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Nonlocalized cluster dynamics and nuclear molecular structure
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Chang Xu,9 and Taiichi Yamada10

1Key Laboratory of Modern Acoustics and Department of Physics, Nanjing University, Nanjing 210093, China
2Research Center for Nuclear Physics (RCNP), Osaka University, Osaka 567-0047, Japan

3Nishina Center for Accelerator-Based Science, The institute of Physical and Chemical Research (RIKEN), Wako 351-0198, Japan
4International Institute for Advanced Studies, Kizugawa 619-0225, Japan

5Center of Theoretical Nuclear Physics, National Laboratory of Heavy-Ion Accelerator, Lanzhou 730000, China
6Institut für Physik, Universität Rostock, D-18051 Rostock, Germany
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A container picture is proposed for understanding cluster dynamics where the clusters make nonlocalized
motion occupying the lowest orbit of the cluster mean-field potential characterized by the size parameter “B” in
the Tohsaki-Horiuchi-Schuck-Röpke (THSR) wave function. The nonlocalized cluster aspects of the inversion-
doublet bands in 20Ne which have been considered as a typical manifestation of localized clustering are discussed.
An as-yet-unexplained puzzling feature of the THSR wave function, namely that after angular-momentum
projection for two-cluster systems the prolate THSR wave function is almost 100% equivalent to an oblate THSR
wave function, is clarified. It is shown that the true intrinsic two-cluster THSR configuration is nonetheless prolate.
The proposal of the container picture is based on the fact that typical cluster systems, 2α, 3α, and 16O + α, are
all well described by a single THSR wave function. It is shown for the case of linear-chain states with 2- and 3α

clusters, as well as for the 16O + α system, that localization is entirely of kinematical origin, that is, attributable
to the intercluster Pauli repulsion. It is concluded that this feature is general for nuclear cluster states.
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I. INTRODUCTION

The formation of clusters is a general problem in many-
body physics that occurs in various systems. In particular, it is
one of the most important features in light nuclei [1–4] together
with the formation of the usual nucleon mean field. A very
novel cluster state in light nuclei is the α-condensate-like state
which has attracted increasing interest in recent years [5–32].
This state can be considered as a gaslike state of clusters in
which the center-of-mass motion of each α cluster in nuclei
occupies the same 0s orbit. The Tohsaki-Horiuchi-Schuck-
Röpke (THSR) wave function [5] proposed for treating the
α-condensate-like state has been proved to be very suitable for
the realistic description of the dilute gaslike state of clusters.
Actually, in the case of the Hoyle state (the second 0+ state) of
12C, it was found that the full microscopic solutions [33] of the
3α resonating group method (RGM) [34] and that [35] of the
generator coordinate method (GCM) with the Brink wave func-
tion [34] are almost 100% equivalent to single 3α THSR wave
functions [7]. Also in the case of the ground-state band of 8Be,
the full microscopic solutions of the 2α RGM or its equivalent
GCM with the Brink wave function were found to be practi-
cally 100% equivalent to single 2α THSR wave functions [6].
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Although the THSR wave function was devised for describ-
ing the gaslike state of clusters, it was already found a decade
ago in Ref. [7] that the wave functions of the ground state of 12C
with normal density obtained by 3α RGM and 3α Brink-GCM
calculations have a large value of about 0.93 for the squared
overlap with single 3α THSR wave functions. Recently, the
present authors found [36] that the 16O + α Brink-GCM wave
functions of the states of the ground-state rotational band of
20Ne with normal density are almost 100% equivalent to single
16O + α THSR wave functions. These results show that the
THSR wave function has an ability which was not expected
at first; namely, it can be used to study not only the gaslike
cluster states with low density but also (cluster) states with
normal density.

In 20Ne, the ground-state rotational band with Kπ = 0+
1

is known to constitute an inversion doublet together with the
negative-parity rotational band with Kπ = 0−

1 built upon the
1− state at the excitation energy Ex = 5.79 MeV. The existence
of the inversion-doublet bands has been regarded as being
a clear manifestation of the existence of the parity-violating
intrinsic state owing to the 16O + α localized clustering. In
general, in nonidentical two-cluster systems, the existence of
inversion-doublet bands has been regarded as a clear indication
of the existence of the localized cluster structure together
with the observation of the large cluster decay widths. This
argument implies that we have to regard the states of the
ground-state rotational band of 20Ne as having a 16O + α
localized clustering. However, the THSR wave function is the
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wave function of nonlocalized clusters, as is shown by the fact
that it was devised for describing cluster-gas-like states. This
puzzle of localized or nonlocalized clustering which is found
in the ground-state band states of 20Ne is the same as that
presented in Ref. [6], where it was shown that the ground-state
band states of 8Be which have been regarded long since as
having the localized α + α structure are very well described by
single 2α THSR wave functions which are the wave functions
of nonlocalized clusters.

To investigate in detail the above-mentioned puzzle in
the ground-state band of 20Ne, the negative-parity rotational
band built upon the 1− state at Ex = 5.79 MeV, which is
the inversion-doublet partner of the ground-state band, was
studied by using the THSR wave functions in Ref. [37]. It
was found that, also in this negative-parity rotational band,
the 16O + α Brink-GCM wave functions are almost 100%
equivalent to single 16O + α THSR wave functions. Thus, both
rotational bands constituting the inversion doublet are found
to have a nonlocalized cluster structure of 16O and α. This is
an astonishing finding because, as we mentioned above, the
existence of the inversion-doublet bands has been regarded as a
clear manifestation of the existence of the localized clustering.
We have to answer the question, “Is it possible to explain the
existence of inversion-doublet bands from the nonlocalized
cluster dynamics?”

The purpose of this paper is to answer the question of
how the nonlocalized cluster dynamics described by the
THSR wave function can be compatible with the concept
of a localized cluster structure, which has explained the
existence of rotational spectra and inversion-doublet bands.
Our purpose is then to propose a new understanding of nuclear
cluster dynamics. We discuss the cluster dynamics being of a
nonlocalized nature with the intercluster Pauli repulsion giving
rise to the molecular structure of clusters, which in 20Ne is
the 16O + α molecular structure that generates the inversion-
doublet rotational bands. To achieve this goal, we have to solve
some problems we have encountered in the two papers on 20Ne
(Refs. [36,37]) and also in the previous papers on structure
studies with the use of THSR wave functions. For example, in
Refs. [36,37] it is reported that the THSR wave functions of the
ground-state band at the minimum-energy points are of prolate
shape while those of the negative-parity band are oblate. As is
mentioned in Ref. [37], the oblate THSR wave functions of the
negative-parity band are almost 100% equivalent to respective
prolate THSR wave functions. This fact is necessary to
maintain the idea that both positive-parity and negative-parity
bands are generated from the same intrinsic state. The fact that
after the angular-momentum projection a prolate THSR wave
function is almost equivalent to a certain oblate THSR wave
function and vice versa was found and discussed already in
the study of 8Be [6] and also in the study of 12C [10]. In this
paper we clarify the reason and the physical meaning of this
fact which is general in the case of two-cluster systems. We
explain that in two-cluster systems there exists no physically
oblate deformation by showing that after angular-momentum
projection even oblate THSR wave functions give negative
quadrupole moments, implying that the intrinsic quadrupole
moment is of positive sign and hence the intrinsic deformation
is prolate. We also show that any oblate THSR wave function

is equivalent almost 100% to a rotation average of a prolate
THSR wave function around the axis perpendicular to the
symmetry axis of prolate deformation. We calculate the density
distribution of prolate THSR wave functions to demonstrate
undoubtedly that the intercluster Pauli repulsion gives rise
to molecular structures. We see that the THSR wave function
that expresses nonlocalized clusters corresponds to the density
distribution of the molecular configuration of clusters. Our
new understanding of nuclear cluster dynamics can be stated
in saying that nuclear dynamics are basically of nonlocalized
nature but the Pauli repulsion makes the two-cluster system
look like having effectively localized clustering. Based on the
fact that all the cluster states we have ever studied by using
THSR wave functions are well described by single THSR wave
functions, we know that the clusters make independent motion
occupying the lowest orbit of the harmonic-oscillator-like
mean-field potential characterized by the size parameter B
with a magnitude similar to the nuclear radius. We already
know that the excitation mode of the system is well described
by the Hill-Wheeler equation with the parameter B treated as
the Hill-Wheeler coordinate in the systems of 3α’s [5,7,10] and
4α’s [5,29]. Therefore, we see that the excitation of the system
is described first by the dynamics of the size parameter B
which is adopted as the generator coordinate and second by the
excitation of the single-particle motion of clusters in their own
mean-field potential. We call our new understanding of nuclear
cluster dynamics the container picture of nuclear clustering,
by which we aim to stress that the central quantity of cluster
dynamics is the size parameter B of the cluster mean-field
potential which we call the container. It is clear that in this
picture the existence of cluster-gas states is natural and the
formation mechanism of cluster-gas states is just attributable
to the wide extension of the container.

To further facilitate the understanding of the picture we
want to promote, it may be helpful for the reader to view the
cluster motion in the container as free as long as the clusters do
not overlap with one another. This picture, which is similar to
the concept of excluded volume, applies mostly to states of low
density (8Be and Hoyle state in 12C). However, as we see in this
paper, also strongly deformed states can easily show cluster
structures of this type. It should be kept in mind, however, that
this “container picture” is at its limit for two-cluster systems
which are strongly prolate, i.e., of molecular structure, but
becomes more and more adequate for low-density states with
more than two clusters when the container is either spherical
or not so strongly deformed.

The organization of this paper is as follows. In Sec. II,
we discuss the hybrid-Brink-THSR wave function and the
energy surfaces corresponding to this wave function. As shown
in Ref. [37], energies are lowest for vanishing intercluster
distance parameter. In Sec. III, we discuss the properties
of the wave function with respect to the energy surface,
where we discuss large overlaps between prolate and oblate
THSR wave functions after angular-momentum projection.
In Sec. IV, we point out that in two-cluster systems there
exists no physically oblate deformation and then show that the
reason is that any oblate THSR wave function is equivalent
almost 100% to a rotation average of a prolate THSR wave
function. In Sec. V, we discuss the container picture of nuclear
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clustering. In that section, we show that the THSR wave
functions of two-cluster systems have the density distribution
of molecular configuration of clusters, which is caused by the
intercluster Pauli repulsion. In Sec. VI, we give our summary
with discussions.

II. HYBRID-BRINK-THSR WAVE FUNCTION,
PREFERENCE OF ZERO INTER-CLUSTER DISTANCE,
AND THE EQUIVALENCE OF THE BRINK-GCM WAVE

FUNCTION TO A SINGLE THSR WAVE FUNCTION

Let us begin with the original, deformed THSR wave
function [6], which was introduced to describe gaslike nα
cluster states with dilute density,

�nα(β) =
∫

d3R1 · · · d3Rn exp

⎛⎝−
n∑

i=1

∑
k=x,y,z

R2
ik

β2
k

⎞⎠
×�B

nα(R1, . . . ,Rn) (1)

∝ A
⎡⎣ n∏

i=1

exp

⎛⎝−2
∑

k=x,y,z

X2
ik

B2
k

⎞⎠φ(αi)

⎤⎦ , (2)

where

�B
nα(R1, . . . ,Rn) = 1√

(4n)!
det[φ0s(r1 − R1)χτ1,σ1

· · · φ0s(r4n − Rn)χτ4n,σ4n
] (3)

∝ A
[

n∏
i=1

exp

{
−2

(X i − Ri)2

b2

}
φ(αi)

]
.

(4)

Here B2
k = b2 + 2β2

k , (k = x,y,z), b is the size parameter of
the harmonic-oscillator wave function, X i is the center of mass
of the ith α cluster αi , and φ(αi) represents the internal wave
function of αi . �B

nα(R1, . . . ,Rn) is the nα Brink wave function,
which is written as a Slater determinant in Eq. (3). χτ,σ is
the spin-isospin wave function of a nucleon. φ0s(r − R) is a
0s harmonic-oscillator wave function around a center R as
follows:

φ0s(r − R) =
(

1

πb2

) 3
4

exp

[
− (r − R)2

2b2

]
. (5)

It is to be noted that a new parameter β (or B), representing
the size of the nucleus, is introduced in the THSR wave
function, which is completely different from the parameter
Ri , representing the position of the ith α cluster in the
Brink wave function Eq. (4). In the THSR wave function,
the nα clusters occupy an identical orbit exp(−2X2

x/B
2
x −

2X2
y/B

2
y − 2X2

z/B
2
z ), and as far as Bk � b for (k = x,y,z), the

antisymmetrizer A is negligible. Then the nα clusters make
an independent nonlocalized motion like a gas in the whole
nucleus whose size is characterized by the parameter B [28].

However, recently, to extend and further clarify the concept
of nonlocalized clustering even in non-gas-like cluster states
with more compact density, we proposed a new type of
microscopic cluster wave function [37], which we call hybrid-

Brink-THSR wave function,

�cluster(β i ,Si)

=
∫

d3R1 . . . d3Rn exp

⎧⎨⎩−
n∑

i=1

∑
k=x,y,z

R2
ik

β2
ik

⎫⎬⎭
×�B

cluster(R1 + S1, . . . ,Rn + Sn) (6)

∝ A
⎡⎣ n∏

i=1

exp

⎧⎨⎩−Ai

∑
k=x,y,z

(Xik − Sik)2

2B2
ik

⎫⎬⎭φ(Ci)

⎤⎦ , (7)

�B
cluster(S1, . . . ,Sn)

= A
[

n∏
i=1

exp

{
−Ai

(X i − Si)2

2b2

}
φ(Ci)

]
. (8)

Here β i ≡ (βix,βiy,βiz), and X i and φ(Ci) are the center-of-
mass coordinate and the internal wave function of the cluster
Ci , respectively. Different clusters Ci can have different mass
numbers Ai and variational parameters β i . The oscillator pa-
rameter of the cluster Ci is called b, which also can be adopted
so as to have different values for different clusters. �B

cluster is
the corresponding general Brink model wave function [38].

In Eq. (6), another generator coordinate Si is introduced to
the original THSR wave function Eq. (1). It can be seen from
Eq. (7) that this hybrid wave function combines the important
characters of the Brink model as in Eq. (8) and the THSR
wave function in a very simple way. When Si = 0, Eq. (6)
corresponds to the THSR wave function and β i or Bi becomes
the size parameter. When βik = 0, i.e., Bik = b(k = x,y,z),
this equation is nothing more than the Brink wave function
Eq. (8) and Si is the position parameter of the cluster Ci .

As we know, the THSR model provides a nonlocalized
clustering picture for the cluster structure rather than the
localized clustering represented by the Brink model [28].
Because these two different kinds of pictures for clustering
are both included in the hybrid-Brink-THSR wave function
as the aforementioned two limits, this hybrid wave function
provides a very nice way of verifying which picture is more
adequate for understanding the relative motions of the cluster
structures in nuclei.

Now, based on the above hybrid-Brink-THSR wave func-
tion, the following cluster wave function of 20Ne can be
obtained, as was considered in Ref. [37],

�Ne(β,S) =
∫

d3R exp

{
−

(
4R2

x

5β2
x

+ 4R2
y

5β2
y

+ 4R2
z

5β2
z

)}

×�B
Ne

(
4

5
(R + S),−1

5
(R + S)

)
(9)

∝ exp

(
−10X2

G

b2

)
�̂Ne(β,S),

�̂Ne(β,S) = A
⎡⎣exp

⎧⎨⎩−
∑

k=x,y,z

8(rk − Sk)2

5B2
k

⎫⎬⎭φ(α)φ(16O)

⎤⎦ ,

(10)
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where B2
k = b2 + 2β2

k , (k = x,y,z), r = X1 − X2, XG =
(4X1 + 16X2)/20, and �̂Ne(β,S) is the intrinsic wave function
where the spurious center-of-mass motion is eliminated from
�Ne(β,S) in Eq. (9). X1 and X2 represent the center-of-mass
coordinates of the α cluster and the 16O cluster, respectively.
All calculations are performed with restriction to axially sym-
metric deformation, that is, βx = βy �= βz and S ≡ (0,0,Sz).
The spin and parity eigenfunctions can be obtained by the
angular-momentum projection technique [36],

�̂Jπ

Ne(β,S) = P̂ J
M0�̂Ne(β,S), (11)

where the parity π = (−1)J and P̂ J
M0 is the angular-

momentum-projection operator.
The nuclear Hamiltonian we use in this work is given as

Ĥ =
20∑
i=1

Ti − TG +
20∑

i<j

(
V

(N)
ij + V

(C)
ij

)
, (12)

where the center-of-mass kinetic energy TG is subtracted from
the one-body kinetic term Ti . As the nuclear interaction V

(N)
ij ,

we adopt the same effective nuclear force, Volkov No. 1 with
the Majorana parameter M = 0.59, and the same oscillator
parameter b = 1.46 fm, as were used in our previous papers
[36,37]. V

(C)
ij is the Coulomb interaction between protons.

Figure 1 shows the contour map of the energy surface of the
intrinsic wave function of 20Ne in the two-parameter space, Sz

and βx = βy = βz, i.e., the following quantity:

E(βx = βy = βz,Sz)

= 〈�̂Ne(βx = βy = βz,Sz)|Ĥ |�̂Ne(βx = βy = βz,Sz)〉
〈�̂Ne(βx = βy = βz,Sz)|�̂Ne(βx = βy = βz,Sz)〉

.

(13)

We see that the minimum energy −159.66 MeV appears at
Sz = 0 and βx = βy = βz = 1.8 fm. The value Sz = 0 means

FIG. 1. Contour map of the energy surface of the intrinsic wave
function of 20Ne in the two-parameter space, Sz and βx = βy = βz.

FIG. 2. Contour map of the energy surface of the J π = 0+ state
in the two-parameter space, Sz and βx = βy = βz.

the intrinsic hybrid-Brink-THSR wave function becomes
the intrinsic THSR wave function in describing the ground
state of 20Ne. This result indicates that the intrinsic THSR
wave function based on the nonlocalized clustering is more
suitable for describing the ground state of 20Ne than the Brink
wave function.

Next, we perform angular-momentum projection following
Eq. (11) on the intrinsic hybrid-Brink-THSR wave function
�̂Ne(β,S) in Eq. (10) for the spherical case βx = βy = βz and
then make the following variational calculations for obtaining

FIG. 3. Contour map of the energy surface of the J π = 2+ state
in the two-parameter space, Sz and βx = βy = βz.
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FIG. 4. Contour map of the energy surface of the J π = 4+ state
in the two-parameter space, Sz and βx = βy = βz.

the optimum wave functions:

EJπ

(βx = βy = βz,Sz)

=
〈
�̂Jπ

Ne(βx = βy = βz,Sz)
∣∣Ĥ ∣∣�̂Jπ

Ne(βx = βy = βz,Sz)
〉〈

�̂Jπ

Ne(βx = βy = βz,Sz)
∣∣�̂Jπ

Ne(βx = βy = βz,Sz)
〉 .

(14)

Figures 2–7 show the contour maps of the above quantity for
the different Jπ states of the inversion-doublet bands in 20Ne in
the two-parameter space, Sz and βx = βy = βz. It is surprising
to find that the obtained minimum energies with respect to the
projected states all appear at Sz = 0. For instance, the obtained

FIG. 5. Contour map of the energy surface of the J π = 1− state
in the two-parameter space, Sz and βx = βy = βz.

FIG. 6. Contour map of the energy surface of the J π = 3− state
in the two-parameter space, Sz and βx = βy = βz.

minimum energy −159.66 MeV for Jπ = 0+ state appears at
Sz = 0 and βx = βy = βz = 1.8 fm. For the Jπ = 1− state,
the minimum energy −155.33 MeV appears at Sz = 0 and
βx = βy = βz = 2.4 fm in the contour map. The intercluster
distance parameter Sz = 0 means that this hybrid-Brink-THSR
wave function tends to a pure THSR wave function in
describing the cluster states of the inversion-doublet bands
in 20Ne.

It should be noted that although Sz does not give any
contribution to the energy gain, it still plays an important role in

FIG. 7. Contour map of the energy surface of the J π = 5− state
in the two-parameter space, Sz and βx = βy = βz.
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providing negative-parity states. This is because the parameter
Sz is the only component which breaks the parity symmetry,
as is clearly seen in the form of the intrinsic wave function
�̂Ne(β,S) in Eq. (10). In the following, we demonstrate that the

negative-parity states can be constructed even in the limiting
situation, Sz → 0, for the βx = βy = βz case, for simplicity.
The angular-momentum projected hybrid-Brink-THSR wave
function can then be written as

P̂ L
M0�̂Ne(βx = βy = βz,Sz) ∝ A[

jL(2iγ Szr)YLM ( r̂ )e−γ r2
φ(α)φ(16O)

]
(15)

∝ SL
z �

(0)
LM + O(

SL+2
z

)
, (16)

�
(0)
LM = A[

rLe−γ r2
YLM ( r̂ )φ(α)φ(16O)

]
. (17)

Here γ = 8/(5B2) with B2 = B2
x = B2

y = B2
z . Now the normalized and projected wave function of Eq. (17) can be obtained

analytically, in the limit of Sz → 0, as follows:

�
(0)
LM√〈

�
(0)
LM

∣∣�(0)
LM

〉 = lim
Sz→0

P̂ L
M0�̂Ne(βx = βy = βz,Sz)√〈

P̂ L
M0�̂Ne(βx = βy = βz,Sz)

∣∣P̂ L
M0�̂Ne(βx = βy = βz,Sz)

〉 . (18)

The above variational calculations with the hybrid-Brink-
THSR wave function put the parameter Sz to zero for the
inversion-doublet bands. This means that, in spite of the
fact that a pure Brink wave function gives a distinct energy
minimum point with nonzero Sz, the localized clustering
picture cannot be supported. We can realize this situation by
looking at Fig. 8, which shows the energy curves of the lower
excited states of the inversion-doublet bands with different
widths of the Gaussian relative wave functions in the hybrid
model. If β is fixed at 0, the hybrid-Brink-THSR wave function
becomes the Brink wave function. In this case, Sz is the
intercluster distance parameter and it is usually regarded as
a dynamics parameter for describing the cluster system. For
instance, the minimum energy of the ground state of 20Ne
appears at Sz = 3.0 fm. For the Jπ = 1− state, the optimum
position appears at Sz = 3.9 fm. The nonzero values of Sz

seem to indicate that the 16O + α structure of 20Ne favors
localized clustering. This is just the traditional concept of
localized clustering. Now we believe that this argument is
misleading [37]. The nonzero minimum point Sz simply occurs

FIG. 8. (Color online) Energy curves of J π = 0+, 2+, 1−, and 3−

states with different widths of Gaussian relative wave functions in the
hybrid model.

because the width of the Gaussian wave function of the relative
motion in the Brink model is fixed to a narrow wave packet,
characterized by the parameter b. If we take nonzero values
for β, namely, βx = βy = βz = 1.8, 1.5, 2.4, and 1.9 fm for
Jπ = 0+, 2+, 1−, and 3− states, respectively, according to their
minimum positions in the contour maps, then we find that the
minimum points appear at Sz = 0 in Fig. 8. This indicates that
the separation distance parameter Sz does not play any physical
role in describing the 16O + α cluster structure, even for the
negative-parity states. Instead of that, the new parametrization
by β, which characterizes nonlocalized clustering, is more
appropriate for describing the cluster structure in 20Ne.

Now that the parameter Sz tends to be zero in the obtained
hybrid wave functions of the inversion-doublet bands in
20Ne, we can make further variational calculations in the
two-parameter space, βx = βy and βz, using the projected
hybrid-Brink-THSR wave function with the parameter Sz = 0.
(In practical calculations Sz is fixed at a very small value close
to zero.) We can write the formula as follows:

EJπ

(βx = βy,βz) =
〈
�̂Jπ

Ne(βx = βy,βz)
∣∣Ĥ ∣∣�̂Jπ

Ne(βx = βy,βz)
〉〈

�̂Jπ

Ne(βx = βy,βz)
∣∣�̂Jπ

Ne(βx = βy,βz)
〉 .

(19)

Here �̂Jπ

Ne(βx = βy,βz) ≡ �̂Jπ

Ne(βx = βy,βz,Sz → 0). The ob-
tained minimum energies and the corresponding values of
βx = βy and βz using the THSR-type wave functions are listed
in Table I.

However, the exact solution of the 16O + α cluster system
can be obtained by superposing the single Brink wave
functions, that is, the Brink-GCM wave function:∑

j

〈
�Jπ

Brink(Ri)
∣∣Ĥ − E

∣∣�Jπ

Brink(Rj )
〉
f (Rj ) = 0. (20)

Here �Jπ

Brink(Ri) can be obtained directly from the projected
Brink wave function �Jπ

Brink( 4
5 R,− 1

5 R) with R = (0,0,Ri).
Thus, by solving the Hill-Wheeler equation Eq. (20), we can
obtain the following Brink-GCM wave function,

�Jπ

GCM =
∑

i

f (Ri)�
Jπ

Brink(Ri). (21)
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TABLE I. EJπ

min(βx = βy,βz) are the minimum energies at the
corresponding values of βx = βy and βz in the hybrid model. The
squared overlaps between the single normalized projected THSR-type
wave functions �̂THSR

Min corresponding to the minimum energies and
the normalized Brink-GCM wave functions are also listed. Units of
energies are MeV.

State EJπ

min(βx = βy,βz) |〈�̂THSR
Min |�̂Brink

GCM〉|2

0+ −159.85(0.9, 2.5) 0.9929
2+ −158.53(0.0, 2.2) 0.9879
4+ −155.50(0.0, 1.8) 0.9775
1− −155.38(3.7, 1.4) 0.9998
3− −153.07(3.7, 0.0) 0.9987

Thus, we can compare the single THSR-type wave function
with the exact Brink-GCM wave function [36] for the
description of the 16O + α cluster system by calculating their
squared overlap |〈�̂THSR

min |�̂Brink
GCM〉|2. In Table I, we can find that

the obtained single THSR-type wave functions have 99.29%,
98.79%, 97.75%, 99.98%, and 99.87% squared overlaps for
Jπ = 0+, 2+, 4+, 1−, and 3− states of 20Ne, respectively,
with the corresponding Brink-GCM solutions. These high
squared overlaps mean that the single THSR-type wave
functions are almost 100% equivalent to the corresponding
RGM/GCM wave functions; thus, these obtained single
angular-momentum projected THSR-type wave functions can
accurately describe the states of the inversion-doublet bands in
20Ne [36,37]. Moreover, the concept of nonlocalized clustering
proposed by the THSR-type wave function obtained from the
hybrid-Brink-THSR wave function is essential to correctly
understand the 16O+α cluster structure in 20Ne. In conclusion,
we can say that the Sz parameter in the hybrid wave function
only serves to sort out even and odd parities. The limiting
process Sz → 0 is very similar to the way with which one
obtains from an antisymmetrized product of two Gaussians
(S waves) a P -wave harmonic-oscillator wave function. One
first slightly displaces the centers of the Gaussians, then
antisymmetrizes and normalizes and then takes the limit of
displacement to zero [see Eq. (18)].

To better understand the difference between the Brink-type
wave function and the THSR one, let us point out the following.
Adjusting the B parameter(s) in the THSR wave function (1,
2) in an optimal way, we know that this single wave function
describes loosely bound cluster states as well as relatively
compact states very well and, besides, they are almost 100%
equivalent to strongly superposed Brink wave functions, i.e.,
the GCM solutions of Eq. (21), as already discussed above. The
term “single wave function” may need some clarification. With
this, we mean the normalized form Eq. (2) of the THSR wave
function which, indeed, is one single analytic wave function
(though it may be rather complicated in the case of a greater
number of α particles because of the antisymmetrization). The
other integral form Eq. (1) is useful in cases of many particles
for purely technical reasons, namely, just to avoid writing down
the complicated single wave function explicitly [5–7].

It is, of course, very clear that a single wave function grasps
the physics much better than a superposition of many wave
functions. A fair comparison between Brink and THSR wave

functions can only be done, if in both cases a single (optimized)
term is used. In the case of THSR it is the B parameter, and in
case of Brink, it is the distance parameter S, which have to be
optimized. The optimized S parameter is given at the energy
minima of Fig. 8. It is clear that this optimized “single” Brink
wave function cannot compete with the quality of the single
optimized THSR one (see Ref. [32]). It is, indeed, the role of
the strong superposition of Brink wave functions with varying
distance parameters S to delocalize the clusters, whereas in the
single THSR wave function Eq. (1) this delocalization, i.e., the
dynamic center-of-mass motion of the α particles, is already
incorporated with a single size parameter set (Bx,By,Bz) which
specifies the size of nucleus, i.e., the size of the container
confining constituent clusters. Thus, the size parameters are
more important than the distance parameters in describing the
clusters states. This is what is meant by our term “container
picture” explained here in detail.

The integral form of the THSR wave function is generated
from the Brink-type wave function [see Eq. (1)]. Thus, it is
self-evident that the THSR wave function with the optimal pa-
rameters can be expanded as a superposition of the Brink-type
wave functions. However, this THSR wave function in terms
of Brink ones may have a difference in the distribution of the
amplitudes of f (Ri) in the GCM solution of Eq. (21), because
redundant solutions of the RGM equation [1] can be involved in
f (Ri) and also in the Gaussian weight factors, exp(−R2

i /β
2),

in the integral form of the THSR wave function Eq. (1). For
example, in the THSR wave function, the Gaussian weight
factor, exp(−R2

i /β
2), is largest at Ri = 0 fm, but the Brink

wave function �B
nα(R1, · · · ,Rn) in the integrand of Eq. (1)

becomes the Pauli-forbidden states at Ri = 0 with the (0s)4n

configuration for n � 2, and then the contribution from Ri = 0
completely disappears owing to �B

nα(R1 = 0, · · · ,Rn = 0) =
0. This fact teaches us that the comparison between the
Gaussian weight factor and f (Ri) is not reasonable, because
both of them have some redundancy. Thus, when one makes a
comparison between the THSR wave function �THSR with the
optimal parameters and the GCM solution �GCM of Eq. (21),
one should take quantities free from the redundancy: For exam-
ple, (i) the reduced width amplitude, Y(r) = 〈φ(α)φ(16O)|�〉
with � = �THSR and �GCM, where r denotes the radial part of
the relative coordinate between α and 16O; and (ii) the overlap
value between �THSR and �GCM, 〈�THSR|�GCM〉, etc. The
reduced width amplitudes for �THSR and �GCM, of course,
are almost 100% in agreement with each other (the results
are presented elsewhere), and the overlap values are also
practically in perfect agreement, as shown in Table I.

III. EQUIVALENCE OF PROLATE AND OBLATE THSR
WAVE FUNCTIONS AFTER ANGULAR-MOMENTUM

PROJECTION

In the description of 8Be and 12C using the THSR wave
function, it was found that the projected prolate THSR wave
functions are nearly equivalent to the projected oblate THSR
wave functions based on the calculations of their energy
contours and the relevant squared overlaps [6,10]. In fact,
for the general nα systems, it can be demonstrated that
the nα angular-momentum-projection THSR wave function
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FIG. 9. Contour map of the energy surface of the J π = 0+ state
in the two-parameter space, βx = βy and βz.

�̂Jπ

nα (β) obtained from a prolate intrinsic state can be obtained
approximately from an oblate intrinsic state and vice versa,
except for the case of strongly prolate deformation [10]. This
is a very characteristic property for the THSR wave function.

In this section, we discuss the character of the obtained
THSR-type wave function of the inversion-doublet band in
20Ne. First, according to Eq. (19), we can obtain the contour
maps of the energy surfaces of the rotational states of the
inversion-doublet bands in 20Ne in the two-parameter space,
βx = βy and βz, namely, the energy surfaces EJπ

(βx = βy,βz)
for Jπ = 0+,2+,4+,1−,3−,5− states.

Figures 9–11 show the contour maps of the energy surfaces
of the Jπ = 0+, 2+, and 4+ states of the ground-state band
in 20Ne [36]. It can be seen that the energy surfaces in

FIG. 10. Contour map of the energy surface of the J π = 2+ state
in the two-parameter space, βx = βy and βz.

FIG. 11. Contour map of the energy surface of the J π = 4+ state
in the two-parameter space, βx = βy and βz.

these contour maps are rather flat. At the same time, in each
contour, there is a narrow valley connecting the prolate region
and oblate region, in which the obtained binding energies
vary very little. For these positive-parity states of 20Ne, the
minimum-energy points appear in the prolate region of the
valley, which are also very close to the secondary minimum-
energy points in the oblate region. For instance, for the energy
surface of the ground state of 20Ne in Fig. 9, the energy region
with E0+

(βx = βy,βz) < −159.6 MeV can be considered as a
valley in the contour map. In this valley, the minimum-energy
point −159.85 MeV occurs at βx = βy = 0.9 fm and βz =
2.5 fm in the prolate region. The secondary minimum energy,
−159.74 MeV, appears at βx = βy = 2.1 fm and βz = 0.0 fm
in the oblate region. The two-minimum-energy difference is
only about 0.1 MeV despite their completely different shapes.

Figures 12–14 show the contour maps of the energy surfaces
of the Jπ = 1−, 3−, and 5− states in the two-parameter space,
βx = βy and βz, respectively. Like the positive-parity state of
20Ne, there is a flat valley in the contour map of the negative-
parity state and the energies vary very little in this region.
It should be noted that, different from the positive states of
the ground-state band in 20Ne, the minimum points for the
negative-parity states appear in the oblate regions rather than
the prolate regions. For instance, for the Jπ = 1− state in
Fig. 12, the first minimum energy −155.38 MeV appears at
βx = βy = 3.7 and βz = 1.4 fm in the oblate region while the
second minimum energy −155.37 MeV appears at βx = βy =
0.7 and βz = 3.1 fm in the prolate region. The two minimum
energies are nearly equivalent and there is a very narrow valley
with a nearly flat bottom connecting the two minimum points.

To further clarify the similarity of the projected prolate
and oblate wave functions, we show the contour maps of the
squared overlaps between the normalized projected THSR-
type wave functions �̂Jπ

Ne,min with respect to the minimum
energies and the corresponding normalized projected wave
functions �̂Jπ

Ne(βx = βy,βz) with variable βx = βy and βz,
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FIG. 12. Contour map of the energy surface of the J π = 1− state
in the two-parameter space, βx = βy and βz.

namely, the following squared overlap:

Op(βx = βy,βz)

=
∣∣〈�̂Jπ

Ne,min

∣∣�̂Jπ

Ne(βx = βy,βz)
〉∣∣2〈

�̂Jπ

Ne,min

∣∣�̂Jπ

Ne,min

〉〈
�̂Jπ

Ne(βx = βy,βz)
∣∣�̂Jπ

Ne(βx =βy,βz)
〉 .

(22)

Figures 15–17 show the contour maps for the squared
overlap Op(βx = βy,βz) for the Jπ = 0+, 2+, and 4+ states of
the ground-state band in 20Ne. We can see that the projected

FIG. 13. Contour map of the energy surface of the J π = 3− state
in the two-parameter space, βx = βy and βz.

FIG. 14. Contour map of the energy surface of the J π = 5− state
in the two-parameter space, βx = βy and βz.

Jπ wave function is nearly unchanged from the optimum wave
function �̂Jπ

Ne,min along the valley running from the energy
minimum in the oblate region deeply into the region of prolate
deformation. In other words, for the ground-state band in
20Ne, the projected prolate and oblate THSR wave functions
in the valley are very similar in spite of their completely
different shapes. For instance, Fig. 15 displays the contour
map of the squared overlap between the 0+ wave function
with βx = βy = 0.9 fm, βz = 2.5 fm, and the 0+ wave function
with variable βx(= βy) and βz. It can be seen that oblate and

FIG. 15. Contour map of the squared overlap between the 0+

wave function with βx = βy = 0.9 fm, βz = 2.5 fm and the 0+ wave
function with variable βx = βy and βz. Numbers attached to the
contour lines are squared-overlap values.
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FIG. 16. Contour map of the squared overlap between the 2+

wave function with βx = βy = 0.0 fm, βz = 2.2 fm, and the 2+

wave function with variable βx = βy and βz. Numbers attached to
the contour lines are squared-overlap values.

prolate regions have very similar wave functions. In particular,
the obtained squared overlap between the normalized projected
prolate wave function �̂0+

Ne,min1 corresponding to the state of
minimum energy and the normalized projected oblate wave
function �̂0+

Ne,min2 corresponding to the state of secondary
minimum energy is about 0.999. This means the two wave
functions with respect to their minimum points in completely
different regions are almost equivalent.

In Figs. 18–20, we also show the contour maps of the
squared overlaps between the normalized projected negative-

FIG. 17. Contour map of the squared overlap between the 4+

wave function with βx = βy = 0.0 fm, βz = 1.8 fm, and the 4+

wave function with variable βx = βy and βz. Numbers attached to
the contour lines are squared-overlap values.

FIG. 18. Contour map of the squared overlap between the 1−

wave function with βx = βy = 3.7 fm, βz = 1.4 fm, and the 1−

wave function with variable βx = βy and βz. Numbers attached to
the contour lines are squared-overlap values.

parity wave functions �̂Jπ

Ne,min with respect to the minimum
energies and the corresponding normalized projected wave
functions �̂Jπ

Ne(βx = βy,βz) with variable βx = βy and βz. The
features of these contours are very similar to the case of
the positive-parity states of 20Ne. The obtained projected
oblate THSR wave functions with respect to the minimum
energies for the Jπ = 1−, 3−, and 5− states have very strong
overlap with their respective projected prolate wave functions.

FIG. 19. Contour map of the squared overlap between the 3−

wave function with βx = βy = 3.7 fm, βz = 0.0 fm, and the 3−

wave function with variable βx = βy and βz. Numbers attached to
the contour lines are squared-overlap values.
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FIG. 20. Contour map of the squared overlap between the 5−

wave function with βx = βy = 3.3 fm, βz = 0.0 fm, and the 5−

wave function with variable βx = βy and βz. Numbers attached to
the contour lines are squared-overlap values.

For instance, Fig. 18 displays the contour map of the squared
overlap Op(βx = βy,βz) for the Jπ = 1− state. It can be
seen clearly that squared overlaps are more than 99% in the
energetically flat region. This means the projected THSR wave
functions in this valley region are very similar to one another.
At the same time, the projected oblate THSR wave function
with βx = βy = 3.7 fm, βz = 1.4 fm giving the minimum
energy for the 1− state has a squared-overlap value as high as
99.98% with the 1− wave function projected from the prolately
deformed THSR wave function with βx = βy = 0.1 fm, βz =
3.2 fm. Therefore, these prolate and oblate THSR-type wave
functions after angular-momentum projection are also nearly
equivalent for the Jπ = 1− state of 20Ne.

Thus, by calculating the energy surfaces EJπ

(βx = βy,βz)
and the squared overlaps Op(βx = βy,βz) of 20Ne, we reach
the conclusion that after angular-momentum projection, the
intrinsic THSR wave functions with completely different
shapes become very similar; in particular, the projected prolate
THSR-type wave function of 20Ne is almost completely equiv-
alent to the projected oblate THSR wave function and vice
versa. These features are similar to the cases of the projected
THSR wave functions of 8Be and 12C studied earlier [6,10].
Let us now try to elucidate this somewhat puzzling situation.

IV. NONEXISTENCE OF PHYSICALLY OBLATE
DEFORMATION IN TWO-CLUSTER SYSTEMS AND THE

MEANING OF OBLATE THSR WAVE FUNCTION

A. Even oblate THSR wave function is of prolate character
after angular-momentum projection in two-cluster systems

As was mentioned in the previous section, after the angular-
momentum projection, a prolate THSR wave function is almost
equivalent to some oblate THSR wave function and conversely

an oblate THSR wave function is almost equivalent to some
prolate THSR wave function. Therefore, one may wonder what
is the actual intrinsic deformation of the angular-momentum
projected THSR wave function. In the traditional description of
the cluster system, the intrinsic state is discussed by using the
Brink-GCM formalism. In this formalism, the intrinsic state
of any two-cluster system is necessarily prolate. It is because
any two-cluster wave function �L0 is expressed as follows:

�L0 = A {χL(r)YL0( r̂ )φ(C1)φ(C2)} = P L�BGI, (23)

�BGI =
∑

j

fL(j )A{exp[−γ (r − Szj ez)
2]φ(C1)φ(C2)},

(24)

γ = A1A2

A1 + A2

1

2b2
.

Here P L is the angular-momentum projection operator and
Ak is the mass number of cluster Ck (k=1, 2). The wave
function �BGI is the intrinsic wave function in the Brink-
GCM representation of �L0 and it has clearly a prolate
deformation. Because the angular-momentum projected THSR
wave function is practically equivalent to a Brink-GCM wave
function P L�BGI [6,28,37], the Brink-GCM formalism may
tell us that the former has effectively a prolate deformation
even if it is obtained by the angular-momentum projection of
the oblate THSR wave function.

Our finding that the prolate and oblate THSR wave
functions can become almost equivalent after the angular-
momentum projection makes us doubt about the above
argument, because after the angular-momentum projection of
�BGI the prolate-deformation character of �BGI may not be
maintained. To get rid of this doubt, it is desirable to judge
the deformation by using not the intrinsic wave function but
the angular-momentum projected wave function. A good way
to do such a kind of judgment, is to calculate the quadrupole
moment with the angular-momentum projected wave function.
According to the Bohr model, the quadrupole moment Q(L)
of the angular-momentum L state is related to the intrinsic
quadrupole moment Q(int) as

Q(L) = − L

2L + 3
Q(int). (25)

This formula tells us that, if the deformation is prolate with
positive Q(int), Q(L) is negative, while Q(L) is positive for
oblate deformation with negative Q(int). In Ref. [39], the
calculated values of Q(L), using 16O + α RGM, are reported,
showing that they are of negative sign for all the states of the
inversion-doublet bands. This result shows, of course, that the
inversion-doublet bands are all of prolate deformation. Now,
as we mentioned in Sec. II, the Brink-GCM wave functions of
the inversion-doublet-band states are almost 100% equivalent
to single THSR wave functions with angular-momentum
projection. Because of the equivalence of the Brink-GCM
wave function with the RGM wave function [40], we can say
that the values of Q(L) by the angular-momentum projected
THSR wave functions are all of negative sign. Thus, we
know that after the angular-momentum projection, not only the
prolate THSR wave function but also the oblate THSR wave
function have the character of prolate deformation. To study
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this question in more detail, we want to give the expression for
the quadrupole moment.

When both clusters of the two-cluster system are SU(3)-
scalar nuclei, such as α, 16O, and 0s-shell nuclei like d, t , and
3He, the expectation value of the quadrupole moment operator
calculated with an arbitrary RGM wave function �, can be
expressed analytically as

〈�|1

2

∑
i

Q20(i)|�〉 = − L

2L + 3

A1A2

A
〈r2〉, (26)

A1A2

A
〈r2〉 ≡ 〈�|

∑
i

(r i − XG)2|�〉

− [〈R2(C1)〉 + 〈R2(C2)〉], (27)

〈R2(Ck)〉 = 〈φ(Ck)|
∑
i∈Ck

(r i − XGk)2|φ(Ck)〉,

(k = 1,2), (28)

� =
√

A1!A2!

A!
A{χL(r)YLL( r̂ )

×φ(C1)φ(C2)}, (29)

〈�|�〉 = 1, χL(r) = arbitrary, (30)

Q20(i) = Q20(r i − XG),
(31)

Q20(R) = (
3R2

z − R2
)
,

where XG and XGk stand for the center-of-mass coordinates of
the total system and the cluster Ck , respectively. A derivation
of this formula of Eq. (26) is given in Appendix A. The formula
of Eq. (26) tells us clearly that any RGM wave function of any
two-cluster system composed of SU(3)-scalar clusters yields
a negative quadrupole moment, which is, of course, consistent
with the 16O + α RGM results of Ref. [39]. Because any
THSR wave function after angular-momentum projection is
very close to an RGM wave function [6,7,28,37], we know that
any THSR wave function after angular-momentum projection
yields negative quadrupole moment. Let us explain the deeper
reason for this fact.

B. Oblate two-cluster THSR wave function is
a rotation average of a prolate THSR wave function

In the above we have seen that, in two-cluster systems,
an oblate THSR wave function whose density distribution
is actually oblate becomes a wave function with prolate nature

FIG. 21. (Color online) Rotation average of a prolate THSR wave
function around an axis (x axis) perpendicular to the symmetry axis
(z axis) of the prolate THSR wave function.

after angular-momentum projection. This fact suggests that an
oblate THSR wave function is equivalent to the rotation aver-
age of some prolate THSR wave function. If we rotate a prolate
THSR wave function around an axis (x axis) perpendicular
to the symmetry axis (z axis) of the prolate deformation and
construct a wave function by taking an average of this rotation,
the density distribution of the rotation-average wave function
will be oblate (see Fig. 21). Let us express the rotation-average
wave function generated from a prolate THSR wave function
�prol(Bx = By,Bz) as �AV(Bx = By,Bz),

�AV(Bx = By,Bz)

=
(

1

2π

∫
dθe−iθ
x

)
�prol(Bx = By,Bz). (32)

We can easily prove that the wave functions obtained by the
angular-momentum projection from this �AV are the same as
those obtained by the angular-momentum projection from the
original wave function �prol. Namely, even though �AV is of
oblate nature, its angular-momentum projection gives the same
wave functions as those obtained by the angular-momentum
projection from the prolate wave function �prol,

NAVP J
M,0�

AV(Bx = By,Bz) =NprolP
J
M,0�

prol(Bx = By,Bz),

(33)

where P J
M,0 is the angular-momentum projection operator and

NAV and Nprol are normalization constants.
To understand this point, we prove, up to the first order of

the deformation parameter (Bx − Bz), that the rotation average
of a prolate THSR wave function �(Bx = By,Bz) becomes an
oblate THSR wave function,

�(Bx = By,Bz) = A {
exp

[−γx

(
r2
x + r2

y

) − γzr
2
z

]
φ(C1)φ(C2)

}
, (34)

γk =
(

A1A2

A1 + A2

)
1

2B2
k

(k = x,y,z), (35)

exp
[−γx

(
r2
x + r2

y

) − γzr
2
z

] = exp

[
−

(
2

3
γx + 1

3
γz

)
r2

]{
1 −

(
1

3
γz − 1

3
γx

)√
16π

5
r2Y20( r̂ ) + · · ·

}
(36)
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(
1

2π

∫
dθe−iθ
x

)
exp

[−γx

(
r2
x + r2

y

) − γzr
2
z

] = exp

[
−

(
2

3
γx + 1

3
γz

)
r2

]{
1 −

(
1

3
γz − 1

3
γx

)√
16π

5
r2

×
(

1

2π

∫
dθe−iθ
x

)
Y20( r̂ ) + · · ·

}
(37)

= ei(π/2)
y exp

[
−

(
2

3
γx + 1

3
γz

)
r2

]

×
{

1 + 1

2

(
1

3
γz − 1

3
γx

)√
16π

5
r2Y20( r̂ ) + · · ·

}
(38)

≈ exp
[−γ ′

xr
2
x − γ ′

y

(
r2
y + r2

z

)]
(39)

γ ′
x = γx, γ ′

y = γ ′
z = 1

2
(γx + γz), (40)

where use is made of the following relations:

e−iθ
x = ei(π/2)
y eiθ
ze−i(π/2)
y , (41)

e−iθ
x Y20 = ei(π/2)
y

∑
M

d2
M0(π/2)eiθMY2M,

(42)(
1

2π

∫
dθe−iθ
x

)
Y20 = −1

2
ei(π/2)
y Y20. (43)

We thus have, up to the first order of the deformation parameter
(Bx − Bz),(

1

2π

∫
dθe−iθ
x

)
�(Bx = By,Bz) ≈ �(B ′

x,B
′
y = B ′

z),

(44)

γ ′
x = γx, γ ′

y = γ ′
z = 1

2
(γx + γz),

(45)

γ ′
k =

(
A1A2

A1 + A2

)
1

2(B ′
k)2

(k = x,y,z).

From the relation γx = γy > γz (Bx = By < Bz), we have
γ ′

x > γ ′
y = γ ′

z(B ′
x < B ′

y = B ′
z), which means that the rotation

average of a prolate THSR wave function �(Bx = By < Bz)
is approximately an oblate THSR wave function �(B ′

x <
B ′

y = B ′
z), up to the first order of the deformation parameter

(Bx − Bz).
Now we study numerically, not up to the first order

of the deformation parameter (Bx − Bz) but up to all or-
ders, how correct it is to say that an oblate THSR wave
function �obl(B̃x,B̃y = B̃z) is equivalent to the rotation-
average wave function �AV(Bx = By,Bz) constructed from
some prolate THSR wave function �prol(Bx = By,Bz). The
construction of the rotation-average wave function is obtained
from Eq. (32). For this purpose we calculate the overlap
O(Bx,Bz) between the normalized oblate THSR wave function
of �obl(B̃x,B̃y = B̃z) and the normalized rotation-average
wave function of �AV(Bx = By,Bz) with various values of
(Bx = By,Bz):

O(Bx = By,Bz) = Õ(B̃x,B̃y = B̃z; Bx = By,Bz) (46)

= N 〈�obl(B̃x,B̃y = B̃z)|�AV(Bx = By,Bz)〉, (47)

N = [‖�obl(B̃x,B̃y = B̃z)‖ · ‖�AV(Bx = By,Bz)‖]−1,

(48)

‖�‖ =
√

〈�|�〉. (49)

Let us first discuss the odd parity states. In Fig. 22 we give
the contour map of the squared overlap |O(Bx = By,Bz)|2
in the plane of (βx = βy,βz), where B2

k = b2 + 2β2
k in the

case of the oblate THSR wave function �obl(B̃x,B̃y = B̃z)
which gives the minimum energy of the Jπ = 1− state after
the angular-momentum projection. The values of B̃k are
(β̃x,β̃y,β̃z) = (1.4,3.7,3.7 fm), where B̃2

k = b2 + 2β̃2
k . We see

in this figure that the squared overlap can surely become
almost unity for an initially prolate THSR wave function
�prol(Bx = By,Bz) with βx = βy ≈ 1.3 fm, βz ≈ 4.7 fm.

FIG. 22. Squared overlap |O(Bx = By,Bz)|2 of the rotation-
average wave function �AV(Bx = By,Bz) with the oblate 16O + α

THSR wave function �obl(B̃x,B̃y = B̃z) which gives the minimum
energy of the J π = 1− state after the angular-momentum projection.
The values of B̃k are (β̃x,β̃y,β̃z) = (1.4,3.7,3.7 fm), where B̃2

k =
b2 + 2β̃2

k .
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FIG. 23. Squared overlap |Ô(Bx,By = Bz)|2 of the oblate 16O +
α THSR wave function �obl(Bx,By = Bz) with the rotation-average
wave function �AV(B̃x = B̃y,B̃z) obtained from the prolate wave
function �prol(B̃x = B̃y,B̃z), which gives the minimum energy of
the J π = 0+ ground state after the angular-momentum projection.
The values of B̃k are (β̃x,β̃y,β̃z) = (0.9,0.9,2.5 fm), where B̃2

k =
b2 + 2β̃2

k .

Similarly, we have confirmed that the oblate THSR wave
functions which give the minimum energies of the Jπ = 3−
and Jπ = 5− states after the angular-momentum projection are
almost 100% equivalent to the rotation-average wave functions
of some prolate THSR wave functions.

Let us now discuss the ground state Jπ = 0+. As we showed
in Ref. [36], for each prolate THSR wave function of the
ground-state band member state of 20Ne, there exists an oblate
THSR wave function which is almost 100% equivalent to the
angular-momentum projected prolate THSR wave function.
We can guess that such oblate THSR wave function is almost
equivalent to the rotation average of the prolate wave function.
In Fig. 23 we give the contour map of the squared overlap
|Ô(Bx,By = Bz)|2 in the plane of (βx,βy = βz) in the case of
the prolate THSR wave function �prol(B̃x = B̃y,B̃z), which
gives the minimum energy of the Jπ = 0+ ground state
after the angular-momentum projection. The values of B̃k

are (β̃x,β̃y,β̃z) = (0.9,0.9,2.5 fm). Here Ô(Bx,By = Bz) is
defined as

Ô(Bx,By = Bz) = Õ(Bx,By = Bz; B̃x = B̃y,B̃z). (50)

We see the maximum value of |Ô(Bx,By = Bz)|2 is almost
unity around the point with βx ≈ 0.9 fm and βy = βz ≈ 2.1 fm,
where �prol(B̃x = B̃y,B̃z) and �obl(Bx,By = Bz) were found
to be almost equivalent after angular-momentum projection in
Ref. [36].

In Ref. [6] it is reported that the Jπ = 0+ α-α wave function
�obl

0+ projected from the oblate THSR wave function �obl

around βx = 0.1 fm, βy = βz = 4.4 fm, has almost the
same energy within 50 keV as the minimum energy given
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FIG. 24. Contour map of the squared overlap between the α-α
oblate THSR wave function with βx = 0.1 fm, βy = βz = 4.4 fm, and
the rotation-average wave function constructed from the THSR wave
function with various βx , βy = βz.

by the Jπ = 0+ wave function �
prol.A
0+ projected from the

prolate THSR �prol.A with βx = βy = 1.8 fm, βz = 7.8 fm.
�obl

0+ is almost the same as �
prol.A
0+ with the squared overlap

|〈�obl
0+ |�prol.A

0+ 〉|2 = 0.99. �prol.A
0+ is also almost equivalent with

the wave functions projected from rather wide region of prolate
THSR wave functions. For example the wave function �

prol.B
0+

projected from the prolate THSR �prol.B with βx = βy =
0.1 fm, βz = 6.6 fm, has the squared overlap of almost unity
with �

prol.A
0+ , |〈�prol.B

0+ |�prol.A
0+ 〉|2 = 0.99. In Fig. 24 we show

that the oblate THSR wave function �obl is almost equivalent
to the rotation-average wave function �AV(prol.B) constructed
from the prolate THSR wave function �prol.B with the squared
overlap of almost unity, |〈�AV(prol.B)|�obl〉|2 = 0.98. Of
course, all the above discussion confirms our physical intuition
displayed in Fig. 21.

In conclusion, we now understand why an angular-
momentum projected prolate or oblate THSR wave function
gives practically the same energy, the latter nonetheless
having prolate character intrinsically. Namely, e.g., the oblate
minimum in Fig. 9 can be considered as corresponding to a
rotation around an axis perpendicular to the long symmetry
axis (see Fig. 21). Additionally, it so happens that the ground
state of 20Ne is such a stable prolate rotor that turning it like
in Fig. 21 does practically not bring any gain nor loss of
energy. However, the THSR wave function contains already
so much quantum fluctuation with respect to a pure Slater
determinant that angular-momentum projection brings almost
no gain in energy whatsoever. This can be seen, for example,
at the spherical point in Fig. 9 with an energy loss of only
250 keV with respect to the absolute minimum.
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C. Prolate 3α THSR wave function is a rotation average of an
oblate THSR wave function

A further remarkable investigation of this work concerns
the following. For the 3α system, the THSR wave function
has the puzzling feature that, after angular-momentum projec-
tion, the prolate THSR wave function is almost equivalent to an
oblate THSR wave function and also to a spherical THSR wave
function. In the case of two-cluster systems, it was just clarified
that the oblate THSR wave function is almost equivalent to the
rotation average of some prolate THSR wave function around
an axis perpendicular to the symmetry axis of the prolate defor-
mation. It implies that the oblate deformation is not the phys-
ical deformation of the two-cluster system. This is assured by
the fact that the quadrupole moment by the angular-momentum
projected wave function generated from the oblate THSR wave
function has the negative sign which means that the intrinsic
deformation is prolate. Because the intrinsic wave function is
the instantaneous (or adiabatic) wave function of the rotating
system, it is natural that the intrinsic wave function of the two-
cluster system has prolate deformation. While the oblate THSR
wave function is interpreted as the rotation average of the pro-
late THSR wave function around an axis, the spherical THSR
wave function can be interpreted as the three-dimensional ro-
tation average of the prolate THSR wave function. In any case,
all three projected THSR wave functions, be it with intrinsic
prolate, oblate, or spherical shapes, yield almost degenerate
energies. This only means that the THSR wave function
already contains so strong quantum fluctuations that an
additional projection does not bring a noticeable gain in energy.

However, the puzzle that, after angular-momentum projec-
tion, the prolate THSR wave function is almost equivalent to
an oblate THSR wave function has also been reported in the 3α
system [10]. The calculated result of the quadrupole moment
of the first 2+ state of 12C by the 3α THSR wave function gives
us the positive sign indicating the oblate deformation of the
intrinsic state of this state. The positive sign of the quadrupole
moment of the first 2+ state of 12C was also reported in the 3α
Brink-GCM calculation of Ref. [41]. Because the 3α clusters
lie, considered at a given instant of time, in a plane, it is
natural that the instantaneous (or adiabatic) wave function of
the 3α rotating system which is the intrinsic wave function
has oblate deformation. The existence of the prolate THSR
wave function which is almost equivalent to an oblate THSR
wave function after angular-momentum projection can be
explained, at least in the first-order approximation of the
deformation parameter (Bx − Bz), by the idea of the rotation
average of the oblate THSR wave function around an axis
perpendicular to the symmetry axis of the oblate deformation:(

1

2π

∫
dθe−iθ
x

)
�3α(Bx = By,Bz) ≈ �3α(B ′

x,B
′
y = B ′

z),

(51)

�3α(Cx,Cy,Cz)

= A
⎛⎝exp

⎧⎨⎩−2
3∑

j=1

∑
k=x,y,z

[
(Xjk − XGk)2

C2
k

]⎫⎬⎭
3∏

j=1

φ(αj )

⎞⎠ ,

(52)
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FIG. 25. The contour map of the squared-overlap values of the
rotation-average wave function obtained from the oblate 3α THSR
wave function with βx = βy = 5.7 and βz = 1.3 with 3α THSR wave
functions with various βx and βy = βz.

1

B ′
x

2 = 1

B2
x

,
1

B ′
y

2 = 1

B ′
z

2 = 1

2

(
1

B2
x

+ 1

B2
z

)
. (53)

We can prove the relation of Eq. (51) in the same way as
we have proven the relation of Eq. (44). Because there holds
(1/B ′

x
2) − (1/B ′

z
2) = (1/2)[(1/Bz

2) − (1/Bx
2)], we see that,

from the oblate deformation of Bx = By > Bz, we obtain
the prolate deformation of B ′

x > B ′
y = B ′

z. We here should
note that the rotation average is made not for the density
distribution which is positive-valued but for the wave function
which takes both positive and negative values. We have studied
numerically, not only up to the first order of the deformation
parameter (Bx − Bz) but up to all orders that the statement that
the prolate THSR wave function being practically equivalent
to an oblate THSR wave function is absolutely correct. In
Ref. [10] it is shown that the Jπ = 0+ wave function obtained
from the oblate THSR wave function with βx = βy = 5.7
and βz = 1.3 has a large squared overlap with a value greater
than 0.95 with the Jπ = 0+ wave functions obtained from the
prolate THSR wave functions with βx = βy ≈ 3 and βz ≈ 6.5.
In Fig. 25 we show the contour map of the squared-overlap
values of the rotation-average wave function obtained from
the oblate THSR wave function with βx = βy = 5.7 and βz =
1.3 with THSR wave functions with various βx and βy = βz.
We see that the squared overlap values are surely large for
βy = βz ≈ 3 and βx ≈ 6.5.

V. CONTAINER PICTURE OF NUCLEAR CLUSTER
DYNAMICS AND NUCLEAR MOLECULAR STRUCTURE

OWING TO THE INTERCLUSTER PAULI REPULSION

Clusters in the THSR wave function in low-density systems
make mutually independent nonlocalized motion occupying
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the lowest orbit of the harmonic-oscillator-like mean-field po-
tential of clusters characterized by the size parameter B whose
magnitude is similar to the radius of the system. In systems
of 3α’s [5,7,10] and 4α’s [5,29] we know that the excitation
mode of the system is well described by the Hill-Wheeler
equation of the size parameter B treated as the generator
coordinate. Therefore, we see that the excitation of the system
is described first by the dynamics of the size parameter B
that is adopted as the generator coordinate and second by
the excitation of the single-particle motion of clusters in the
cluster mean-field potential. We call our new understanding
of nuclear cluster dynamics the container picture of nuclear
clustering, by which we aim to stress that the central quantity of
cluster dynamics is the size parameter B of the self-consistent
mean-field potential of clusters which we call the container.
The name “container picture” may sound more appropriate for
three (or more)-cluster systems because, for example, in the 3α
system it describes the ground state (small B parameter) and
3α-gas states (large B parameter) on the same footing. In this
container picture the existence of cluster-gas states is natural
and the formation mechanism of cluster-gas states is just the
spatial expansion of the container (B parameter going from
small to large). When we compare the container picture of
cluster dynamics with the traditional description of cluster dy-
namics which uses explicitly wave functions with intercluster
separation coordinates, the new understanding corresponds to
a collective-motion picture characterized by the size parameter
B. When B has obtained a large value the clusters become
more or less independent. They have, however, to respect
the excluded volume (see Sec. I) which is attributable to the
Pauli principle, which leads to scattering processes among the
clusters. It is in this way that, e.g., the α condensate is depleted
by about 30% in the Hoyle state of 12C[9].

Now we explain how the idea of the parity-violating
deformation of localized 16O + α clustering for the inversion-
doublet bands of 20Ne can be justified in this container picture
of cluster dynamics which assumes nonlocalized clusters.
The parity-violating deformation is a property of the intrinsic
state which is the instantaneous (or adiabatic) quantum state
of the rotation of the nucleus. Because the instantaneous
configuration of two clusters is of prolate shape, the prolate
THSR wave function is the intrinsic state of the system and the
oblate THSR wave function is not the intrinsic state but rather
a mathematical object which expresses the rotation average
of the intrinsic state. The spherical THSR wave function
expresses the time average of the fully three-dimensional
rotational motion, namely, the angular-momentum projected
state of the intrinsic state (the prolate THSR wave function).
We, however, also need to notice the fact that two clusters
cannot come close to each other because, as just mentioned,
of the intercluster Pauli repulsion, which implies that two
clusters in the intrinsic state (the prolate THSR wave function)
are effectively localized in space. Thus, the prolate THSR
wave function has the parity-violating deformation of local-
ized 16O + α clustering. We can say that dynamics prefers
nonlocalized clustering but kinematics makes the system look
like localized clustering. Of course, this localization is most
pronounced in the necessarily strongly prolate two-cluster
systems. In systems with low-density α clusters in number

FIG. 26. (Color online) Density distribution of a 2α prolate
THSR wave function with (βx,βy,βz) = (1.78, 1.78, 7.85 fm).

more than two have more space to move independently and
are, therefore, less localized in spherical containers.

The effective localization of clusters in the prolate THSR
wave function of the two-cluster system is clearly seen in the
density distribution of the prolate THSR wave function. In
Fig. 26 we show the density distribution of a 2α prolate THSR
wave function with (βx,βy,βz) = (1.78, 1.78, 7.85 fm). Be-
cause the THSR wave function before the antisymmetrization
operation is obviously composed of nonlocalized clusters, it is
evident that the clear spatial localization of clusters shown in
this figure is attributed to the intercluster Pauli principle.

Recently it has been reported [42] that the density dis-
tribution of a 3α THSR wave function with strong prolate
deformation with (βx,βy,βz) = (0.01, 0.01, 5.1 fm) shows
clear spatial localization of three α clusters aligned linearly,
which is displayed in Fig. 27. It is to be noted that because
of the almost zero values of βx = βy , 3α clusters are not
allowed to expand into the x and y directions, which means
that 3α clusters are only allowed to make one-dimensional
motion along the z direction. Therefore, the intercluster
Pauli principle acts only along the z direction, which is
the reason of the spatial localization of the 3α clusters. In
Ref. [42] it is reported that the α linear-chain Brink-GCM
wave function is almost 100% equivalent to a single 3α THSR
wave function with strong prolate deformation, which is just
the α THSR wave function in Fig. 27 having (βx,βy,βz) =
(0.01, 0.01, 5.1 fm). This 3α THSR wave function may be
called a one-dimensional container-model wave function or
a one-dimensional α-particle condensate. Macroscopic boson
condensates with impenetrable (hard core) bosons are known
under the name of “Girardeau-Tonks” gases [43]. In such cases
the bosons behave like fermions. How much such a picture
also is born out in linear-chain states of α particles may be an
interesting study for the future.

Let us now investigate the effectively spatial localization of
the 16O and α clusters in the prolate THSR wave function of
16O + α system. For this purpose we first notice the fact that
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FIG. 27. (Color online) Density distribution of a 3α THSR wave
function with strong prolate deformation with (βx,βy,βz) = (0.01,
0.01, 5.1 fm). This figure is taken from Ref. [42].

the THSR wave function is a state of good parity. Therefore,
a pure THSR wave function is not suitable for expressing a
parity-breaking density distribution of the 16O-α clustering.
However, as we see below, if we use a hybrid-Brink-THSR
wave function with small Sz parameter, the density distribution
of this hybrid-Brink-THSR wave function, which is quite close
to a prolate THSR wave function, shows clearly the effectively
spatial localization of 16O and α clusters. In Fig. 28 we
show the density distribution of the hybrid-Brink-THSR wave
function with Sz = 0.6 fm and (βx,βy,βz) = (0.9, 0.9, 2.5 fm).
We observe in this figure that, in spite of the small value of
Sz = 0.6 fm, the intercluster distance between 16O and α is
about 3.6 fm. Namely, the large intercluster distance of about
3.6 fm between 16O and α is not attributable to the parameter
Sz but attributable to the effective spatial localization of
16O and α clusters in the prolate THSR wave function with

FIG. 28. (Color online) Density distribution of the 16O + α

hybrid-Brink-THSR wave function with Sz = 0.6 fm and (βx,βy,βz)
= (0.9, 0.9, 2.5 fm).

(βx,βy,βz) = (0.9,0.9,2.5 fm) which is just the wave function
reduced from the hybrid-Brink-THSR wave function by letting
go Sz to zero. Please also notice that for small values of Sz the
energies in Fig. 8 are practically degenerate. Also it should be
noted that Fig. 28 corresponds to the ground state of 20Ne and,
thus, has a much higher average density than the one of 8Be.
Therefore, the cluster structure is more compact.

In the above we discussed that, in two-cluster systems,
cluster states generally have effective localization of clusters
because of the intercluster Pauli repulsion. However, in
three-or-more-cluster systems, the spatial arrangement of
clusters is not necessarily geometrical, namely, clusters can be
nonlocalized, although the intercluster separations are nonzero
simultaneously because of the intercluster Pauli repulsion.
However, as discussed in Ref. [42], if a cluster state is forced to
have strongly prolate deformation, the state can have effective
localization of clusters like in the case of the 3α linear-chain
structure of Fig. 26. When the intercluster separations are large,
the spatial arrangement of clusters can be nonrigid and gaslike.
More on the spatial behavior of three (or more)-α particle
systems will be investigated in the future.

As is seen in the above discussions, the container picture
of cluster dynamics has three important ingredients. The
first is to regard the motion of clusters as being mutually
independent and described by the nonlocalized lowest orbit
of the self-consistent mean-field potential of clusters. The
second is the collective excitation of the system which is
described by the Hill-Wheeler equation with respect to the
size parameter(s) B of the mean-field potential. The third
is the intercluster Pauli repulsion, which, in the case of
two-cluster systems, is the origin of the molecular structure
of clusters and which, in cases of more α clusters, like in the
Hoyle state of 12C, leads to α-α scattering processes which
somewhat depopulate the α condensate.

VI. SUMMARY, DISCUSSIONS, AND OUTLOOK

In this paper we first discussed the hybrid-Brink-THSR
wave function introduced in Ref. [37]. The energy curve with
this new type of wave function revealed that the traditional
understanding is incorrect, namely, that the localized cluster
picture is strongly supported by the energy curve with the Brink
wave function which gives the minimum point at a nonzero
value of the intercluster distance parameter. The relative wave
function of the Brink wave function is a Gaussian wave packet
with fixed size parameter Sz,

exp

[
− A1A2

A1 + A2

1

2b2
(r − Szez)

2

]
, (54)

for a two-cluster system with mass numbers A1 and A2

with b standing for the usual harmonic oscillator (H.O.) size
parameter in the ground-state Slater determinant, while that
of the hybrid-Brink-THSR wave function is a Gaussian wave
packet with variable size parameter,

exp

[
− A1A2

A1 + A2

1

2B2
(r − Szez)

2

]
, B2 = b2 + 2β2. (55)

The minimum point of the energy curve with the hybrid-
Brink-THSR wave function has a nonzero Sz value when
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B = b which is the limit case of the Brink wave function,
but as B becomes larger the Sz value of the energy-minimum
point becomes smaller and reaches Sz = 0, which is the limit
case of the THSR wave function. Namely, if we allow the
size parameter of relative wave function of the Brink wave
function to take an arbitrary value, the minimum point of
the energy curve is no more at nonzero intercluster distance
parameter but at zero intercluster distance parameter. The
energy-minimum point at the limit of the THSR wave function
is very different from that at the limit of the Brink wave
function in their characters, because the THSR wave function
at the energy-minimum point is almost 100% equivalent to the
full solution of RGM while the Brink wave function at the
energy-minimum point is only the main component of the full
solution of RGM. In two-cluster systems, the almost 100%
equivalence of the full solution of the RGM to a single THSR
wave function has been confirmed in the ground-state band
states of 8Be and in the inversion-doublet band states of 20Ne.
In the case of three-cluster systems, we know that about 93%
equivalence of the full solution of the 3α RGM to a single
THSR wave function has been found in the ground state of
12C, while almost 100% equivalence of the full solution of the
3α RGM to a single THSR wave function has been found in the
Hoyle state of 12C. It will be important to check whether this
kind of high-percentage equivalence of the full solution of the
RGM to a single THSR wave function is true or not in general
three-cluster and also more-than-three-cluster systems.

The THSR wave function which was originally devised for
the description of cluster-gas states has proved to be able also to
describe well nongas cluster states including ground states with
more or less pronounced cluster structure. The ground state
of 12C and the ground-state band states of 20Ne are largely of
shell-model character. The good reproduction of these states by
THSR wave functions means that the THSR wave function can
also well express shell-model characters. This point is assured
by the property of the THSR wave function that in the limit of
B → b the THSR wave function is equal to some important
shell-model wave function. In Appendix B, we discuss two
examples concerning the 16O + α system and the 3α system
in the ground state of 12C.

We also elaborated on the container picture of the cluster
dynamics. It is first described by the Hill-Wheeler equation of
the size parameter B of the THSR wave function which, in the
case of the spherical THSR wave function, is written as∑

j

〈�L(Bi)|(H − E)|�L(Bj )〉f (Bj ) = 0. (56)

Here the integration over B in the Hill-Wheeler equation is
expressed by the summation over the discrete values of B. In
the case of two-cluster systems where the THSR wave function
�L(B) is written as

�L(Bk) = A{rL exp(−γkr
2)YL0( r̂ )φ(C1)φ(C2)},

(57)

γk = A1A2

A1 + A2

1

2B2
k

,

this Hill-Wheeler equation is equivalent to the RGM equa-
tion. It is because this Hill-Wheeler equation can be

rewritten as

〈YL0( r̂ )φ(C1)φ(C2)|(H − E)|A{χL(r)

×YL0( r̂ )φ(C1)φ(C2)}〉= 0, (58)

χL(r) =
∑

j

f (Bj ) rL exp(−γj r
2). (59)

From this equivalence we can conclude that we can solve
the scattering problem with the Hill-Wheeler equation of the
THSR wave function. In the cases of the ground-state band of
8Be and the inversion-doublet band states of 20Ne, the obtained
THSR-GCM wave functions were found to be almost 100%
equivalent to single THSR wave functions. However, it was
pointed out that, because the THSR-GCM wave functions are
equal to the Brink-GCM ones, the latter are also equivalent to
single THSR wave functions. This fact naturally implies that
the structure of the THSR wave function captures very well
the clustering dynamics.

The THSR wave function can describe in a unified and
natural manner three kinds of states: the ground state, the
ordinary cluster state, and the α-condensate state. The Brink-
GCM wave function, that is the superposition of localized
Brink wave function, sometimes demands large efforts to
describe some excited states of cluster nature such as, e.g.,
the Hoyle state of 12C. The Hill-Wheeler equation of Eq. (56)
was solved for the systems of 3α’s [5,7,10] and 4α’s [5,29].
In the 3α system the THSR wave functions were shown to
successfully reproduce the ground state and the Hoyle state
with a 3α condensatelike structure, that is, with a large value
of B-parameter underlying the container picture. It is to be
recalled that even in the 3α case the THSR-GCM wave
function of the ground state has 93% squared overlap with
a single THSR wave function and that the THSR-GCM wave
function of the Hoyle state has 99% squared overlap with
a single THSR wave function [28]. In fact, these squared
overlaps are expected to grow to nearly 100% if 2α correlations
are included to the container picture. It also is to be noted
that even in the case of 3α’s the THSR-GCM wave functions
are almost 100% equivalent to Brink-GCM ones. We also
succeeded in calculating the Jπ = 2+ states and reproducing
the ground-state band 2+ state and the 3α gaslike 2+

2 state.
In the 4α system we succeeded in reproducing, for the
spin Jπ = 0+, the ground state and the 0+

6 state which is
the Hoyle-analog state with a 4α condensatelike structure.
However, unlike for the 3α system, in the 4α system, the cluster
states lying between the ground state and the α condensatelike
0+

6 state could not be fully reproduced with the Hill-Wheeler
equation of Eq. (56). Namely, instead of the observed four
cluster states between the ground state and the 0+

6 state (which
were nicely reproduced by the 4α OCM of Ref. [27]), the
Hill-Wheeler equation of Eq. (56) could give us only two
states. The reason of this insufficiency is because of the variety
of the observed cluster states in 16O for which the use of only
one collective coordinate B is too simple and unsatisfactory.
The result of the 4α OCM calculation of Ref. [27] tells us
that the dominant structures of 0+

2 , 0+
3 , 0+

4 , and 0+
5 states are

12C(0+
1 ) + α (S wave), 12C(2+

1 ) + α (D wave), 12C(0+
1 ) + α

(S wave with higher nodal number), and 12C(1−
1 ) + α (P

wave), respectively. One possible way to cope with this variety
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of cluster structures is to use two kinds of size parameters B1

and B2 by extending the THSR wave function,

A
{

exp

(
− 3

2B2
2

r2

)
�3α(B1)φ(α4)

}
, r = X4 − 1

3

3∑
j=1

Xj ,

(60)

where �3α(B1) is the THSR wave function of three α clusters,
α1 ∼ α3, with the deformed size parameter B1 with 3α
center-of-mass coordinate removed. This extended THSR
wave function is similar to the RGM-type wave function of two
clusters, �3α(B1) and φ(α4), with the relative wave function
exp(−γ r2) with γ = 3/(2B2

2 ). Therefore, the superposition of
this wave function over B2 allows us to describe scattering
states in various channels of 12C + α. This will also be a very
interesting study for the near future.

The original THSR wave function describes only positive-
parity states. Therefore, in Ref. [37], where the negative-parity
partner band of the inversion-doublet bands had to be studied,
a prescription was proposed for constructing negative-parity
wave functions as a natural extension of the original THSR
wave function. This prescription is for two-cluster wave
functions. In Ref. [37] and also in this paper we call the
negative-parity wave functions constructed by this prescription
simply THSR wave functions. As a starting point, we used a
hybrid-Brink-THSR wave function with a nonzero intercluster
separation parameter Sz. From this wave function we project
out the negative-parity wave function and then normalize it.
After normalization we can take safely the limit of Sz → 0, and
this limit wave function is just the negative-parity THSR wave
function. This prescription to construct the negative-parity
THSR wave function in two-cluster systems can be generalized
to the systems with three and more clusters. For instance, in the
case of 4α system, we extend the 3α-α THSR wave function
of Eq. (60) into the hybrid-Brink-THSR-type wave function,

A
{

exp

[
− 3

2B2
2

(r − S)2

]
�3α(B1)φ(α4)

}
. (61)

From this wave function we project out the negative-parity
wave function and then normalize it. After normalization we
can take safely the limit of |S| → 0, and this limit wave
function is just the negative-parity THSR wave function which
we intend to construct.

The container picture of cluster dynamics has three im-
portant ingredients. The first is the mutually independent
nonlocalized motion of clusters occupying the lowest orbit
of the self-consistent mean-field potential of clusters. The
second is the collective motion with respect to the size
parameter(s) B of the mean-field potential which is described
by the Hill-Wheeler equation of Eq. (56). The third is the
intercluster Pauli repulsion owing to the Fermi statistics of the
nucleons which constitute the clusters. In two-cluster systems,
this Pauli repulsion makes the two clusters locate at some
distance from each other, which gives rise, effectively, to
localized clustering in two-cluster systems, in spirit similar
to the phenomenological excluded volume prescription. This
is the reason why the cluster states in two-cluster systems are
always molecular states with spatial localization of clusters.
However, in the systems of three or more clusters, although

the intercluster separations in all pairs of clusters are nonzero
simultaneously, it does not necessarily mean, in general, the
formation of some localized arrangement of clusters. In spite
of this general situation, we know that there have been reports
of localized cluster structure in systems of three or more
clusters. For example, the existence of an excited 0+ state with
somewhat bent linear-chain configuration of 3α’s has been
predicted by the antisymmetrized molecular dynamics (AMD)
calculation of Ref. [44,45] and also by the fermionic molecular
dynamics (FMD) calculation of Ref. [46,47]. The formation
of this quasilinear 3α state is argued to be attributable to the
orthogonality of this state to the ground state and the Hoyle
state of 12C with the AMD study [48] and with the THSR
wave function [49]. Another example is the study of the 4α
linear-chain state with high angular momentum of Ref. [50].
Here the formation of the linear-chain structure is considered
dominantly owing to the effect of the centrifugal force of
high-spin rotation. As a final remark, let us say that in this and
the preceding work [36,37], we have extended the THSR wave
function to negative-parity states, we here further sketched how
in incorporating more size parameters into the THSR wave
function a much richer flexibility may be reached, adapted
for the description of more complicated cluster configuration
involving several clusters of different sizes together with
their proper, possible internal cluster configurations as, e.g.,
described above for the 12C case.
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APPENDIX A: ANALYTIC FORMULA OF THE
QUADRUPOLE MOMENT BY TWO-CLUSTER

WAVE FUNCTION

We derive an analytic formula of the expectation value of
the quadrupole-moment operator by two-cluster RGM wave
function. We treat the case where both clusters of the system
are SU(3)-scalar nuclei, such as α, 16O, and 0s-shell nuclei like
d, t , and 3He. For simplicity we consider only the case where
the isospin of the total system is zero. The expectation value
Q(L) of the quadrupole-moment operator is expressed as

Q(L) = 〈�|
∑

i

1

2
[1 + (τz)i]Q20(i)|�〉

= 〈�|1

2

∑
i

Q20(i)|�〉, (A1)

� =
√

A1!A2!

A!
A {χL(r)YLL( r̂ )φ(C1)φ(C2)} ,
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〈�|�〉 = 1, χL(r) = arbitrary, (A2)

Q20(i) = Q20(r i − XG),
(A3)

Q20(R) = 3R2
z − R2 =

√
16π

5
R2Y20( r̂ ),

where XG is the total center-of-mass coordinate. In calculating
Q(L), we use the identity relation∑

i

Q20(i) = Q20(C1) + Q20(C2) + A1A2

A
Qr, (A4)

Q20(Ck) =
∑
i∈Ck

Q20(r i − XGk), (A5)

Qr = Q20(r) =
√

16π

5
r2Y20( r̂ ), (A6)

where XGk stands for the center-of-mass coordinate vector of
the kth cluster Ck .

Now we discuss the calculation of the matrix element
qL(N,N ′) of the quadrupole-moment operator by the H.O.
basis wave function of RGM,

qL(N,N ′) = 〈RNL(r)YLL( r̂ )φ(C1)φ(C2)|1

2

∑
i

Q20(i)|

×A {RN ′L(r)YLL( r̂ )φ(C1)φ(C2)}〉, (A7)

where RNL(r) is the H.O. radial function with N standing for
N = 2n + L and n standing for the number of nodal points.
When N > N ′, we operate

∑
i Q20(i) on the bra side and we

get

qL(N,N ′) = 1

2

〈 [
Q20(C1) + Q20(C2) + A1A2

A
Qr

]
×RNL(r)YLL( r̂ )φ(C1)φ(C2)

×
∣∣∣∣A {RN ′L(r)YLL( r̂ )φ(C1)φ(C2)}

〉
(A8)

= δN,N ′+2
A1A2

2A
〈RN ′L(r)YLL( r̂ )|Qr

× |RNL(r)YLL( r̂ )〉μN ′L. (A9)

Here μNL is defined as

μNL = 〈RNL(r)YLL( r̂ )φ(C1)φ(C2)

× |A{RNL(r)YLL( r̂ )φ(C1)φ(C2)}〉. (A10)

It is known that μNL depends on N but not on L in the system
composed of two SU(3)-scalar clusters [51,52]. In obtaining
Eq. (A9) we used the fact that the number of H.O. quanta of
Q20(Ck)φ(Ck) is equal to or larger than that of φ(Ck), which is
the reason for no contribution from the operator Q20(Ck). We
also used the fact that in the H.O. expansion of QrRNL(r),

QrRNL(r) = RN−2,L(r)〈RN−2,L(r)|Qr |RNL(r)〉
+RNL(r)〈RNL(r)|Qr |RNL(r)〉
+RN+2,L(r)〈RN+2,L(r)|Qr |RNL(r)〉, (A11)

only the term RN−2,L(r)〈RN−2,L(r)|Qr |RNL(r)〉 can survive
because of the conservation of the number of the H.O. quanta
between bra and ket RGM basis states.

When N < N ′, we operate
∑

i Q20(i) on the ket side and
we get

qL(N,N ′) = 1

2

〈
RNL(r)YLL( r̂ )φ(C1)φ(C2)

×
∣∣∣∣A{[

Q20(C1) + Q20(C2) + A1A2

A
Qr

]
×RN ′L(r)YLL( r̂ )φ(C1)φ(C2)

}〉
(A12)

= δN+2,N ′
A1A2

2A
〈RNL(r)YLL( r̂ )|Qr

× |RN ′L(r)YLL( r̂ )〉μNL. (A13)

Finally, when N = N ′, we get

qL(N,N ′) = 1

2
〈RNL(r)YLL( r̂ )φ(C1)φ(C2)

×
∣∣∣∣A{[

Q20(C1) + Q20(C2) + A1A2

A
Qr

]
×RNL(r)YLL( r̂ )φ(C1)φ(C2)

}〉
(A14)

= A1A2

2A
〈RNL(r)YLL( r̂ )|Qr |RNL(r)YLL( r̂ )〉μNL.

(A15)

Here we used the fact that the cluster wave function φ(Ck)
is the only one-wave function which has the smallest number
of the total H.O. quanta in the mass-number Ak system. The
closed-shell wave functions of φ(α) and φ(16O) and also the
wave functions of 0s-shell nuclei have this property. To fulfill
the conservation of the number of the H.O. quanta between bra
and ket RGM basis states, in the expansion of Q20(Ck)φ(Ck),

Q20(Ck)φ(Ck) =
∑

j

�j 〈�j |Q20(Ck)φ(Ck)〉, (A16)

only the expansion state �j=j0 having the same number of
the H.O. quanta as φ(Ck) can make nonzero contribution.
However, as we mentioned above, such �j=j0 is nothing but
φ(Ck) itself. Therefore, because of 〈φ(Ck)|Q20(Ck)|φ(Ck)〉 =
0, Q20(Ck) makes no contribution, and we get the result of
Eq. (A15).

Summarizing Eqs. (A9), (A13), and (A15), we obtain

qL(N,N ′) = 1

2

√
16π

5
〈YLL( r̂ )|Y20( r̂ )|YLL( r̂ )〉 rL(N,N ′),

(A17)

rL(N,N ′) = {δN,N ′+2 μN ′L + δN+2,N ′ μNL + δN,N ′ μNL}

× A1A2

A
〈RNL(r)|r2|RN ′L(r)〉. (A18)

The quantity rL(N,N ′) is intimately related to the matrix
element RL(N,N ′) of the square radius operator

∑
i(r i −

XG)2 by the H.O. basis wave function of RGM,

RL(N,N ′) = 〈RNL(r)YLL( r̂ )φ(C1)φ(C2)|
∑

i

(r i − XG)2

× |A {RN ′L(r)YLL( r̂ )φ(C1)φ(C2)}〉. (A19)
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To calculate RL(N,N ′), we express the operator
∑

i(r i − XG)2 as follows:∑
i

(r i − XG)2 = R2(C1) + R2(C2) + A1A2

A
r2, (A20)

R2(Ck) =
∑
i∈Ck

(r i − XGk)2, (k = 1,2). (A21)

By using this expression of the square radius operator, we can make the calculation of RL(N,N ′) just in the same way as that of
qL(N,N ′). For N > N ′,

RL(N,N ′) =
〈[

R2(C1) + R2(C2) + A1A2

A
r2

]
RNL(r)YLL( r̂ )φ(C1)φ(C2)

∣∣∣∣A {RN ′L(r)YLL( r̂ )φ(C1)φ(C2)}
〉

(A22)

= δN,N ′+2
A1A2

A
〈RN ′L(r)YLL( r̂ )|r2|RNL(r)YLL( r̂ )〉μN ′L. (A23)

For N < N ′,

RL(N,N ′) =
〈
RNL(r)YLL( r̂ )φ(C1)φ(C2)

∣∣∣∣A{[
R2(C1) + R2(C2) + A1A2

A
r2

]
RN ′L(r)YLL( r̂ )φ(C1)φ(C2)

}〉
(A24)

= δN+2,N ′
A1A2

A
〈RNL(r)YLL( r̂ )|r2|RN ′L(r)YLL( r̂ )〉μNL. (A25)

For N = N ′,

RL(N,N ′) =
〈
RNL(r)YLL( r̂ )φ(C1)φ(C2)

∣∣∣∣A{[
R2(C1) + R2(C2) + A1A2

A
r2

]
RNL(r)YLL( r̂ )φ(C1)φ(C2)

}〉
(A26)

=
{
〈R2(C1)〉 + 〈R2(C2)〉 + A1A2

A
〈RNL(r)YLL( r̂ )|r2|RNL(r)YLL( r̂ )〉

}
μNL, (A27)

〈R2(Ck)〉 = 〈φ(Ck)|R2(Ck)|φ(Ck)〉, (k = 1,2). (A28)

From these results we have

RL(N,N ′) = rL(N,N ′) + [〈R2(C1)〉 + 〈R2(C2)〉] μNL δN,N ′ . (A29)

The relation of qL(N,N ′) and RL(N,N ′) is

qL(N,N ′) = 1

2

√
16π

5
〈YLL( r̂ )|Y20( r̂ )|YLL( r̂ )〉 rL(N,N ′) (A30)

= 1

2

√
16π

5
〈YLL( r̂ )|Y20( r̂ )|YLL( r̂ )〉{RL(N,N ′) − [〈R2(C1)〉 + 〈R2(C2)〉]μNLδN,N ′ }. (A31)

The calculation of Q(L) of Eq. (A1) is now made as follows. First we expand the relative wave function χL(r) by H.O.
functions,

χL(r) =
∑
N

CNRNL(r), (A32)

1 = 〈�|�〉 = 〈χL(r)YLL( r̂ )φ(C1)φ(C2)|A {χL(r)YLL( r̂ )φ(C1)φ(C2)}〉 (A33)

=
∑
N

(CN )2μNL. (A34)

Then the Q moment of � is calculated as

〈�|1

2

∑
i

Q20(i)|�〉 = 〈χL(r)YLL( r̂ )φ(C1)φ(C2)|1

2

∑
i

Q20(i)|A {χL(r)YLL( r̂ )φ(C1)φ(C2)}〉 (A35)

=
∑
N,N ′

CNCN ′qL(N,N ′) (A36)

= 1

2

√
16π

5
〈YLL( r̂ )|Y20( r̂ )|YLL( r̂ )〉

∑
N,N ′

CNCN ′
{
RL(N,N ′) − [〈R2(C1)〉 + 〈R2(C2)〉]μNLδN,N ′

}
(A37)

= 1

2

√
16π

5
〈YLL( r̂ )|Y20( r̂ )|YLL( r̂ )〉

{
〈�|

∑
i

(r i − XG)2|�〉 − [〈R2(C1)〉 + 〈R2(C2)〉]
}

(A38)
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= 1

2

√
16π

5
〈YLL( r̂ )|Y20( r̂ )|YLL( r̂ )〉A1A2

A
〈r2〉, (A39)

A1A2

A
〈r2〉 ≡ 〈�|

∑
i

(r i − XG)2|�〉 − [〈R2(C1)〉 + 〈R2(C2)〉]. (A40)

Because we have

〈YLL( r̂ )|Y20( r̂ )|YLL( r̂ )〉 =
√

5

4π
(LL20|LL)

× (L020|L0), (A41)

(LL20|LL) =
√

L(2L − 1)

(L + 1)(2L + 3)
,

(L020|L0) = −
√

L(L + 1)

(2L − 1)(2L + 3)
,

(A42)

1

2

√
16π

5
〈YLL( r̂ )|Y20( r̂ )|YLL( r̂ )〉 = (LL20|LL) (L020|L0)

= − L

2L + 3
, (A43)

we get the following final result:

〈�|1

2

∑
i

Q20(i)|�〉 = − L

2L + 3

A1A2

A
〈r2〉. (A44)

APPENDIX B: THE SHELL-MODEL LIMITS OF THE
THSR WAVE FUNCTIONS IN DESCRIBING THE GROUND

STATES OF 12C AND 20Ne

As we know, the THSR wave function can describe not only
the gaslike cluster states but also the cluster states with normal
density, even some shell-model-like ground states. Here we
give a detailed explanation of why the THSR wave function
at the limit of B → b can describe well the shell-model-like
states of 12C and 20Ne.

In the 16O + α system, the THSR wave function shown in
Ref. [37], A{rL exp(−γ r2)YLM ( r̂ )φ(16O)φ(α)} with even L
has the character

lim
B→b

NL(B)A{rL exp(−γ r2)YLM ( r̂ )φ(16O)φ(α)}

= nLA{R8L(r,γ0)YLM ( r̂ )φ(16O)φ(α)} (B1)

= ψ((0s)4(0p)12(0d1s)4;

[4](λ,μ) = (8,0),LM)
1

g(XG,20ν)
, (B2)

g(XG,20ν) =
(

20ν

π

)−3/4

exp
(−20νX2

G

)
, (B3)

γ = 8

5

1

B2
, γ0 = 8

5

1

b2
= 16

5
ν, ν = 1

2b2
, (B4)

where NL(B) and nL are normalization constants. nL is
independent of L, actually [51]. RN=8,L(r,γ0) is the radial
H.O. function with size parameter γ0 with N standing for

the number of H.O. quanta, N = 2n + L. The equality of
Eq. (B2) is attributable to the Bayman-Bohr theorem [51,53].
Equation (B2) shows that the THSR wave function becomes,
in the limit of B → b, the most important sd-shell shell-
model wave function, having spatial symmetry [4] and SU(3)
symmetry (λ,μ) = (8,0). For deriving Eq. (B1) the following
formula is useful:

exp(−γ r2) =
(

2γ

π

)− 3
4
(

2
√

γ0γ

γ0 + γ

) 3
2

∞∑
n=0

√
(2n + 1)!!

(2n)!!

×
(

γ − γ0

γ + γ0

)n

R2n,0(r,γ0)Y00( r̂ ). (B5)

The function rLR2n,0(r,γ0) has the form of
P2n+L(r) exp(−γ0r

2), where P2n+L(r) is a polynomial
of r with the highest-power term r2n+L. When we expand
P2n+L(r) exp(−γ0r

2) by the radial H.O. function RN ′,L(r,γ0) as
P2n+L(r) exp(−γ0r

2) = ∑N0
N ′=0 CN ′RN ′,L(r,γ0), the maximum

power N0 is N0 = 2n + L. Because RN ′,L(r,γ0)YLM ( r̂ ) with
N ′ < 8 is Pauli-forbidden, we obtain Eq. (B1) in the limit of
B → b.

As another example, we explain below the limit of B → b
of the 3α THSR wave function,

lim
B→b

N3α(B)A
{

exp

[
−

(
1

B2
ξ 2

1 + 4

3B2
ξ 2

2

)] 3∏
i=1

φ(αi)

}
(B6)

= n3αA
{

F4(ξ 1,ξ 2)
3∏

i=1

φ(αi)

}
(B7)

= |(0s)4(0p)8,[444](0,4)J = 0〉 1

g(XG,12ν)
, (B8)

Fn(ξ 1,ξ 2)

=
∑

n1+n2=n

√
(2n1 + 1)!!(2n2 + 1)!!

(2n1)!!(2n2)!!
R2n1,0

(
ξ1,

1

b2

)
R2n2,0

×
(

ξ2,
4

3b2

)
[Y0(̂ξ1)Y0(̂ξ2)]J=0, (B9)

g(XG,20ν) =
(

12ν

π

)−3/4

exp
(−12νX2

G

)
, (B10)

where ξ 1 and ξ 2 are inter-α Jacobi coordinates, ξ 1 = X2 − X1

and ξ 2 = X3 − (X1 + X2)/2. N3α(B) and n3α are normal-
ization constants. Fn(ξ 1,ξ 2) is noted to be an eigenstate of
the H.O. quanta, having the eigenvalue 2n. The equality of
Eq. (B8) is because there is only one state in 12C which has total
number of H.O. quanta N = 8 = Nmin and spatial symmetry
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[444]. The equality of Eq. (B7) is obtained by using

exp

[
−

(
1

B2
ξ 2

1 + 4

3B2
ξ 2

2

)]
∝

∞∑
n=0

(
b2 − B2

b2 + B2

)n

Fn(ξ 1,ξ 2),

(B11)

which is attributable to Eq. (B5), and by noting that because
the lowest number of the total number of H.O. quanta (Nmin)
in 12C is 8, the terms with n < 4 in the above summation over
n vanish. Equation (B8) is one of the important reasons why
the THSR wave function gives good description of the ground
state of 12C.
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A. Tohsaki, C. Xu, and T. Yamada, Phys. Rev. Lett. 110, 262501
(2013).

[38] D. M. Brink, in Proceedings of the International School of
Physics “Enrico Fermi,” Course XXXVI (Academic Press, New
York/London, 1966).

[39] T. Matsuse, M. Kamimura, and Y. Fukushima, Prog. Theor.
Phys. 53, 706 (1975).

[40] H. Horiuchi, Prog. Theor. Phys. 43, 375 (1970).
[41] P. Descouvemont and D. Baye, Phys. Rev. C 36, 54 (1987).
[42] T. Suhara, Y. Funaki, B. Zhou, H. Horiuchi, and A. Tohsaki,

Phys. Rev. Lett. 112, 062501 (2014).
[43] Elliott H. Lieb, The Mathematics of the Bose Gas and Its

Condensation (Springer, Basel, 2005).
[44] Y. Kanada-En’yo, Phys. Rev. Lett. 81, 5291 (1998).
[45] Y. Kanada-En’yo, Prog. Theor. Phys. 117, 655 (2007).
[46] T. Neff and H. Feldmeier, Nucl. Phys. A 738, 357 (2004).
[47] M. Chernykh, H. Feldmeier, T. Neff, P. von Neumann-Cosel,

and A. Richter, Phys. Rev. Lett. 98, 032501 (2007).
[48] T. Suhara and Y. Kanada-En’yo (private communication).
[49] Y. Funaki (private communication).
[50] T. Ichikawa, J. A. Maruhn, N. Itagaki, and S. Ohkubo, Phys.

Rev. Lett. 107, 112501 (2011).
[51] H. Horiuchi, Prog. Theor. Phys. Suppl. 62, 90 (1977).
[52] H. Horiuchi, Prog. Theor. Phys. 51, 745 (1974).
[53] B. F. Bayman and A. Bohr, Nucl. Phys. 9, 596 (1958/1959).

034319-23

http://dx.doi.org/10.1016/j.physrep.2006.07.001
http://dx.doi.org/10.1016/j.physrep.2006.07.001
http://dx.doi.org/10.1016/j.physrep.2006.07.001
http://dx.doi.org/10.1016/j.physrep.2006.07.001
http://dx.doi.org/10.1088/0034-4885/70/12/R03
http://dx.doi.org/10.1088/0034-4885/70/12/R03
http://dx.doi.org/10.1088/0034-4885/70/12/R03
http://dx.doi.org/10.1088/0034-4885/70/12/R03
http://dx.doi.org/10.1143/PTPS.192.1
http://dx.doi.org/10.1143/PTPS.192.1
http://dx.doi.org/10.1143/PTPS.192.1
http://dx.doi.org/10.1143/PTPS.192.1
http://dx.doi.org/10.1103/PhysRevLett.87.192501
http://dx.doi.org/10.1103/PhysRevLett.87.192501
http://dx.doi.org/10.1103/PhysRevLett.87.192501
http://dx.doi.org/10.1103/PhysRevLett.87.192501
http://dx.doi.org/10.1143/PTP.108.297
http://dx.doi.org/10.1143/PTP.108.297
http://dx.doi.org/10.1143/PTP.108.297
http://dx.doi.org/10.1143/PTP.108.297
http://dx.doi.org/10.1103/PhysRevC.67.051306
http://dx.doi.org/10.1103/PhysRevC.67.051306
http://dx.doi.org/10.1103/PhysRevC.67.051306
http://dx.doi.org/10.1103/PhysRevC.67.051306
http://dx.doi.org/10.1103/PhysRevC.69.024309
http://dx.doi.org/10.1103/PhysRevC.69.024309
http://dx.doi.org/10.1103/PhysRevC.69.024309
http://dx.doi.org/10.1103/PhysRevC.69.024309
http://dx.doi.org/10.1140/epja/i2005-10168-1
http://dx.doi.org/10.1140/epja/i2005-10168-1
http://dx.doi.org/10.1140/epja/i2005-10168-1
http://dx.doi.org/10.1140/epja/i2005-10168-1
http://dx.doi.org/10.1140/epja/i2004-10238-x
http://dx.doi.org/10.1140/epja/i2004-10238-x
http://dx.doi.org/10.1140/epja/i2004-10238-x
http://dx.doi.org/10.1140/epja/i2004-10238-x
http://dx.doi.org/10.1140/epja/i2006-10061-5
http://dx.doi.org/10.1140/epja/i2006-10061-5
http://dx.doi.org/10.1140/epja/i2006-10061-5
http://dx.doi.org/10.1140/epja/i2006-10061-5
http://dx.doi.org/10.1140/epja/i2004-10071-3
http://dx.doi.org/10.1140/epja/i2004-10071-3
http://dx.doi.org/10.1140/epja/i2004-10071-3
http://dx.doi.org/10.1140/epja/i2004-10071-3
http://dx.doi.org/10.1103/PhysRevLett.96.192502
http://dx.doi.org/10.1103/PhysRevLett.96.192502
http://dx.doi.org/10.1103/PhysRevLett.96.192502
http://dx.doi.org/10.1103/PhysRevLett.96.192502
http://dx.doi.org/10.1143/PTP.117.655
http://dx.doi.org/10.1143/PTP.117.655
http://dx.doi.org/10.1143/PTP.117.655
http://dx.doi.org/10.1143/PTP.117.655
http://dx.doi.org/10.1016/j.physletb.2006.11.079
http://dx.doi.org/10.1016/j.physletb.2006.11.079
http://dx.doi.org/10.1016/j.physletb.2006.11.079
http://dx.doi.org/10.1016/j.physletb.2006.11.079
http://dx.doi.org/10.1103/PhysRevC.80.041303
http://dx.doi.org/10.1103/PhysRevC.80.041303
http://dx.doi.org/10.1103/PhysRevC.80.041303
http://dx.doi.org/10.1103/PhysRevC.80.041303
http://dx.doi.org/10.1103/PhysRevC.81.024303
http://dx.doi.org/10.1103/PhysRevC.81.024303
http://dx.doi.org/10.1103/PhysRevC.81.024303
http://dx.doi.org/10.1103/PhysRevC.81.024303
http://dx.doi.org/10.1016/j.physletb.2009.12.066
http://dx.doi.org/10.1016/j.physletb.2009.12.066
http://dx.doi.org/10.1016/j.physletb.2009.12.066
http://dx.doi.org/10.1016/j.physletb.2009.12.066
http://dx.doi.org/10.1103/PhysRevLett.105.022501
http://dx.doi.org/10.1103/PhysRevLett.105.022501
http://dx.doi.org/10.1103/PhysRevLett.105.022501
http://dx.doi.org/10.1103/PhysRevLett.105.022501
http://dx.doi.org/10.1103/PhysRevC.84.054308
http://dx.doi.org/10.1103/PhysRevC.84.054308
http://dx.doi.org/10.1103/PhysRevC.84.054308
http://dx.doi.org/10.1103/PhysRevC.84.054308
http://dx.doi.org/10.1103/PhysRevC.84.027304
http://dx.doi.org/10.1103/PhysRevC.84.027304
http://dx.doi.org/10.1103/PhysRevC.84.027304
http://dx.doi.org/10.1103/PhysRevC.84.027304
http://dx.doi.org/10.1103/PhysRevC.83.034314
http://dx.doi.org/10.1103/PhysRevC.83.034314
http://dx.doi.org/10.1103/PhysRevC.83.034314
http://dx.doi.org/10.1103/PhysRevC.83.034314
http://dx.doi.org/10.1088/1742-6596/436/1/012010
http://dx.doi.org/10.1088/1742-6596/436/1/012010
http://dx.doi.org/10.1088/1742-6596/436/1/012010
http://dx.doi.org/10.1088/1742-6596/436/1/012010
http://dx.doi.org/10.1103/PhysRevC.75.037303
http://dx.doi.org/10.1103/PhysRevC.75.037303
http://dx.doi.org/10.1103/PhysRevC.75.037303
http://dx.doi.org/10.1103/PhysRevC.75.037303
http://dx.doi.org/10.1103/PhysRevC.77.037301
http://dx.doi.org/10.1103/PhysRevC.77.037301
http://dx.doi.org/10.1103/PhysRevC.77.037301
http://dx.doi.org/10.1103/PhysRevC.77.037301
http://dx.doi.org/10.1103/PhysRevC.77.064312
http://dx.doi.org/10.1103/PhysRevC.77.064312
http://dx.doi.org/10.1103/PhysRevC.77.064312
http://dx.doi.org/10.1103/PhysRevC.77.064312
http://dx.doi.org/10.1103/PhysRevLett.101.082502
http://dx.doi.org/10.1103/PhysRevLett.101.082502
http://dx.doi.org/10.1103/PhysRevLett.101.082502
http://dx.doi.org/10.1103/PhysRevLett.101.082502
http://dx.doi.org/10.1103/PhysRevC.80.064326
http://dx.doi.org/10.1103/PhysRevC.80.064326
http://dx.doi.org/10.1103/PhysRevC.80.064326
http://dx.doi.org/10.1103/PhysRevC.80.064326
http://dx.doi.org/10.1103/PhysRevC.82.024312
http://dx.doi.org/10.1103/PhysRevC.82.024312
http://dx.doi.org/10.1103/PhysRevC.82.024312
http://dx.doi.org/10.1103/PhysRevC.82.024312
http://dx.doi.org/10.1088/0954-3899/37/6/064021
http://dx.doi.org/10.1088/0954-3899/37/6/064021
http://dx.doi.org/10.1088/0954-3899/37/6/064021
http://dx.doi.org/10.1088/0954-3899/37/6/064021
http://dx.doi.org/10.1103/PhysRevC.85.034315
http://dx.doi.org/10.1103/PhysRevC.85.034315
http://dx.doi.org/10.1103/PhysRevC.85.034315
http://dx.doi.org/10.1103/PhysRevC.85.034315
http://dx.doi.org/10.1016/0375-9474(81)90182-2
http://dx.doi.org/10.1016/0375-9474(81)90182-2
http://dx.doi.org/10.1016/0375-9474(81)90182-2
http://dx.doi.org/10.1016/0375-9474(81)90182-2
http://dx.doi.org/10.1143/PTP.57.1262
http://dx.doi.org/10.1143/PTP.57.1262
http://dx.doi.org/10.1143/PTP.57.1262
http://dx.doi.org/10.1143/PTP.57.1262
http://dx.doi.org/10.1143/PTP.59.1031
http://dx.doi.org/10.1143/PTP.59.1031
http://dx.doi.org/10.1143/PTP.59.1031
http://dx.doi.org/10.1143/PTP.59.1031
http://dx.doi.org/10.1143/PTP.62.1621
http://dx.doi.org/10.1143/PTP.62.1621
http://dx.doi.org/10.1143/PTP.62.1621
http://dx.doi.org/10.1103/PhysRevC.86.014301
http://dx.doi.org/10.1103/PhysRevC.86.014301
http://dx.doi.org/10.1103/PhysRevC.86.014301
http://dx.doi.org/10.1103/PhysRevC.86.014301
http://dx.doi.org/10.1103/PhysRevLett.110.262501
http://dx.doi.org/10.1103/PhysRevLett.110.262501
http://dx.doi.org/10.1103/PhysRevLett.110.262501
http://dx.doi.org/10.1103/PhysRevLett.110.262501
http://dx.doi.org/10.1143/PTP.53.706
http://dx.doi.org/10.1143/PTP.53.706
http://dx.doi.org/10.1143/PTP.53.706
http://dx.doi.org/10.1143/PTP.53.706
http://dx.doi.org/10.1143/PTP.43.375
http://dx.doi.org/10.1143/PTP.43.375
http://dx.doi.org/10.1143/PTP.43.375
http://dx.doi.org/10.1143/PTP.43.375
http://dx.doi.org/10.1103/PhysRevC.36.54
http://dx.doi.org/10.1103/PhysRevC.36.54
http://dx.doi.org/10.1103/PhysRevC.36.54
http://dx.doi.org/10.1103/PhysRevC.36.54
http://dx.doi.org/10.1103/PhysRevLett.112.062501
http://dx.doi.org/10.1103/PhysRevLett.112.062501
http://dx.doi.org/10.1103/PhysRevLett.112.062501
http://dx.doi.org/10.1103/PhysRevLett.112.062501
http://dx.doi.org/10.1103/PhysRevLett.81.5291
http://dx.doi.org/10.1103/PhysRevLett.81.5291
http://dx.doi.org/10.1103/PhysRevLett.81.5291
http://dx.doi.org/10.1103/PhysRevLett.81.5291
http://dx.doi.org/10.1143/PTP.117.655
http://dx.doi.org/10.1143/PTP.117.655
http://dx.doi.org/10.1143/PTP.117.655
http://dx.doi.org/10.1143/PTP.117.655
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.061
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.061
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.061
http://dx.doi.org/10.1016/j.nuclphysa.2004.04.061
http://dx.doi.org/10.1103/PhysRevLett.98.032501
http://dx.doi.org/10.1103/PhysRevLett.98.032501
http://dx.doi.org/10.1103/PhysRevLett.98.032501
http://dx.doi.org/10.1103/PhysRevLett.98.032501
http://dx.doi.org/10.1103/PhysRevLett.107.112501
http://dx.doi.org/10.1103/PhysRevLett.107.112501
http://dx.doi.org/10.1103/PhysRevLett.107.112501
http://dx.doi.org/10.1103/PhysRevLett.107.112501
http://dx.doi.org/10.1143/PTPS.62.90
http://dx.doi.org/10.1143/PTPS.62.90
http://dx.doi.org/10.1143/PTPS.62.90
http://dx.doi.org/10.1143/PTPS.62.90
http://dx.doi.org/10.1143/PTP.51.745
http://dx.doi.org/10.1143/PTP.51.745
http://dx.doi.org/10.1143/PTP.51.745
http://dx.doi.org/10.1143/PTP.51.745
http://dx.doi.org/10.1016/0029-5582(58)90343-2
http://dx.doi.org/10.1016/0029-5582(58)90343-2
http://dx.doi.org/10.1016/0029-5582(58)90343-2
http://dx.doi.org/10.1016/0029-5582(58)90343-2



