of eigenstates within a finite number of L2 basis
states, the integration for continuum states is approximated
by the summation of discretized states as [9]

Nb∑
b=1

|�b〉〈�̃b| +
Nθ

r∑
r=1

|�r〉〈�̃r | +
N−Nb−Nθ

r∑
c=1

|�c〉〈�̃c| ≈ 1. (6)
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It has been investigated that the reliability of the approximation
of the continuum states are confirmed by using a sufficiently
large basis number of N in the CSM [5,12].

B. Continuum level density and scattering phase shift

The CLD 	(E) as function of the real energy E is defined
as [13,14]

	(E) = − 1

π
Im{Tr[G+(E) − G+

0 (E)]}, (7)

where

G+(E) = (E + iε − H )−1, G+
0 (E) = (E + iε − H0)−1

are the full and free Green’s functions, respectively. The CLD
is also related to the scattering phase shift δ(E) and the relation
is expressed in a single-channel case as [13,14]

	(E) = 1

π

dδ(E)

dE
. (8)

Using Eqs. (7) and (8), we can obtain the phase shift δ(E)
in terms of the eigenvalues of H and H0 by integrating the
CLD over the energy E. When we apply the complex scaling
and obtain the complex scaled Green’s function, the CLD can
be expressed as

	(E) = − 1

π
Im

{
Tr

[
1

E − H (θ )
− 1

E − H0(θ )

]}
. (9)

Furthermore, we apply the extended completeness relation
given in Eq. (6) to the calculation of 	(E) in Eq. (9), where
we use the solutions obtained by diagonalization of matrix
elements of H (θ ) and H0(θ ) with a finite number N of basis
functions. The energy eigenvalues of H0(θ ) are given as ε0r

k −
iε0i

k with k = 1, . . . ,N . All of these values are distributed on
the 2θ line. The CLD of Eq. (9) is approximated as

	(E) ≈ 	N
θ (E) = − 1

π
Im

[
Nb∑
b=1

1

E + i0 − Eb

+
Nθ

r∑
r=1

1

E − Eres
r + i�r/2

+
Nθ

c∑
c=1

1

E − εr
c + iεi

c

−
N∑

k=1

1

E − ε0r
k + iε0i

k

]
, (10)

where N = Nb + Nθ
r + Nθ

c . It is important to note that the
approximated CLD, 	N

θ (E), basically has a dependence on
the scaling angle θ because we employ a finite number N of
the basis states to expand the complex scaled wave functions.
In the calculation we adopt a sufficiently large number of N
to keep the numerical accuracy and to make the θ dependence
negligible in the solutions [12]. Thus we calculate the phase

shift from 	N
θ (E):

δN
θ (E) = π

∫ E

−∞
	N

θ (E)dE =
∫ E

−∞
dE

[
Nb∑
b=1

πδ(E − Eb)

+
Nθ

r∑
r=1

�r/2(
E − Eres

r

)2+�2
r /4

+
Nθ

c∑
c=1

εi
c(

E − εr
c

)2 + (
εi
c

)2

−
N∑

k=1

ε0i
k(

E − ε0r
k

)2 + (
ε0i
k

)2

]
. (11)

By performing integration of every term, we obtain the
following expression:

δN
θ (E) = Nbπ +

Nθ
r∑

r=1

{
−cot−1

(
E − Eres

r

�r/2

)}

+
Nθ

c∑
c=1

{
−cot−1

(
E − εr

c

εi
c

)}

−
N∑

k=1

{
−cot−1

(
E − ε0r

k

ε0i
k

)}
, (12)

where we assume E � 0. When we define δr , δc and δk as

cot δr = Eres
r − E

�r/2
,

cot δc = εr
c − E

εi
c

, (13)

cot δk = ε0r
k − E

ε0i
k

,

respectively, we express the phase shift as

δN
θ (E) = Nbπ +

Nθ
r∑

r=1

δr +
Nθ

c∑
c=1

δc −
N∑

k=1

δk. (14)

The geometrical expressions of δr , δc, and δk are given for
E < Eres

r or E > Eres
r in Fig. 1. The resonance phase shift δr

is the angle of the rth resonant pole at an energy E on the real
energy axis. At the resonance energy, E = Eres

r , the relation
δr = π/2 is confirmed for every resonant pole. In addition,
δr = tan−1(�r/2Eres

r ) > 0 at E = 0 and δr = π at E = ∞ for
each resonance. Similarly the phase shifts from continuum
terms including asymptotic part, δk are given by the angles of
the discretized continuum energies. At E = ∞, the continuum
terms of the phase shifts go to −(Nb + Nθ

r )π because of the
relation N = Nb + Nθ

r + Nθ
c . Thus, δN

θ → 0 for E → ∞ and
the Levinson theorem is confirmed as

δN
θ (E = 0) − δN

θ (E → ∞) = Nbπ, (15)

where the number of the Pauli forbidden states is included in
Nb when they exist.

The cross section is described by using these phase shifts,
and we can see the contributions from both resonant poles
and continuum terms. When we concentrate our interest on
the contribution from a single resonant pole, other terms are
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(b) E > Eres
r
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r
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δk

δc
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εc
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k

εc

ε0
k

Er
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FIG. 1. The geometrical expressions for phase shifts: δr , δc, and
δk as functions of the energy E. Both E < Eres

r and E > Eres
r cases

are displayed in the upper panel (a) and lower panel (b), respectively.
The details are explained in the text.

described as a background phase shift. We can have the similar
discussion as was done by Fano [15] because the partial cross
section σ�(E) for the orbital angular momentum � is given as

σ�(E) = 4π (2� + 1)

k2
sin2 δ�(E), (16)

where k2 = 2Eμ/�
2 with the reduced mass μ. The phase shift

δ�(E) is expressed in the form as δr + δB , where δr and δB are
the single resonance and the background terms including all
other terms given in Eq. (14), respectively. The shape of the
cross section can be investigated by evaluating the resonance
(δr ) and background (δB) phase shifts.

III. APPLICATIONS TO SEVERAL SYSTEMS

A. Typical potential scattering

We apply the method of analyzing the phase shifts to a
simple schematic potential which is introduced in Ref. [16].
The explicit form of the Hamiltonian is given as

H = − �
2

2μ
∇2 + V (r), (17)

where the so-called Gyarmati potential is

V (r) = −8.0 exp(−0.16r2) + 4.0 exp(−0.04r2). (18)

It is assumed that �
2/μ = 1 (MeV fm2).

This potential has an attractive pocket in the inside and a
repulsive barrier in the outside. In this system, one bound
state and several resonant poles for Jπ = 0+ and 1− are
obtained [6,19]. It is interesting to see the contributions from
those resonant poles to the scattering quantities. In Ref. [6], it
has been shown that E1-transition strengths into the resonant
states exhaust the sum rule value. In Ref. [19], continuum states
on the 2θ line of the complex energies have been investigated
through the scattering phase shifts on the rotated branch cut.
The calculated phase shifts for different θ values suggest that
the resonant states located above the 2θ line behave like bound
states. The phase shifts approach to −nπ in the higher energy
region where n is the number of those resonant states, as
discussed in Sec. IV.

To solve the eigenvalue problem of Eq. (3), we employ the
Gaussian basis functions [20] given as

φi(r) = N�(bi)r
� exp

(
− 1

2b2
i

r2

)
Y�m(r̂), (19)

where the range parameters are given by a geometric pro-
gression as bi = b0γ

i−1; i = 1, . . . ,N , and the normalization
factor N�(bi) is given as

N�(bi) =
√

2�+2

√
πb2�+3

i (2� + 1)!!
. (20)

We take N = 20 and employ the optimal values of b0 and
γ so as to obtain stationary resonance solutions. The results
of eigenvalues for bound and resonant states obtained with
θ = 20◦ are shown in Table I. The results are same as those in
Refs. [6,9]. In addition, the consistent and stable results were
obtained for the CLD at different scaling angles (θ = 10◦,15◦,
and 20◦) in Fig. 4 of Ref. [12]. Using those eigenvalues
including the continuum states, we calculate phase shifts by
Eq. (14).

In Figs. 2 and 3, we show the calculated phase shifts of
the Jπ = 0+ state. Here, we define resonance and continuum
phase shifts, δθ

R and δθ
C as

δθ
R =

Nθ
r∑

r=1

δr , δθ
C =

Nθ
c∑

c=1

δc −
N∑

k=1

δk, (21)

TABLE I. Bound and resonance energies with decay widths
calculated with θ = 20◦ for the J π = 0+ and 1− partial waves.

0+ wave 1− wave

E (MeV) State E (MeV) State

−1.928 Bound −0.675 Bound
0.310–i10−6 Resonance 1.171–i0.005 Resonance
1.632–i0.123 Resonance 2.031–i0.489 Resonance
2.249–i1.040 Resonance 2.832–i1.199 Resonance
2.854–i2.570 Resonance 3.934–i1.788 Resonance
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FIG. 2. The resonance (δθ
R) and continuum (δθ

C) phase shifts and
the sum δθ

R + δθ
C for θ = 20◦.

respectively, where δr , δc, and δk are given in Eq. (13). The
phase shifts δθ

R and δθ
C have the θ dependence coming from the

number Nθ
r of resonant poles above the 2θ line. Neither kind

of phase shift δθ
R and δθ

C shows zero in the negative-energy
region. On the other hand, the sum of δθ

R and δθ
C , δθ

R + δθ
C ,

becomes θ independent and zero in the negative energy region
due to the cancellation of each other. Therefore, the total phase
shift, δN (E) = Nbπ + δθ

R + δθ
C , is independent of the scaling

angle θ and finite only in the positive energy (E > 0) except
for Nbπ . Using this property, we can rewrite the total phase
shifts given by integration from E = 0 as

δN (E) = Nbπ + π

∫ E

0
	N

θ (E)dE. (22)

From the resonance term δθ
R , we can distinguish the first

and second resonances of the Jπ = 0+ state in Table I at
the corresponding resonance energies (0.31 and 1.63 MeV),
but the structure of higher resonances are not clearly seen.

5
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1

0

1
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0 2 4 6 8 10

(r
ad

./
)

J =0+

Nr=0

N

N

Nr=1
N

r=2
N
Nr=3
N
Nr=4

N

Energy (MeV)

FIG. 3. The phase shifts of the Gyarmati potential for J π = 0+

and the subtraction of the resonance terms one by one.

The continuum term δθ
C has no structure and always negative

values, indicating a repulsive interaction nature. Its behavior
looks like −a

√
E of a hard sphere scattering. In fact, we can

estimate the hard sphere radius a as 4.1 fm from the behavior
of δθ

C in Fig. 2.
In order to see the resonance effect on the phase shift clearly,

we calculate the phase shift subtracting the resonance term
from δN (E) as

δN
Nθ

r
(E) = δN (E) −

Nθ
r∑

r=1

∫ E

0
dE′ �r/2(

E′ − Eres
r

)2 + �2
r /4

. (23)

In Fig. 3, the results of calculation are shown for Nθ
r =

0,1,2,3,4, where δN (E) = δN
Nθ

r =0(E). It is found that the effects
of the first and second resonances are remarkable, but the third
and fourth resonances do not have notable effects. It is shown
that every resonance definitely changes the phase shift by π at
higher energies.

The phase shifts of the Jπ = 1− state are also calculated
and the results show behavior similar to that in the Jπ = 0+
case for one bound and four resonances shown in Table I.

B. Scattering phase shifts in the α-α and α-n systems

We apply the method to the realistic problems of the α-α
and α-n systems comparing with the observed data. The
α-α system including a long-range Coulomb interaction is
described by the following orthogonality condition model
(OCM) [21]. Hamiltonians are given as

H = − �
2

4M
∇2 + V0 exp (−αr2) + 4e2

r
erf(βr) + V̂F ,

(24)

H0 = − �
2

4M
∇2 + 4e2

r
,

where we use �
2/M = 41.471 MeV fm2, V0 = −106.09 MeV,

α = 0.75 fm−1, and β = 0.22 fm−2. The term V̂F is a Pauli
potential [22] to project out the Pauli forbidden states from the
relative motion in the OCM. The explicit form of V̂F is given by
using the harmonic oscillator wave functions |n�〉 = un�(r,bF )
as

V̂F = V 0
F ×

⎧⎨
⎩

|0s〉〈0s| + |1s〉〈1s| for � = 0
|0d〉〈0d| for � = 2
0 for � � 4

, (25)

where we use the range parameter bF = 1.933 fm and the
potential strength V 0

F = 106 MeV. It is noted that the Coulomb
potentials between two α particles are expressed by folding
potentials with charge distributions of the Gaussian and point
in H and H0, respectively.

The eigenvalue problems for these Hamiltonians are
solved on the basis of the Gaussian basis function
method [20] mentioned above. The resonance solutions for
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FIG. 4. Upper panel: The decomposition of scattering phase shifts of the α-α system for (a) � = 0, (b) 2, and (c) 4, respectively. The dashed
and dotted lines represent the contributions of the resonance and continuum terms, respectively. The solid lines display total scattering phase
shifts. The experimental data [24] are shown with open circles. Lower panel: The distributions of eigenvalues are given in the complex energy
plane for each partial wave.

� = 0+,2+ and 4+ are obtained as (Eres
r ,�r ) = (0.941,4 ×

10−5),(3.01,1.2),(11.75,4.4) in MeV, compared with the ex-
perimental data [23] (0.0918,(5.57 ± 0.25) × 10−6),(2.94 ±
0.01,1.51 ± 0.02),(11.35 ± 0.15, ∼3.5) in MeV, respectively.
Using continuum solutions in addition to these resonance ones
as shown in lower panels of Fig. 4, the CLD and the scattering
phase shifts are calculated. Here, to see the resonance and
continuum phase shifts for positive energies, we redefined
them in positive energies;

δ̂R(E) =
∫ E

0
dE′

Nθ
r∑

r=1

�r/2(
E′ − Eres

r

)2 + �2
r /4

,

δ̂C(E) =
∫ E

0
dE′

⎡
⎣ Nθ

c∑
c=1

εi
c(

E′ − εr
c

)2 + (
εi
c

)2 (26)

−
N∑

k=1

ε0i
k(

E′ − ε0r
k

)2 + (
ε0i
k

)2

⎤
⎦ .

It is noticed that Nbπ + δ̂R(E) + δ̂C(E) = δN (E) for E >
0. The results of δ̂R(E) and δ̂C(E) are shown in upper panels
of Fig. 4.

From lower panels of Fig. 4, it is seen that one resonant
pole in every partial wave of � = 0,2, and 4 is obtained. There
are no other resonant poles which can make any structure
in the resonance phase shifts as seen in upper panels of
Fig. 4. In the case of � = 0, the resonance term shows a
sharp resonance behavior because of the very small resonance
width, and the continuum term shows a rather strong repulsive
behavior. The � = 2 case shows that the resonance behavior
is weakened by the large continuum contribution repulsively.
On the other hand, in the � = 4 case, the resonance behavior
remains due to a small contribution of the continuum term,
which shows a repulsive nature like other partial waves. This
repulsive nature of the continuum terms for � = 0 and 2 can be
understood in association with presence of the Pauli-forbidden
states. Because the forbidden states act as bound states to be
orthogonal to the scattering solutions, they cause a repulsive
nature of the continuum phase shifts.

The α-n system is described by using the Hamiltonians

H = −5�
2

8M
∇2 + Vα−n(r) + V̂F ,

(27)

H0 = −5�
2

8M
∇2,
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TABLE II. Parameters of the α − n KKNN potential [25].

V C (MeV) μC (fm−2) V C
� (MeV) μC

� (fm−2)

−96.3 0.36 34.0 0.20
Central 77.0 0.90 −85.0 0.53

51.0 2.50

V �s (MeV) μ�s (fm−2) V �s
� (MeV) μ�s

� (fm−2)
Spin orbit −16.8 0.52 −20.0 0.396

20.0 2.200

where for the α-n potential we use the so-called microscopic
KKNN potential [25] given by

Vα−n(r) =
2∑

i=1

V C
i exp

(−μC
i r2

)

+ (−1)�
3∑

i=1

V C
�i exp

(−μC
�ir

2
)

+ (� · s)

[
V �s exp

(−μ�sr2
)

+ {1 + 0.3(−1)�−1}
2∑

i=1

V �s
�i exp

(−μ�s
�i r

2
)]

.

(28)

The parameters are given in Table II. The Pauli potential is
defined with the harmonic oscillator wave function as

V̂F = V 0
F |0s〉〈0s|, (29)

where the oscillator size parameter is taken to be bF =
1.565 fm and V 0

F = 106 MeV.
Using the Gaussian basis functions, we solve the complex

scaled eigenvalue problems for the Hamiltonians of Eq. (27)
with θ = 20◦ and N = 20 as well. The results for the p3/2

and p1/2 waves are presented in Fig. 5. One resonant pole
of the α-n system is obtained: (Eres

r ,�r ) = (0.74,0.59) MeV
for p3/2 and (2.10,5.82) MeV for p1/2, which are compared
with the experimental data (Eres

r ,�r ) = (0.798,0.648) MeV for
p3/2 and (1.27,5.57) MeV for p1/2 [26]. Using these results
and Eq. (26), we calculate the resonance, continuum, and
total phase shifts, which are shown in upper panels of Fig. 5
together with experimental data. We can see a good agreement
between theoretical and experimental results. The resonance
phase shift of p3/2 increases rapidly due to the small decay
width. Although p1/2 has a larger width, the phase shift of p1/2

shows a clear resonance behavior beyond π/2. The continuum
phase shifts of both states are very similar. This trend seems
due to the same p wave scattering and a small effect of the �s
force to the background states.

The property of the scattering phase shifts is determined
from a sum of resonance and continuum terms. Therefore, the
observed resonances depend on not only resonant states as
poles but also the contribution from the continuum state. The
α-α and α-n systems show to keep resonance behavior in spite
of existence of continuum contributions. On the other hand,

p1/2
0.5
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/
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p3/2
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0 5 10 15 20 25

(r
ad

./

Energy (MeV)

p3/2

Energy (MeV)

0 2 4 6 8 10

ReE (MeV)

4

2

0
0 2 4 6 8 10

M
eV

)

ReE (MeV)

0.5
Energy (MeV)
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E

 (M
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p1/210 p3/2

FIG. 5. Upper panel: The decomposition of the scattering phase
shifts of α-n system for (a) p3/2 and (b) p1/2. The dashed and dotted
lines represent the contributions of the resonance and continuum
terms, respectively. The solid lines display total scattering phase
shifts. The experimental data [27] are shown with open circles. Lower
panel: The distributions of eigenvalues are displayed in the complex
energy plane.

the resonant poles higher than the third one in the Gyarmati
potential can not be distinguished as resonances in the phase
shifts. They are absorbed in the continuum states.

C. Scattering cross sections of the α-n and α-α systems

The partial cross sections σ�(E) are given in Eq. (16), and
the total cross section is expressed as

σ (E) =
∞∑
�

σ�(E). (30)

In Fig. 6, we show the comparison of our computed total cross
sections with experiments of the α-n system. The experimental
data are taken from Ref. [28]. It is found that the calculated total
cross sections are in good agreement with the experimental
data in a wide energy region. A very sharp peak is observed at
the low energy around 2 MeV and has a long tail distribution

0

2

4

6

8

10

0 5 10 15 20 25 30

(b
ar
n)

Energy (MeV)

experimental cross sec�on
theore�cal cross sec�on

Energy (MeV)

FIG. 6. Total cross sections as functions of relative energy of the
α-n system. The dotted line shows the present calculation and open
circles are experimental data [28].
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FIG. 7. The partial cross sections of the (a) p1/2 and (b) p3/2

waves. The dashed, dotted, and solid lines denote the results
of resonance, continuum contributions, and partial cross sections,
respectively.

in higher energies. The low-energy cross section dominantly
comes from � = 1 partial waves as seen below. The s wave has
no resonance due to no barrier. A virtual state corresponding to
a pole on the negative imaginary momentum axis can appear
in s waves when the interaction between α and neutron has
an appropriate strength. However, the KKNN potential is not
so strong as to produce such a virtual state [29] and has a
repulsive nature for s waves.

Figure 7 shows the partial cross sections of p3/2 and p1/2

waves, which are decomposed into contributions of resonance
and continuum terms, respectively. The partial cross sections
are calculated using Eq. (16). Resonance and continuum cross
sections are calculated using resonance and continuum phase
shifts of δ̂R(E) and δ̂C(E), respectively, in Eq. (26) and are
presented in Fig. 5. We see that the peak of the total cross
section corresponds to the sharp resonance peak in p3/2 and the
resonance cross section of p1/2 gives rather broad distribution.
The continuum cross sections show the similar behavior in the
p1/2 and p3/2 waves, which are presented by doted lines in
Fig. 7.

In Fig. 8, partial cross sections and their decomposition
into resonance and continuum terms are shown for � = 2 and
4 waves of the α-α system. The partial cross section for � =
0 is too sharp, like the δ function, because the small decay
width of the � = 0 resonance. Then, we skipped the � = 0
partial cross section. For � = 2 and 4, resonance cross sections
have the shapes like the Breit-Wigner form. The continuum
contribution of � = 2 is rather large, while it is small in � = 4.
The partial cross section of � = 4 is not so different from the
resonance cross section as compared to the � = 2 case. It is
interesting that the peak energies of the partial cross section
fairly shift from the position of the resonance energies.

IV. DISCUSSION AND SUMMARY

The advantage of the CSM is to decompose the unbound
states into resonant and nonresonant continuum states by

0 5 10 15 20

Energy (MeV)

�=4

par�al cross sec�on
resonance contribu�on
continuum contribu�on

0.0

0.5

1.0

1.5

2.0

2.5

0 5 10 15 20

(b
ar

n)

Energy (MeV)

�=2

par�al cross sec�on
resonance contribu�on
continuum contribu�on

(a) (b)

Energy (MeV)Energy (MeV)

FIG. 8. The partial cross sections in (a) � = 2 and (b) 4 waves of
the α-α system. The dashed, dotted, and solid lines denote the results
of resonance, continuum contributions, and partial cross sections,
respectively.

rotating the branch cut on the complex energy plane with
parameter θ . As a result, we can separate a physical quantity
into two parts associated with resonant and nonresonant
continuum states. To investigate directly the properties of the
continuum states on the 2θ line in the CSM, the phase shifts on
the 2θ line were calculated for the Gyarmati potential [19]. The
phase shifts on the 2θ line are obtained as complex values and
the real parts are presented for various θ values in Fig. 9. For
θ = 0, the calculated phase shift is very similar to the δN (E) in
Figs. 2 and 3. In Fig. 9, the θ values are taken for resonant poles
so as to be separated one by one from the continuum states. The
phase shifts show a jump of π at the asymptotic energies due to
existence of a resonance between neighboring θ values. This
behavior is completely the same as δN

Nθ
r
(E) shown in Fig. 3.

From this result, we can understand the physical meaning of

FIG. 9. The real part of complex phase shift on the 2θ line for
the J π = 0+ wave at different scaling angles. Energy is given by the
absolute value measured from the threshold.
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the 2θ line and the solutions obtained along this line in the
CSM. In a practical application, we can analyze the scattering
quantities, decomposing them into sharp resonance term and
background term like the relation δN (E) = δ̂θ

R + δ̂θ
C discussed

above.
The decomposition of a cross section is not so simple,

because it is not equal to a direct sum of resonance and
continuum cross sections due to their interference. Since the
study by Fano [15], many discussions have occurred. Inserting
δ̂θ
R + δ̂θ

C into Eq. (16), we have the so-called Fano formula [30]

Eσ�(E) ∝ sin2
(
δ̂θ
R + δ̂θ

C

) = (q + ε)2

(1 + q2)(1 + ε2)
, (31)

where ε = − cot δ̂θ
R and q = − cot δ̂θ

C . In many discussions, δr

and δc defined in Eq. (13) have been used instead of δ̂R and
δ̂C . When Eres

r > �r/2, they almost coincide with each other.
Using the Fano formula, we can understand how the shape of
the cross section deviates from the Breit-Wigner form.

In this work we discussed scattering phase shifts and cross
sections in the framework of the CSM to investigate the
unbound states of two-cluster systems. Using complex energy
eigenvalues of resonant and nonresonant continuum states, the
analytic form of the phase shifts is derived in a form of sum
of resonance and continuum terms in addition to the constant
term coming from bound states. This decomposition of phase
shifts are very useful to see the resonance contributions in the
observed phase shifts and cross sections.

The framework was applied to a simple schematic poten-
tial, the so-called Gyarmati potential [16], producing many
resonances for Jπ = 0+ and 1− states. The results indicate
that resonances embedded in continuum energies are exposed
by using the CSM, and their contributions to the phase shift

are made distinctive. This means that the present approach is
very promising to understand the role of resonances and their
structures in the scattering observables. It is confirmed that the
present results of calculation of the phase shift and extracting
the resonance terms show a good correspondence with the
previous calculations in Ref. [19].

Applying the present framework to the α-α and α-n
systems, we obtained the good reproduction of the observed
phase shifts and cross sections. The decomposition into
resonance and continuum terms makes clear that resonance
contributions are dominant but continuum terms and their
interference are not negligible. To understand the behavior of
observed phase shifts and the shape of the cross sections, both
resonance and continuum terms must be taken into account. If
the continuum term is zero, the cross section exhibits a typical
Breit-Wigner form. As was discussed by Fano [15], deviation
from the Breit-Wigner form can be investigated by calculating
the interference between resonance and continuum terms.

The present method of analyzing the phase shifts and cross
sections is also useful in nuclear data evaluations. To study
a wider range of nuclear data, it is desirable to develop the
method further to include multichannel systems and to treat
many-body systems.
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[5] S. Aoyama, T. Myo, K. Katō, and K. Ikeda, Prog. Theor. Phys.

116, 1 (2006).
[6] M. Homma, T. Myo, and K. Katō, Prog. Theor. Phys. 97, 561
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[7] T. Myo, R. Ando, and K. Katō, Phys. Lett. B 691, 150 (2010).
[8] T. Myo, Y. Kikuchi, and K. Katō, Phys. Rev. C 85, 034338
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[10] T. Myo, K. Katō, H. Toki, and K. Ikeda, Phys. Rev. C 76, 024305

(2007).
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