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New properties of the high-momentum distribution of nucleons in asymmetric nuclei
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Based on the recent experimental observations of the dominance of tensor interaction in the ∼250–600 MeV/c
momentum range of nucleons in nuclei, the existence of two new properties for high-momentum distribution of
nucleons in asymmetric nuclei is suggested. The first property is the approximate scaling relation between proton
and neutron high-momentum distributions weighted by their relative fractions in the nucleus. The second property
is the inverse proportionality of the strength of the high-momentum distribution of protons and neutrons to the
same relative fractions. Based on these two properties the high-momentum distribution function for asymmetric
nuclei has been modeled and demonstrated so that it describes reasonably well the high-momentum characteristics
of light nuclei. However, the most surprising result is obtained for neutron rich nuclei with large A, for which a
substantial relative abundance of high-momentum protons as compared to neutrons is predicted. For example,
the model predicts that in Au the relative fraction of protons with momenta above kF ∼ 260 MeV/c is 50% more
than that of neutrons. Such a situation may have many implications for different observations in nuclear physics
related to the properties of a proton in neutron-rich nuclei.
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I. INTRODUCTION

One of the exciting recent results in the studies of short-
range properties of nuclei is the observation of the strong (by
a factor of 20) dominance of the pn short-range correlations
(SRCs) in nuclei, as compared to pp and nn correlations, for
internal momenta of ∼250–600 MeV/c [1,2]. This observation
is understood [1,3,4] based on the dominance of the tensor
forces in the NN interaction at this momentum range corre-
sponding to average nucleon separations of ∼1.1 Fm. The ten-
sor interaction projects the NN SRC part of the wave function
into the isosinglet—relative angular momentum, L = 2 state,
almost identical to the D-wave component of the deuteron
wave function. At the same time, the pp and nn components
of the NN SRC will be strongly suppressed since they are
dominated by the central NN potential with relative L = 0.

In this work the implication of the above observation on
the properties of high-momentum distribution of nucleons in
asymmetric nuclei is explored. Two new features are predicted:
first, that high-momentum distributions of the proton and
neutron weighted by their relative fractions are approximately
equal (Sec III) and second, for moderately asymmetric nuclei
the high-momentum distribution of the nucleon is inverse
proportional to its fraction in the nucleus (Sec IV). In Sec. V
it is demonstrated that these properties predict strikingly
different high-momentum tails for a proton and neutron in
neutron-rich nuclei such as Au. Section VI discusses the results
of realistic calculations for light nuclei (up to 11B), which
are in reasonable agreement with the predicted properties of
the high-momentum distribution. Furthermore, in Sec. VII,
the possibilities of the verification of the same properties
for heavy neutron-rich nuclei are discussed through probing
the high-momentum distribution of nucleons in semi-inclusive
electronuclear reactions. Section VIII discusses the restrictions
of the model and the accuracy of the predictions. Section IX
discusses the possible implications of the new properties in
different nuclear phenomena such as the isospin dependence of
the medium modification effects and properties of the proton

in high density nuclear matter. This section also addresses
the question of the universality of the predicted features
for any asymmetric two-component Fermi system controlled
only by short-range interaction between the components. The
conclusions are given in Sec. X.

II. HIGH-MOMENTUM DISTRIBUTION OF NUCLEONS
IN NUCLEI AND 2N SRCS

Due to the short-range nature of strong interactions, the
property of an A-nucleon bound-state wave function, in
which one of the nucleons has momentum p, such that
p2

2mN
� |EB | (binding energy), is defined mainly by the

2N interaction potential (VNN ) at relative momenta k ∼ p,
i.e., �A(p,p2,p3, . . . , pA) ∼ VNN (k)

k2 f (p3, . . . , pA), where

�p2 ≈ − �p ≈ −�k and f (· · · ) is a smooth function of the
momenta of noncorrelated nucleons [5–7]. This result follows
from a dimensional analysis of the Lipmann-Schwinger-type
equations for the A-nucleon system described by the NN
potential, which decreases at large k as V (k) ∼ 1

kn , with n > 1
[5,6]. This asymptotic form of the wave function leads to the
approximate relation for nucleon momentum distribution at
p > kF , with kF being the characteristic Fermi momentum of
the nucleus

nA(p) ∼ aNN (A) · nNN (p), (1)

where the full momentum distribution is normalized as∫
nA(p)d3p = 1. The parameter aNN (A) can be interpreted

as a probability of finding NN SRC in the given nucleus A.
The function nNN (p) is the momentum distribution in the NN
SRC [5,6,8–10], where NN represents the combination of all
possible isospin pairs.

If, following the above-discussed dominance of tensor
interactions, the contributions from pp and nn SRCs are
neglected, then one expects that in the range of ∼kF –600
MeV/c the momentum distribution in the NN SRC is defined
by pn correlations only. Using this and the local nature of
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SRCs one predicts

nNN (p) ≈ npn(p) ≈ nd (p), (2)

where nd (p) is the deuteron momentum distribution.
For further discussion the individual momentum distribu-

tions of the proton (nA
p (p)) and neutron (nA

n (p)) are introduced
such that

nA(p) = Z

A
nA

p (p) + A − Z

A
nA

n (p) (3)

and
∫

nA
p/n(p)d3p = 1. Here the two terms in the sum

represent the probability density of finding in the nucleus a
proton or neutron with momentum p.

III. APPROXIMATE SCALING RELATION

Integrating Eq. (3) within the momentum range of NN
SRCs one observes that the terms in the sum give the total
probabilities of finding a proton and a neutron in the NN
SRC. Since the SRCs within our approximation consist only
of the pn pairs, the total probabilities of finding a proton and
neutron in the SRC are equal. This is the reflection of the fact
that in our approximation no other possibilities exist for NN
SRCs. Furthermore, within the approximation in which one
neglects the center of mass motion of the pn SRCs one can
make a stronger statement on the equality of integrands of the
above integrals, i.e., in the ∼kF –600 MeV/c region

xp · nA
p (p) ≈ xn · nA

n (p), (4)

where xp = Z
A

, xn = A−Z
A

. This represents the first property,
according to which the momentum distributions of the proton
and neutron weighted by their respective fractions are approx-
imately equal.

IV. FRACTIONAL DEPENDENCE OF HIGH-MOMENTUM
COMPONENTS

Using the high-momentum relations of Eqs. (1) and (2) for
nA(p) and the relation (4) in Eq. (3) one obtains that in the
∼kF –600 MeV/c momentum range

nA
p/n(p) ≈ 1

2xp/n

a2(A,y) · nd (p), (5)

where aNN (A) ≈ apn(A,y) ≡ a2(A,y) and the nuclear asym-
metry parameter is defined as y = |xn − xp|.

Within the approximation in which only pn SRCs are in-
cluded the parameter a2(A,y) satisfies two limiting conditions:
(i) a2(A,0) is defined only by the nuclear density and (ii)
a2(A,1) = 0 due to the neglect of pp and nn SRCs. This
allows us to represent a2(A,y) as

a2(A,y) = a2(A,0)

⎡
⎣1 −

n∑
j=1

bj | xn − xp |j
⎤
⎦ , (6)

with the condition
∑n

j=1 bj = 1 to satisfy the limiting condi-
tion (ii). The latter relation indicates that it is always possible to
satisfy an inequality

∑n
j=1 bj | xn − xp |j� 1, in which case

one can formulate the second property of the high-momentum
distribution: that, according to Eq. (5), the probability of a

TABLE I. Fractions of high-momentum protons and neutrons in
nuclei A.

A Pp(%) Pn(%) A Pp(%) Pn(%)

12 20 20 56 27 23
27 24 22 197 31 20

proton or neutron being in high momentum NN correlation is
inverse proportional to their relative fractions (xp or xn) in the
nucleus.

V. RELATIVE NUMBER OF HIGH-MOMENTUM
PROTONS AND NEUTRONS

The most important prediction that follows from the second
property is that the relative number of high-momentum protons
and neutrons became increasingly unbalanced with an increase
of the nuclear asymmetry y. To quantify this prediction, using
Eq. (5) one can calculate the fraction of the nucleons having
momenta �kF as

Pp/n(A,y) ≈ 1

2xp/n

a2(A,y)
∫ ∞

kF

nd (p)d3p, (7)

where the upper limit of integration is extended to infinity
assuming a smaller overall contribution from the momentum
range of �600 MeV/c. The results of the calculation of these
fractions for medium to heavy nuclei, using the estimates of
a2(A,y) from Refs. [10–14] and kF from Ref. [15] are given
in Table I. As it follows from the table, with the increase
of the asymmetry the imbalance between the high-momentum
fractions of the proton and neutron grows. For example, in Au,
the relative fraction of high-momentum (�kF ) protons is 50%
more than that of the neutrons.

VI. HIGH-MOMENTUM FEATURES OF LIGHT NUCLEI

One can check the validity of the above two [Eqs. (4)
and (5)] observations for light nuclei for which it is possible to
perform realistic calculations based on the Faddeev equations
for A = 3 systems [16], correlated Gaussian basis (CGB)
approach [17], as well as the variational Monte Carlo method
(VMC) [18] for light nuclei A (recently available for up to
A = 12 [19,20]).

First, the validity of Eq. (4) is checked, which is presented in
Fig. 1 for the 3He nucleus, based on the solution of the Faddeev
equation [16], and for 10Be based on VMC calculations [18].
In both cases the Argonne V18 [21] potential is used for the
NN interaction. The solid lines with and without squares in
Fig. 1(a) represent neutron and proton momentum distributions
for both nuclei weighted by their respective xn and xp factors.

As one can see for 3He, the proton momentum distribution
dominates the neutron momentum distribution at small mo-
menta reflecting the fact that in the mean field the probability of
finding the proton is larger than the neutron just because there
are twice as many protons in 3He. The same is true for 10Be,
for which now the neutron momentum distribution dominates
at small momenta. However, at ∼300 MeV/c for both nuclei,
the proton and neutron momentum distributions become close

034305-2



NEW PROPERTIES OF THE HIGH-MOMENTUM . . . PHYSICAL REVIEW C 89, 034305 (2014)

10 -5
10 -4
10 -3
10 -2
10 -1

1
10
102
103

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p  (GeV/c)

x 
n(

p)
  (

G
eV

-3
)

0
0.2
0.4
0.6
0.8

1
1.2
1.4

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
p  (GeV/c)

R
at

io

3He

3He

10Be

10Be

(a)

(b)

FIG. 1. (Color online) (a) The momentum distributions of a
proton and neutron weighted by xp and xn, respectively. The
doted lines represent the prediction for the momentum distribution
according to Eq. (5). (b) The xp/n weighted ratio of neutron to proton
momentum distributions. See the text for details.

to each other up to the internal momenta of 600MeV/c. This
is the region dominated by tensor interaction.

This effect is more visible for the ratios of weighted n-
to p-momentum distributions in Fig. 1(b), demonstrating that
the approximation of Eq. (4) in the range of 300–600 MeV/c
is good on the level of 15%. Note that the similar features
present for all other asymmetric nuclei were calculated within
the VMC method found in Refs. [19,20].

Next, the validity of Eq. (5) is checked. For this the estimates
of a2 for 3He and 10Be from Refs. [13,14] are used and the
deuteron momentum distribution nd calculated using the same
Argonne V18 NN potential [21]. The calculations based on
Eq. (5) are given by the doted lines in Fig. 1(a). As it follows
from these comparisons, the model of Eq. (5) works rather
well starting at 200 MeV/c up to the very large momenta
∼1 GeV/c. This reflects the fact that the center of mass motion
effects and higher partial waves in 2N as well as 3N SRCs are
not dominant in light nuclei.

The final prediction to be checked is the one following from
Eq. (7) according to which the smallest component should be
more energetic in the asymmetric nuclei. Namely, one expects
a more energetic neutron than proton in 3He and the opposite
result for neutron-rich nuclei. This expectation is confirmed
for p and n kinetic energies of all nuclei calculated within
the Faddeev equation, CGB approach, and VMC method (see
Table II).

Thus one concludes that all the observations concerning
the features of a high-momentum distribution in asymmetric
nuclei are in reasonable agreement with the results following
from the realistic wave functions of light nuclei.

TABLE II. Kinetic energies (in MeV) of a proton and neutron.

A y E
p
kin En

kin E
p
kin − En

kin

8He 0.50 30.13 18.60 11.53
6He 0.33 27.66 19.06 8.60
9Li 0.33 31.39 24.91 6.48
3He 0.33 14.71 19.35 −4.64
3He [16] 0.33 13.70 18.40 −4.7
3He [17] 0.33 13.97 18.74 −4.8
3H 0.33 19.61 14.96 4.65
8Li 0.25 28.95 23.98 4.97
10Be 0.2 30.20 25.95 4.25
7Li 0.14 26.88 24.54 2.34
9Be 0.11 29.82 27.09 2.73
11B 0.09 33.40 31.75 1.65

VII. HIGH-MOMENTUM FEATURES OF HEAVY NUCLEI

Presently, no ab initio calculations exist for heavy nuclei
for the predictions of Eqs. (4) and (5) to be checked.
However, these properties can be checked experimentally in
semi-inclusive nucleon knock-out A(e,e′N )X reactions on
asymmetric nuclei in which the momentum distribution of the
nucleon can be probed if final state interactions (FSI) are in
control. Such a control can be achieved at large Q2 > 1 GeV2

kinematics, in which case it was demonstrated that the FSI
effects can be estimated reasonably well within the eikonal
approximation (see, e.g., Ref. [22] and references therein).
The first such experimental verification for heavy nuclei is
currently underway in a quasielastic A(e,e,p)X measurement
at the Jefferson Laboratory, where the ratio of high-momentum
fractions of nucleons in 56Fe and 208Pb to that of 12C is
extracted. The results [23] are in reasonably good agreement
with the prediction of Eq. (7) (Table I) and they are currently
being prepared for publication.

It is worth noting that there is a possibility of designing
a host of new (e,e′N ) experiments with asymmetric nuclei
at specific kinematics in which xBjorken > 1 and |pz

m| −
q0

qv
(Em + p2

m

2MA−1
) > kF , where pm, Em, q0, and qv are the

missing momentum, missing energy, transferred energy, and
transferred momentum in the reaction (see, e.g., Refs. [24,25]
for details), in which case it is possible to extract the high-
momentum distribution of nucleons with minimal distortion
due to FSI effects. Such measurements will allow to check
also the predictions of Eqs. (4) and (5). Moreover the (e,e′N )
experiments will allow to extract nuclear spectral functions,
which contain additional information on the structure of
SRCs, such as the correlation between the missing energy and
missing momentum. One of the first measurements [26] of the
nuclear spectral function at the SRC region confirmed the high
potential of the (e,e′N ) reactions in correlation studies.

VIII. RESTRICTION OF THE MODEL

The pp and pn SRCs which are neglected in the above
mentioned observations are present in nontensor (e.g., S = 0)
state as well as the T = 1, S = 1 part of the NN interactions.
These contributions are expected to increase with A. Also
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neglected is the center of mass (c.m.) motion of pn SRCs. It
is rather well established that, for A � 12, in the momentum
range of kF < p < 600 MeV/c the c.m. momentum of the
NN SRC has a distribution with the width being proportional
to kF [7,27,28]. Thus one expects the accuracy of the observed
relations [Eqs. (4) and (5)] to worsen with the increase
of A.

However, due to the mean field character of the c.m. motion
as well as the equal contributions of the pp and nn SRCs to
the overall strength of the NN correlations one expects the
validity of the modified relation

xγ
p · nA

p (p) ≈ xγ
n · nA

n (p), (8)

where γ ≡ γ (kF ) � 1, with γ decreasing with an increase
of A (or kF ). The same γ factor will enter also in the high-
momentum part of the momentum distribution of the protons
and neutrons

nA
p/n(p) ≈ 1

(2xp/n)γ
a2(A,y) · nd (p), (9)

which will diminish the imbalance between the high-
momentum protons and neutrons presented in Table I.

Very recently, the above predictions have been checked
for momentum distributions of asymmetric infinite nuclear
matter at above-saturation densities calculated within the
Green’s function method [29,30]. These calculations observed
the scaling of the weighted ratios of the high-momentum
parts of the proton and neutron momentum distributions and
indicated that the power-law scaling behavior of Eq. (8) was
valid for moderate asymmetries. This and the above-discussed
experimental measurements of 56Fe and 208Pb are the first
indications that the predictions of Eqs. (4) and (5) or Eqs. (8)
and (9) may have validity for heavy nuclei and infinite nuclear
matter.

Overall, the realistic nuclear structure calculations that
can systematically incorporate short-range correlations for
asymmetric nuclei (see, e.g., Refs. [29,31]) combined with
the experimental studies of A(e,e′n)X reactions will allow to
check the predictions of Eqs. (8) and (9) as well as evaluate
the γ factor as a function of nuclear parameters.

IX. POSSIBLE IMPLICATIONS AND UNIVERSALITY OF
THE PREDICTED FEATURES FOR TWO-COMPONENT

FERMI SYSTEMS

The implications of the above-made observations could
range from the EMC effects to the proton properties in high
density asymmetric nuclear matter. These observations suggest
several new directions in studies of the high-momentum
component of asymmetric nuclei.

For example, combining the three following observations:
(i) nuclear medium modification (EMC effect) of parton
distribution functions (PDFs) are proportional to the virtuality
(momentum) of the bound nucleon (see, e.g., Refs. [9,32–34]);
(ii) high-momentum protons dominate in neutron-rich nuclei
(this article); and (iii) PDFs of a proton dominate that of
the neutron at xBjorken � 0.3 (see, e.g., Ref. [35]), one can
conclude that the EMC effects for neutron-rich nuclei will be
defined mainly by the proton component in the nucleus. This

may explain [36] the large A part of the recently observed
correlation between the strengths of the EMC and SRC
effects [37,38].

The prediction of the enhanced contribution of protons in
the EMC effect indicates that on average the u quarks will
be more modified than the d quarks in neutron-rich nuclei
and the effect will grow with A. This provides an alternative
explanation [39] of the NuTeV anomaly [40,41]. The predicted
effect also can be checked in parity violating deep inelastic
scattering of the heavy nuclei.

The discussed new features of the high-momentum com-
ponent of nucleon momentum distributions could be relevant
also for high density asymmetric nuclear matter. In Ref. [14]
such a possibility was discussed for neutron stars at the
cooling threshold of direct neutrino scattering (referred to as
URCA processes) with xp ∼ 1

8 and y ∼ 7
9 . For example, it

was observed [14,42] that if the above-made observations were
valid for infinite nuclear matter, then starting at three nuclear
saturation densities, protons will predominantly populate the
high-momentum part of the momentum distribution. This may
have an implication for several properties of neutron stars such
as cooling through the direct URCA processes, superfluidity
of protons, the magnetic field of the stars, as well as the
distribution of protons in the core of the massive neutron stars.

Our observations in this work follow from two main general
conditions. First, that the interaction is short-ranged and in the
high-momentum limit the multiparticle wave function can be
factorized to NN correlated and A-2 mean field components.
Second, the pn interaction significantly dominates that of the
pp and nn interactions.

As such, the present results may have a relevance to any
asymmetric two-component Fermi system for which the above
two conditions are satisfied; that is, the interaction within
each component is suppressed while the mutual interaction
between the two components is finite and short-ranged. In
such a situation, according to our observations, the momentum
distribution of the small component will be shifted to the
high-momentum part of the distribution.

It is interesting that the similar situation potentially can
be realized in two-Fermi-component ultracold atomic sys-
tems [43], but with the mutual s-state interaction. One of the
most intriguing aspects of such systems is that in the large
asymmetric limit they exhibit very rich phase structure with
an indication of the strong modification of the small component
of the mixture [44,45]. In this respect our case may be similar
to that of ultracold atomic systems, with the difference being
that the interaction between components has a tensor nature.

X. SUMMARY AND CONCLUSION

Based on the dominance of the tensor forces in the NN
system for the momentum range of ∼kF –600 MeV/c. A
new scaling relations is observed between p and n high-
momentum distributions weighted by their fractions in the
nuclei [Eq. (4)]. Using this, together with their relation to the
high-momentum distribution of the deuteron, one arrives at the
second observation, according to which the strengths of the p
and n high-momentum components are inversely proportional
to their relative fractions. Based on these observations the
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p and n high-momentum distributions are constructed for
asymmetric nuclei and the overall fraction of nucleons being
in the high-momentum part of the momentum distribution are
estimated.

The validity of these observations for light nuclei are
confirmed by direct calculations using realistic wave functions.
The first experimental measurements for large A nuclei and
calculations for infinite nuclear matter indicate the relevance
of the predictions also for heavy nuclei and nuclear matter.

It is also observed that the effects due to the c.m. motion of
NN SRCs as well as contributions from pp and nn SRCs will
diminish the estimated imbalance between high-momentum
protons and neutrons for large A nuclei. If this imbalance is
observed for heavy nuclei and infinite nuclear matter it will

have a multitude of implications, some of which are discussed
in the text.
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