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Self-consistent description of single-particle levels of magic nuclei
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Single-particle levels of seven magic nuclei are calculated within the energy density functional (EDF) method
by Fayans et al. [Nucl. Phys. A 676, 49 (2000)]. Three versions of the EDF are used, the initial Fayans functional,
DF3, and its two variations, DF3-a and DF3-b, with different values of spin-orbit parameters. Comparison is
made with predictions of the Skyrme-Hartree-Fock method with the HFB-17 functional. For the DF3-a functional,
phonon coupling (PC) corrections to single-particle energies are found self-consistently with an approximate
account for the tadpole diagram. Accounting for the PC corrections improves the agreement with the data for
heavy nuclei, e.g., for 208Pb. On the other hand, for lighter nuclei, e.g., 40,48Ca, PC corrections make the agreement
a little worse. As estimations show, the main reason is that the approximation we use for the tadpole term is less
accurate for light nuclei.
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I. INTRODUCTION

In the seminal article [1] on the Hartree-Fock (HF) method
with effective forces, Vautherin and Brink reduced the effective
Skyrme forces containing a three-body term to a much simpler
version with a density-dependent two-body force. Initially, this
dependence was assumed to be linear, just as that of the scalar
Landau-Migdal interaction amplitude in the theory of finite
Fermi systems (TFFS) [2] playing the role of the effective
interaction in this approach. Inclusion of a velocity-dependent
force is another essential feature of the Skyrme HF (SHF)
method. As a result, the SHF effective Hamiltonian HSHF will
involve, in addition to the neutron and proton densities ρn,p(r),
the kinetic energy densities τn,p(r). The coordinate-dependent
effective masses m∗

n,p(r), as a rule, differ significantly from
the free-nucleon mass m. At first sight, this structure of the
effective Hamiltonian seems to contradict the Hohenberg-
Kohn theorem [3], which states that the ground-state energy of
a Fermi system E0 is a functional of the density ρ(r). However,
as shown, e.g., in [4], the kinetic energy τ (r) can be expressed
in terms of the density ρ(r), although the relation is rather
complicated.

Due to its simplicity, the SHF method quickly became
very popular and up to now it dominates the self-consistent
description of nuclear properties. From the very beginning,
the SHF method was aimed at calculating global properties
of nuclei, such as the binding energy and average radii. There
are numerous sets of Skyrme force parameters, some of them
resulting in the description of nuclear masses with a high
accuracy. The set HFB-17 [5] led to a record accuracy which
is better, on average, than 600 keV. We compare our results

for single-particle spectra we analyze with those obtained with
the HFB-17 functional.

At the same time, from the very beginning, the SHF method
turned out to be unsuccessful in describing single-particle
spectra produced by SHF mean-field potentials. The reason
was the significant deviation of the effective masses m∗

n,p(r =
0) � 0.6 ÷ 0.8m from the bare one typical for the SHF
approach. In fact, the simplest shell model with Saxon-Woods
potentials and m∗ = m was, as a rule, more successful at this
point. It is noteworthy that the inclusion of single-particle
energies to the fit of the SHF parameters [6] led to an effective
mass close to the bare one.

A bit later the self-consistent TFFS was developed. It was
based on the basic principles of the TFFS [2] supplemented
with the condition of self-consistency in the TFFS among
the energy-dependent mass operator �(r1,r2; ε), the single-
particle Green function G(r1,r2; ε), and the effective nucleon-
nucleon interaction U(r1,r2,r3,r4; ε,ε′) [7]. The final version
of this approach [8–10] was formulated in terms of the
quasiparticle Lagrangian Lq , which is constructed to produce
the quasiparticle mass operator �q(r,k2; ε). By definition,
the latter coincides at the Fermi surface with the exact
mass operator �(r,k2; ε). In the mixed coordinate-momentum
representation it depends linearly on the momentum squared
k2 and the energy ε as well [2]. In magic nuclei which are
nonsuperfluid, the Lagrangian Lq depends on three sorts of
densities νi(r), i = 0,1,2. The first two densities are analogs
of the SHF densities ρ(r) and τ (r), whereas the density ν2(r) is
a new ingredient of the self-consistent theory. It is the density
of single-particle energies which appears naturally due to the ε
dependence of the quasiparticle mass operator and determines
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the Z factor

Z(r) = 1

1 − (
∂�
∂ε

)
0

, (1)

where the index 0 means that the energy and momentum
variables are taken at the Fermi surface.

The self-consistent TFFS permits us to obtain the same
bulk nuclear characteristics as the SHF method. In addition,
it helps to find the Z factor, which determines the in-volume
component of the one-nucleon S factors. On equal footing, the
TFFS from the very beginning was focused on the analysis
of single-particle spectra. The effective mass appearing in this
approach contains not only the so-called k mass, as in the SHF
method, but also the “E mass”:

m

m∗(r)
= Z(r)

[
1 + 2m

(
∂�

∂k2

)
0

]
. (2)

As found in [9], these two ingredients of the effective
mass should strongly cancel each other in order to describe
the single-particle spectra of magic nuclei. The optimal set
of parameters found in [9] corresponds to the following
characteristics of nuclear matter: Z0 = 0.8, m∗

n = 0.95, m∗
p =

1.05, which explains the success of the shell model with
m∗ = m. For nuclear matter, a strong cancellation of the k
mass and E mass is well known in the Bruekner theory. It was
also analyzed within the relativistic Bruekner-HF method in
Ref. [11].

It is noteworthy that corrections to the mean-field theory due
to contributions of the low-lying surface vibrations, “phonons,”
were involved in the analysis in [9]. All phonon coupling (PC)
diagrams were taken into account, including so-called tadpole
terms. The method developed by Khodel [12] was used at that
point.

Again, as in the SHF theory case, the appearance of a
new density ν2(r) does not contradict the Hohenberg-Kohn
theorem. As found in [13], it can be excluded if one goes
from the quasiparticle Lagrangian Lq to the quasiparticle
Hamiltonian Hq , which depends now on two densities, just
as the SHF Hamiltonian HSHF. Moreover, if, on the basis of
the closeness of the neutron and proton effective masses to
the bare one, we put m∗

n = m∗
p = m, the Hamiltonian Hq will

depend only on the density ρ(r) normalized in a standard way,
just as in the energy density functional (EDF) of Kohn-Sham
[14]. However, the quasiparticle Lagrangian of rather simple
structure introduced in [9] leads to a very complicated density
dependence of the Hamiltonian Hq[ρ(r)] [13] which could
hardly be introduced ad hoc.

The next important step in the self-consistent TFFS
was made by Fayans and coauthors [15]. On the base of the
analysis in [13], they formulated the theory directly in terms of
the EDF approach. They generalized the Kohn-Sham method
to superfluid systems, proposing for the normal component of
the EDF the fractional density dependence, with finite-range
force,

E0 =
∫

C0a f (|r − r′|)ρ(r′)2

2

1 − h1(ρ(r′)/ρ0)α

1 + h2ρ(r′)/ρ0
d3r d3r ′,

(3)

where the factor C0 = (dn/dεF)−1 is the usual TFFS
normalization factor, the inverse density of states at the Fermi
surface, and ρ0 is the nuclear matter density. The constants
a, h1, h2, ρ0, and α are parameters and the Yukawa form for
the finite-range function f (r) was used. Isotopic indices in (3)
are omitted for brevity. In Eq. (3), the spin-orbit and Coulomb
interaction for protons are omitted as well. For nuclear matter,
the EDF, (3), with parameter values of [15] turned out to be
very close to that in [13]. The identity m∗ = m, which is a
usual feature of the Kohn-Sham method, was proposed in this
approach. The explicit form of the Fayans EDF and its different
parametrizations DF1–DF3 can be found in [16], [17],
or [18].

Recently, new data on single-particle spectra appeared [19]
for seven magic nuclei, from 40Ca to 208Pb. For two of them,
78Ni and 100Sn, the spectra were not measured directly but
were interpolated from the neighboring nuclei. The bulk of
these data contains 35 spin-orbit energy differences, which
can be used for fitting the spin-orbit and effective tensor force
parameters. In this article we carry out a comparative analysis
of these spectra within the EDF approach of Fayans et al. and
the SHF method with the set HFB-17 [5].

In addition, we analyze the PC corrections to single-
particle spectra including the tadpole term. The particle-
vibration coupling was extensively studied within the so-called
quasiparticle-phonon model of Soloviev [20] and within the
“nuclear -field” approach of Bortignon and Broglia [21]. The
use of phenomenological parameters for single-particle spectra
and particle-PC constants was typical for these approaches.
Evidently, the first self-consistent consideration of the PC
corrections to the single-particle spectra was made by Bernard
and Nguyen [22] within the SHF method. However, for a long
time this approach has been abandoned. Recently the interest
in this problem has been renewed. Self-consistent calculations
with the SHF functionals have been carried out in [23] within
the quasiparticle-phonon model and in [24–26] within the
nuclear-field method. In a recent article [27] this problem was
attacked within the relativistic mean-field (RMF) theory (see
[28], and references therein).

Within the TFFS, the problem of PC corrections to ελ was
examined in very old articles [9,29]. An important feature
of these calculations was accounting for so-called tadpole
diagrams, which are ignored in all the approaches mentioned
above. The method developed by Khodel [12] is used for
this aim. However, these calculations were not completely
self-consistent. They used the Saxon-Woods basis, and the
TFFS self-consistency relation [7] was taken into account
approximately. In this article, we follow the approach of [9]
and [29], enabling complete self-consistency, i.e., with the
self-consistent basis and self-consistent finding of the PC
vertices gL for each of the L phonons. In addition, a wider
number of magic nuclei is considered for which single-particle
spectra are available.

II. EDF DESCRIPTION OF SINGLE-PARTICLE LEVELS

The parameter set DF3 [16] was used in the vest-known
application of the generalized EDF method of Fayans et al.
[17]. This set not only was fitted to characteristics of stable
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TABLE I. Spin-orbit parameters of different versions of the
Fayans EDF.

Parameter DF3 [17] DF3-a [30] DF3-b

κ 0.216 0.190 0.165
κ ′ 0.077 0.077 0.075
g1 0 0 −0.100
g′

1 −0.123 −0.308 −0.300

spherical nuclei from calcium to lead but also was specially
fitted to single-particle levels of the very neutron-rich doubly
magic nucleus 132Sn. In Ref. [30], it was applied to nuclei
of uranium and transuranium regions which had not been
analyzed previously within this approach. It was found that
for successful description of this new bulk of nuclei, the
spin-orbit parameters of the basic DF3 set should be modified.
To compare these two functionals explicitly, we write down
the spin-orbit terms of the EDF we discuss.

The main spin-orbit effective interaction is taken in [16]
and [17] in the usual TFFS form,

Fsl = C0r
2
0 (κ + κ ′τ 1τ 2)[∇1δ(r1 − r2)

× (p1 − p2)] · (σ 1 + σ 2), (4)

with obvious notation. Here the factor r2
0 is introduced to make

the spin-orbit parameters κ and κ ′ dimensionless. It can be
expressed in terms of the equilibrium density ρ0 of nuclear
matter introduced above, r2

0 = (3/(8πρ0))2/3.
In nuclei with partially occupied spin-orbit doublets, the

so-called spin-orbit density exists,

ρτ
sl(r) =

∑
λ

nτ
λ

〈
φτ∗

λ (r)(σ l)φτ
λ (r)

〉
, (5)

where τ = n,p is the isotopic index and averaging over spin
variables is carried out. As is well known (see, e.g., [9]), a new
term appears in the spin-orbit mean field induced by the tensor
forces and the first harmonic ĝ1 of the spin Landau-Migdal
amplitude. We combine those contributions into an effective
tensor force or first spin harmonic:

F s
1 = C0r

2
0 (g1 + g′

1τ 1τ 2)δ(r1 − r2)(σ 1σ 2)(p1p2). (6)

For brevity, we call all four parameters in Eqs. (4) and (6)
spin-orbit parameters.

The spin-orbit parameters of the set in [30] called DF3-a
are listed in Table I, together with the initial set DF3. Also,
a new set, DF3-b, has been found for optimal description of
the spin-orbit energy differences. In Ref. [19] the bulk of the
data is given on spin-orbit doublets with known values of
the energies of both components, the total number being 35.
This provides us with the possibility of such optimization.
The experimental values of the spin-orbit differences, �nls =
εn,l,j=l−1/2 − εn,l,j=l+1/2, for all magic nuclei are listed in
Table II together with predictions of the different functionals
we analyze. For comparison with the SHF method, we
calculated also the single-particle spectra with the HFB-17
functional [5]. To characterize the accuracy of all named
functionals in describing this specific set of data we found
the average theoretical error of predictions for each of them

TABLE II. Deviations δ�nls (MeV) of the theory predictions
�theor

nls for spin-orbit differences from experimental values for different
functionals.

Nucleus λ �
exp
nls �theor

nls − �
exp
nls

DF3-b DF3-a DF3 HFB-17

40Ca-p 1f 5.69 0.69 1.43 2.29 3.57
1d 5.40 −0.40 0.22 0.90 2.35
2p 1.75 −0.35 −0.16 0.02 0.26

40Ca-n 1f 5.71 0.99 1.80 2.71 4.24
1d 5.63 −0.50 0.12 0.82 2.34
2p 2.00 −0.34 −0.12 0.09 0.46

48Ca-p 1f 5.08 0.46 0.84 2.87 5.05
1d 5.77 −2.18 −1.98 −0.42 1.50
2p 1.50 −0.41 −0.29 0.03 0.70

48Ca-n 1f 8.75 −0.13 0.21 0.39 1.47
2p 2.03 −0.24 −0.13 −0.22 0.21

56Ni-p 1f 7.45 −0.49 −0.56 0.83 2.49
2p 1.11 0.21 0.20 0.17 0.78

56Ni-n 1f 7.17 0.14 0.06 1.41 3.16
2p 1.11 0.39 0.39 0.37 1.02

78Ni-p 1f 5.12 0.17 0.09 1.07 2.77
2p 1.40 −0.11 −0.05 −0.05 0.41

78Ni-n 2p 1.33 0.02 0.06 0.22 0.80
100Sn-p 1g 6.86 −0.44 −0.50 0.69 2.60

2p 1.10 0.15 0.20 0.27 0.74
100Sn-n 1g 6.35 0.41 0.32 1.45 3.42

2d 1.57 0.49 0.57 0.66 1.41
132Sn-p 1g 6.13 −1.11 −1.17 −0.27 1.48

2d 1.74 −0.02 0.08 0.19 0.82
132Sn-n 1h 6.75 0.90 0.92 1.82 3.76

2f 2.01 0.01 0.05 0.44 1.30
3p 0.80 −0.36 −0.35 −0.31 0.32

208Pb-p 1h 5.56 −0.95 −0.96 −0.17 1.54
2f 1.92 −0.01 0.15 0.31 1.06
2d 1.34 0.05 0.17 0.31 0.86
3p 0.85 −0.16 −0.09 −0.02 0.21

208Pb-n 1i 5.84 1.05 1.03 1.83 3.82
2g 2.49 −0.02 0.12 0.42 1.51
2f 1.77 0.38 0.53 0.81 1.68
3d 0.97 −0.15 −0.09 0.00 0.83

〈δ�nls〉rms 0.60 0.68 1.04 2.16

with the expression

〈δ�nls〉rms =
√√√√ 1

N

N∑
i=1

(
�theor

nls,i − �
exp
nls,i

)2
, (7)

with obvious notation. The average error values are listed in
the last row in Table II. Indeed, the DF3-b version wins the
competition. The DF3-a functional describes the spin-orbit
doublets a little more poorly. For the DF3 version, the error
increases to 1 MeV, which is, however, twice as low as the
HFB-17 result.

In Figs. 1–14 we compare the experimental data [19] with
our calculations employing three versions of the DF3 func-
tional and using the SHF functional HFB-17. To characterize
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FIG. 1. (Color online) Neutron single-particle levels in 40Ca.
Experimental data from [19].

the accuracy of a specific version, on average, we calculated the
corresponding average deviation of the theoretical predictions
from experiment for each magic nucleus,

〈δελ〉rms =
√

1

N

∑
λ

(
εtheor
λ − ε

exp
λ

)2
; (8)

the summation involves both neutrons and protons. The
results are listed in Table III. The last row reports results
of summation over all nuclei. We see that the accuracy
of all three versions of the DF3 functional is significantly
higher than that of the HFB-17 functional. We explain this
with two important features of the Fayans approach. First,
it is the use of the bare mass m∗ = m, which is close
to the prescription m∗/m = 1 ± 0.05 of [9]. Second, the
density dependence of the Fayans EDF, (3), is essentially
more sophisticated than the SHF one. Being rather close to
that in [13], it involves implicitly the energy dependence of
the quasiparticle mass operator within the TFFS. Evidently,
SHF functionals turn out to be oversimplified for describing
successfully nuclear characteristics finer than the binding
energies.

Among the three versions of the DF3 functionals, the
accuracy of the original one for spectra of magic nuclei is
a little higher. However, the set DF3-a proved to be rather
successful, better than DF3, in describing characteristics of

FIG. 2. (Color online) Proton single-particle levels in 40Ca.
Experimental data from [19].

FIG. 3. (Color online) Neutron single-particle levels in 48Ca.
Experimental data from [19].

semimagic nuclei such as the excitation energies and B(E2)
values of the first 2+ states in even nuclei [18,31] and
quadrupole moments of odd semimagic nuclei [32,33]. All
these quantities are very sensitive to the position of single-
particle levels in the vicinity of the Fermi surface. In addition,
as mentioned above, the DF3-a functional works better for
nuclei heavier than lead. Therefore in the next section, dealing
with PC corrections to single-particle spectra, we use the
DF3-a functional.

III. PHONON COUPLING CORRECTIONS
TO SINGLE-PARTICLE ENERGIES

Accounting for PC effects, the equation for single-particle
energies and wave functions can be written as

(ε − H0 − δ�PC(ε))φ = 0, (9)

where H0 is the quasiparticle Hamiltonian with the spectrum
ε

(0)
λ and δ�PC is the PC correction to the quasiparticle mass

operator. After expanding this term in the vicinity of ε = ε
(0)
λ

one finds

ελ = ε
(0)
λ + ZPC

λ δ�PC
λλ

(
ε

(0)
λ

)
, (10)

FIG. 4. (Color online) Proton single-particle levels in 48Ca.
Experimental data from [19].
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FIG. 5. (Color online) Neutron single-particle levels in 56Ni.
Experimental data from [19].

with obvious notation. Here ZPC denotes the Z factor due to
the PC effects, i.e., that found from Eq. (1) with substitution of
δ�PC(ε) instead of the main mass operator �(ε). Remember
that in the TFFS the corresponding Z factor is included
in the quasiparticle Hamiltonian H0. For brevity, below the
superscript PC is omitted. Expression (10) corresponds to
the perturbation theory in the δ� operator with respect
to H0. In this article, we limit ourselves to magic nuclei
where the so-called g2

L approximation, gL being the L-
phonon creation amplitude, is, as a rule, valid. It is worth
mentioning that Eq. (10) is more general, including, say, g4

L

terms.
Let us now consider g2

L corrections to the quasiparticle mass
operator (Fig. 15). The first, pole diagram is well examined
and corresponding equations can be found in textbooks, e.g., in
[2] and [10]. Therefore we concentrate mainly on the second,
tadpole term, which has not been as widely discussed in the
literature.

The vertex gL in Fig. 15 obeys the equation [2]

gL(ω) = FA(ω)gL(ω), (11)

where A(ω) = ∫
G (ε + ω/2) G (ε − ω/2) dε/(2πi) is the

particle-hole propagator, G(ε) being the one-particle Green
function. In obvious symbolic notation, the pole diagram

FIG. 6. (Color online) Proton single-particle levels in 56Ni. Ex-
perimental data from [19].

FIG. 7. (Color online) Neutron single-particle levels in 78Ni.
Experimental values [19] are interpolated from data for neighboring
nuclei.

corresponds to δ�pole = (gL,DGgL), where DL(ω) is the
phonon D function, or explicitly one obtains

δ�
pole
λλ (ε) =

∑
λ1 M

|〈λ1|gLM |λ〉|2

×
(

nλ1

ε + ωL − ελ1

+ 1 − nλ1

ε − ωL − ελ1

)
, (12)

where ωL is the excitation energy of the L phonon and nλ =
(0,1) stands for the occupation numbers.

All the low-lying phonons we consider have natural parity.
In this case, the vertex gL possesses even T parity. It is a sum
of two components with spins S = 0 and S = 1, respectively,

gL = gL0(r)TLL0(n,α) + gL1(r)TLL1(n,α), (13)

where TJLS stand for the usual spin-angular tensor operators
[34]. The operators TLL0 and TLL1 have opposite T parities,
hence the spin component should be the odd function of the
excitation energy, gL1 ∝ ωL. For the ghost dipole, L = 1 and
ω1 = 0, Eq. (11), due to the TFFS self-consistency relation
[7], has the exact solution

g1(r) = α1
dU (r)

dr
Y1M (n), (14)

FIG. 8. (Color online) Proton single-particle levels in 78Ni. Ex-
perimental values [19] are interpolated from data for neighboring
nuclei.
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FIG. 9. (Color online) Neutron single-particle levels in 100Sn.
Experimental values [19] are interpolated from data for neighboring
nuclei.

where α1 = 1/
√

2ωB1, B1 = 3mA/4π is the Bohr-Mottelson
(BM) mass coefficient [35] and U (r) is the central part of the
mean-field potential generated by the energy functional.

For the ghost phonon it is convenient to rewrite Eq. (12) as
follows:

δ�
pole
λλ (ε) = α2

1

∑
λ1 M

∣∣∣∣〈λ1|dU

dr
Y1M |λ〉

∣∣∣∣
2

×
(

ε − ελ1(
ε − ελ1

)2 − ω2
1

+ ω1
1 − 2nλ1(

ε − ελ1

)2 − ω2
1

)
.

(15)

The second, tadpole, term in Fig. 15 is

δ�tad =
∫

dω

2πi
δLgLDL(ω), (16)

where δLgL can be found [9,12] by variation of Eq. (11) in the
field of the L phonon:

δLgL = δLFA(ωL)gL + FδLA(ωL)gL

+FA(ωL)δLgL. (17)

FIG. 10. (Color online) Proton single-particle levels in 100Sn.
Experimental values [19] are interpolated from data for neighboring
nuclei.

FIG. 11. (Color online) Neutron single-particle levels in 132Sn.
Experimental data from [19].

The phonon D function appears in Eq. (16) after connecting
two wavy phonon ends in Eq. (17). This corresponds to
averaging of the product of two boson (phonon) operators
B+

L BL over the ground state of the nucleus with no phonons.
The quantity δLA can be readily obtained by variation

of each Green function in the particle-hole propagator A in
field gL induced by the L phonon. The explicit expression
for the variation δLF cannot be found within the TFFS, as in
this approach the Landau-Migdal amplitude F is introduced
as a phenomenological quantity. In Ref. [9] the ansatz was
proposed,

δLF = δF(ρ)

δρ
δρL, (18)

where

δρL = ALgL (19)

is the transition density for excitation of the L phonon.
The complete PC correction from the L phonon to the

single-particle energy is

δελ = Zλ

(
δ�

pole
λλ + δ�tad

λλ

)
. (20)

FIG. 12. (Color online) Proton single-particle levels in 132Sn.
Experimental data from [19].

034304-6



SELF-CONSISTENT DESCRIPTION OF SINGLE- . . . PHYSICAL REVIEW C 89, 034304 (2014)

FIG. 13. (Color online) Neutron single-particle levels in 208Pb.
Experimental data from [19].

As the term δ�tad does not depend on the energy ε, it does not
contribute to Zλ. Hence, the PC contribution to the Z factor is

Zλ = 1

1 − ∂
∂ε

δ�
pole
λλ (ε)

∣∣
ε=ελ

. (21)

The explicit relation for energy derivative of the mass operator,
(12), can be easily obtained.

Dealing with the ghost phonon, Eqs. (16) and (17), with the
use of (14), can be transformed [9] to

δ�tad
L=1 = α2

1

2

U (r). (22)

For the ghost phonon both terms of the sum, (20), are
proportional to α2

1 ∝ 1/ω1, hence the ω1-even component of
Eq. (15) and the tadpole term, (22), should compensate each
other:

α2
1

∑
λ1 M

∣∣∣∣〈λ1|dU

dr
Y1M (n)|λ〉

∣∣∣∣
2

ελ − ελ1(
ελ − ελ1

)2 − ω2
1

+ (
δ�tad

L=1

)
λλ

= 0. (23)

This identity could be proved explicitly [9,29] with the use of
the identity (∂U/∂r)λλ′ = (ελ′ − ελ)(∂/∂r)λλ′ .

FIG. 14. (Color online) Proton single-particle levels in 208Pb.
Experimental data from [19].

TABLE III. Average deviations 〈δελ〉rms (MeV) of the theory
predictions for the single-particle energies from the experimental
values for magic nuclei.

Nucleus N DF3-b DF3-a DF3 HFB17

40Ca 14 1.08 1.25 1.35 1.64
48Ca 12 0.89 1.00 1.01 1.70
56Ni 14 1.00 0.97 0.85 1.40
78Ni 11 1.24 1.41 1.09 1.32
100Sn 13 1.09 1.17 1.01 1.56
132Sn 17 0.58 0.66 0.55 1.15
208Pb 24 0.44 0.51 0.43 1.15
Total 105 0.89 0.98 0.89 1.40

In the result one obtains

δε
ghost
λ = 1

2B1

∑
λ1 M

∣∣∣∣〈λ1|dU

dr
Y1M (n)|λ〉

∣∣∣∣
2

× 1 − 2nλ1(
ελ − ελ1

)2 − ω2
1

. (24)

The physical meaning of the PC correction caused by the ghost
1− phonon is very simple. This is account for the “recoil effect”
due to the center-of-mass (CM) motion. Equation (24), with
the use of the above relation for the (∂U/∂r) operator, can be
reduced to the usual RPA formula for CM motion correction
[4],

δε
ghost
λ = 1

2B1

∑
λ1 M

∣∣kλ1λ

∣∣2
; (25)

although more cumbersome, Eq. (24) is convenient for
numerical calculations.

The L-phonon excitation energies ωL and creation ampli-
tudes gL(r) were found by solving the self-consistent Eq. (11)
with the DF3-a functional. In more detail, the procedure is
described in [18]. The results for ωL and B(EL) values
are listed in Table IV. All the L phonons we consider are
the surface vibrations which belong to the Goldstone mode
corresponding to the spontaneous breaking of the translation
symmetry in nuclei [9]. The coordinate form of their creation

L

+

L

gL gL

FIG. 15. PC corrections to the mass operator. The gray circle
denotes the “tadpole” term.
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TABLE IV. Characteristics of the low-lying phonons in magic
nuclei, ωL (MeV) and B(EL,up) (e2 fm2L).

Lπ ωth
L ω

exp
L B(EL)th B(EL)exp

40Ca
3− 3.335 3.736 69 (5) 1.52 × 104 1.24 × 104

48Ca
2+ 3.576 3.831 72 (6) 0.55 × 102 0.86 × 102

3− 4.924 4.506 78 (5) 5.701 × 103 0.67 × 104

56Ni
2+ 2.826 2.7006 (7) 5.725 × 102

3− 8.108 4.932 (3) 2.068 × 104

78Ni
2+ 3.238 – 3.309 × 102

3− 6.378 – 1.549 × 104

100Sn
2+ 3.978 – 1.375 × 103

3− 5.621 – 1.24 × 105

132Sn
2+ 4.327 4.041 20 (15) 0.104 × 104 0.11 (0.03) × 104

3− 4.572 4.351 94 (14) 1.29 × 105

208Pb
3− 2.684 2.615 7.093 × 105 6.12 × 105

5−
1 3.353 3.198 3.003 × 108 4.47 × 108

5−
2 3.787 3.708 1.785 × 108 2.41 × 108

2+
1 4.747 4.086 1.886 × 103 3.18 × 103

2+
2 5.004 4.928 1.148 × 103 –

4+
1 4.716 4.324 3.007 × 106 –

4+
2 5.367 4.911(?) 8.462 × 106 –

6+
1 4.735 – 6.082 × 109 –

6+
2 5.429 – 1.744 × 1010 –

amplitudes gL(r) is very close to that for the ghost phonon,
which is the lowest energy member of this mode:

gL(r) = αL

dU

dr
+ χL(r), (26)

where the in-volume correction χL(r) is rather small. The first,
surface term on the right-hand side of Eq. (26) corresponds to
the BM model for the surface vibrations [35], the amplitude
αL being related to the dimensionless BM amplitude βL as
αL = RβL, where R = r0A

1/3 is the nucleus radius, and r0 =
1.2 fm.

The smallness of the in-volume component χL is demon-
strated in Fig. 16 for the 3−

1 state in 208Pb, which is the most
collective one among the surface vibrations in this nucleus. The
small spin components S = 1 are also displayed. To make them
distinguishable, they are multiplied by the factor of 10. The
smallness of the spin components is typical for L phonons with
a high collectivity. For phonons which are less collective, e.g.,
the 2+

1 state in 208Pb, the spin component is more important and
should be taken into account. In any case, we always took it
into account for all phonons. Similarly, the surface component
also dominates in the transition density:

ρL(r) = αL

dρ

dr
+ ηL(r). (27)

FIG. 16. (Color online) The vertex gL for the 3−
1 state in 208Pb.

If one neglects in-volume contributions, the tadpole PC
term, (16), can be reduced to a form similar to (16):

δ�tad
L = α2

L

2

2L + 1

3

U (r). (28)

As demonstrated in [29], the in-volume corrections to Eq. (28)
are, indeed, small for heavy nuclei, e.g., for 208Pb. At the same
time, for light nuclei, e.g., 40,48Ca, the accurate solution [29]
of Eq. (17) diminishes the approximate value, (28), for the
tadpole term by �30%.

Below we neglect the in-volume corrections for all nuclei
considered. To find the phonon amplitudes αL, we used the
definition

ατ
L = g

τ,max
L(

dU
dr

)τ,max , (29)

with obvious notation. It should be noted that the values
of αn

L and α
p
L are always very close to each other and to

that which follows from the BM model formula for B(EL),
B(EL)BM = (3Z/4π )2 β2

LR2L [35], where the dimensionless
BM phonon creation amplitude βL related to that used by
us as αL = βLR/

√
2L + 1, R = 1.2 A1/3. For example, for

the 3−
1 state in 208Pb we have αn

L = 0.32 fm, α
p
L = 0.33 fm,

and αBM
L = 0.30 fm.

Separate contributions of pole and tadpole terms for PC
corrections from the first 3− state to single-particle levels 40Ca
are listed in Table V, and those for 208Pb in Table VI. The
tadpole correction δεtad

λ is always positive, whereas the pole
one δε

pole
λ is, as a rule, negative. For such cases, these two

terms partially cancel each other. In the 40Ca nucleus, these
contributions are of the same order, and the sum proves to
be positive in almost half of the cases. As mentioned above,
the tadpole values in Table V could be reduced by �30%,
providing the accurate solution [29] of Eq. (17). In 208Pb,
the role of the tadpole term is, on average, smaller, but still
important. In this case, the in-volume corrections to Eq. (28)
are small. Indeed, “the surface-to-volume ratio” decreases
as ∝A−1/3 for heavy nuclei, therefore the surface vibrations
resemble the modes of a classical liquid drop, not penetrating
inside its volume.

Consider now the final results of the DF3-a functional for
the single-particle spectra for magic nuclei with inclusion of
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TABLE V. Pole and tadpole contributions to PC corrections from
3− states to single-particle energies (MeV) in 40Ca.

λ δε
pole
λ δεtad

λ δελ

Neutrons
1f5/2 −0.395 0.592 0.197
2p1/2 −0.805 0.305 −0.500
2p3/2 −0.833 0.383 −0.450
1f7/2 −0.142 0.733 0.591
1d3/2 −0.426 0.697 0.271
2s1/2 −0.932 0.493 −0.439
1d5/2 −0.253 0.731 0.478

Protons
1f5/2 −0.240 0.470 0.230
2p1/2 −0.584 0.152 −0.432
2p3/2 −0.224 0.251 0.027
1f7/2 0.100 0.677 0.777
1d3/2 −0.370 0.659 0.289
2s1/2 −0.886 0.429 −0.457
1d5/2 −0.234 0.699 0.466

the PC corrections. Let us begin with 40Ca, in Table VII.
It also contains the Zλ factors, which are used in the final
expression, (10), for the single-particle energy. The difference
1 − Zλ determines the scale of the PC effects. The inequality
1 − Zλ � 1 justifies the validity of the perturbation theory in

TABLE VI. Pole and tadpole contributions to PC corrections from
3− states to single-particle energies (MeV) in 208Pb.

λ δε
pole
λ δεtad

λ δελ

Neutrons
3d3/2 −0.150 0.012 −0.137
2g7/2 −0.142 0.061 −0.081
4s1/2 −0.134 0.016 −0.118
3d5/2 −0.147 0.023 −0.124
1j15/2 −0.708 0.204 −0.504
1i11/2 −0.058 0.198 0.140
2g9/2 −0.244 0.076 −0.167
3p1/2 −0.220 0.053 −0.167
2f5/2 −0.186 0.094 −0.092
3p3/2 −0.205 0.056 −0.149
1i13/2 0.057 0.211 0.269
2f7/2 0.724 0.091 0.815
1h9/2 −0.014 0.197 0.184

Protons
3p1/2 −0.375 0.153 −0.222
3p3/2 −0.371 0.152 −0.219
2f5/2 −0.278 0.168 −0.110
1i13/2 −0.534 0.266 −0.268
2f7/2 −0.409 0.168 −0.240
1h9/2 −0.054 0.222 0.168
3s1/2 −0.310 0.143 −0.167
2d3/2 −0.241 0.146 −0.095
1h11/2 −0.017 0.246 0.229
2d5/2 0.435 0.147 0.582
1g7/2 −0.271 0.197 −0.074

TABLE VII. PC corrections to single-particle energies (MeV)
in 40Ca.

λ Zλ ε
(0)
λ δελ ελ ε

exp
λ [19]

3− 1−

Neutrons
1f5/2 0.947 −2.124 0.197 0.321 −1.634 −2.65
2p1/2 0.934 −3.729 −0.500 0.133 −4.072 −4.42
2p3/2 0.916 −5.609 −0.450 0.130 −5.902 −6.42
1f7/2 0.947 −9.593 0.591 0.173 −8.870 −8.36
1d3/2 0.965 −14.257 0.271 0.267 −13.738 −15.64
2s1/2 0.930 −15.780 −0.439 0.184 −16.017 −18.11
1d5/2 0.969 −19.985 0.478 0.224 −19.305 −21.27

Protons
1f5/2 0.963 4.359 0.230 0.300 4.869 4.60
2p1/2 0.950 2.456 −0.432 0.062 2.104 2.38
2p3/2 0.966 0.936 0.027 0.091 1.050 0.63
1f7/2 0.960 −2.678 0.777 −0.198 −2.122 −1.09
1d3/2 0.966 −7.264 0.289 0.262 −6.733 −8.33
2s1/2 0.931 −8.663 −0.457 0.170 −8.931 −10.85
1d5/2 0.969 −12.856 0.466 0.216 −12.196 −13.73

g2
L. In addition to the 3− state, Table VII lists the corrections

due to the recoil effect from the spurious 1− state. For this
nucleus, the latter is significant: for several states, comparable
with that from the 3− state. The agreement of the PC
corrections with the data is a little worse. Now the total
average error is 1.30 MeV, compared to the 1.25 MeV without
PC corrections. The main reason for this disagreement is the
overestimate of the tadpole term discussed above.

In 48Ca (Table VIII) there are two states, 1f n
5/2 and 1d

p
5/2,

with anomalously small values of Zλ. This occurs because of
the occasional smallness of one of the denominators in Eq. (12)
due to some semigeneration of the energies ελ and ελ ± ωL.
Of course, in this situation the plain perturbation theory is
not valid. An improved approach should be developed with

TABLE VIII. PC corrections to single-particle energies (MeV)
in 48Ca.

λ Zλ ε
(0)
λ δελ ελ ε

exp
λ [19]

3− 2+ 1−

Neutrons
1g9/2 0.796 0.836 0.438 −0.069 0.068 1.184 0.45
1f5/2 0.164 −0.508 – – – −0.508 −1.20
2p1/2 0.773 −3.890 −0.095 −0.457 0.098 −4.241 −3.12
2p3/2 0.939 −5.784 −0.116 −0.068 0.119 −5.846 −5.15
1f7/2 0.965 −9.488 0.153 0.095 0.121 −9.132 −9.95

Protons
1f5/2 0.873 −4.048 0.076 −0.330 0.249 −4.052 −4.55
2p1/2 0.648 −3.549 −0.114 −1.399 0.157 −4.427 −5.05
2p3/2 0.604 −4.731 −0.089 0.390 0.126 −4.473 −6.55
1f7/2 0.899 −9.909 0.144 −0.305 0.176 −9.896 −9.63
1d3/2 0.917 −16.172 0.099 0.369 0.190 −15.568 −15.81
2s1/2 0.915 −15.098 −0.024 0.476 0.147 −14.550 −16.17
1d5/2 0.116 −19.913 – – – −19.913 −21.58
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TABLE IX. PC corrections to single-particle energies (MeV)
in 56Ni.

λ Zλ ε
(0)
λ δελ ελ ε

exp
λ [19]

3− 2+ 1−

Neutrons
1g9/2 0.777 −5.311 −0.263 −0.120 0.097 −5.533 −6.55
2p1/2 0.774 −9.615 −0.101 −0.411 0.149 −9.895 −9.14
1f5/2 0.008 −8.258 – – – −8.258 −9.48
2p3/2 0.933 −11.064 −0.111 −0.042 0.126 −11.089 −10.25
1f7/2 0.945 −15.588 0.309 0.130 0.137 −15.044 −16.65
1d3/2 0.927 −20.763 0.424 0.141 0.148 −20.103 −19.84
2s1/2 0.752 −20.911 0.800 0.180 0.120 −20.084 −20.40

Protons
1g9/2 0.809 3.722 −0.224 −0.054 0.084 3.565 2.77
2p1/2 0.761 −0.648 −0.106 −0.491 0.122 −1.011 0.37
1f5/2 0.445 0.713 0.205 −0.307 0.215 0.763 0.29
2p3/2 0.911 −1.905 −0.119 −0.123 0.106 −2.029 −0.74
1f7/2 0.963 −6.276 0.280 0.178 0.129 −5.711 −7.16
1d3/2 0.941 −11.432 0.388 0.217 0.145 −10.726 −10.08
2s1/2 0.815 −11.349 0.659 0.101 0.111 −10.639 −10.72

exact diagonalization of the “two-level” problem. Fortunately,
such cases are very rare: two for 48Ca, one for 56Ni, and one
for 208Pb. Therefore we postpone the solution of this problem,
skipping the calculation of the energy corrections δελ for these
states. They are reported in Tables VIII, IX, and XIII to call
attention to this problem. For the 48Ca nucleus the phonon 2+
is added, as sometimes its contribution exceeds that of the 3−
state. The contribution of the recoil effect is less than in 40Ca
but still important. It should be noted that a rough estimate of
this effect is �εF/A, so it becomes small for heavy nuclei but,
as a rule, not negligible. We have included it for all nuclei, as
it is, in fact, model independent.

For all nuclei from 56Ni to 132Sn (Tables IX–XII), the set
of phonons we take into account is the same as for 48Ca, i.e.,
3−, 2+ and the ghost 1− state. For all of them the contributions

TABLE X. PC corrections to single-particle energies (MeV) in 78Ni.

λ Zλ ε
(0)
λ δελ ελ ε

exp
λ [19]a

3− 2+ 1−

Neutrons
3s1/2 0.873 −1.045 −0.080 −0.409 0.017 −1.457 −1.44
2d5/2 0.915 −1.477 −0.040 −0.162 0.052 −1.615 −1.98
1g9/2 0.918 −5.481 0.169 0.264 0.068 −5.021 −5.86
2p1/2 0.910 −8.268 −0.059 0.349 0.083 −7.929 −7.21
1f5/2 0.912 −8.553 0.172 0.364 0.114 −7.960 −8.39
1p3/2 0.724 −9.641 0.446 0.378 0.054 −9.005 −8.54

Protons
1g9/2 0.773 −11.138 −0.190 −0.152 0.099 −11.326 −8.91
2p1/2 0.679 −14.185 −0.104 −0.811 0.125 −14.721 −12.04
2p3/2 0.880 −15.526 −0.115 −0.161 0.102 −15.680 −13.44
1f5/2 0.927 −15.061 0.168 −0.081 0.125 −14.864 −14.94
1f7/2 0.943 −20.245 0.214 0.195 0.112 −19.754 −20.06

aExperimental values are interpolated from data for neighboring
nuclei.

TABLE XI. PC corrections to single-particle energies (MeV) in
100Sn.

λ Zλ ε
(0)
λ δελ ελ ε

exp
λ [19]a

3− 2+ 1−

Neutrons
1h11/2 0.755 −7.630 −0.314 −0.142 0.061 −7.928 −7.78
2d3/2 0.810 −9.087 −0.097 −0.568 0.083 −9.559 −9.48
3s1/2 0.661 −9.158 −0.194 −0.977 0.060 −9.893 −9.58
2d5/2 0.899 −11.180 −0.121 −0.152 0.058 −11.374 −11.05
1g7/2 0.928 −9.705 0.193 −0.129 0.100 −9.552 −11.13
1g9/2 0.938 −16.449 0.268 0.199 0.077 −15.939 −17.48
2p1/2 0.941 −18.432 −0.068 0.232 0.074 −18.209 −17.94

Protons
1g7/2 0.930 4.077 0.206 −0.132 0.097 4.237 4.00
2d5/2 0.908 2.812 −0.136 −0.143 0.044 2.599 3.10
1g9/2 0.938 −2.345 0.256 0.196 0.072 −1.853 −2.86
2p1/2 0.942 −4.081 −0.072 0.221 0.068 −3.877 −3.65
2p3/2 0.750 −5.360 0.647 0.275 0.050 −4.631 −4.75
1f5/2 0.891 −6.030 0.276 0.299 0.074 −5.451 −8.99

aExperimental values are interpolated from data for neighboring
nuclei.

of the 3− and 2+ phonons are of the same order of magnitude,
whereas the 1− contribution diminishes in accordance with
the above estimate. For 208Pb we calculated the contributions
of nine phonons: 3−, 5−

1,2, 2+
1,2, 4+

1,2, and 2+
1,2. As a rule,

the contribution of the 3−-phonon dominates. However,
sometimes the contribution of all other phonons is comparable
with that of 3−. For this nucleus, the PC corrections improve
the description of the single-particle spectrum. The average
error is now 0.34 MeV instead of 0.51 MeV.

TABLE XII. PC corrections to single-particle energies (MeV) in
132Sn.

λ Zλ ε
(0)
λ δελ ελ ε

exp
λ [19]

3− 2+ 1−

Neutrons
1i13/2 0.734 0.745 −0.368 −0.085 0.032 0.436 0.25
2f5/2 0.927 −0.255 −0.076 −0.224 0.025 −0.510 −0.44
3p1/2 0.942 −0.629 −0.117 −0.187 −0.001 −0.916 −0.79
1h9/2 0.942 0.192 0.119 −0.112 0.080 0.274 −0.88
3p3/2 0.919 −1.095 −0.100 −0.234 0.011 −1.392 −1.59
2f7/2 0.938 −2.319 −0.084 −0.084 0.029 −2.449 −2.45
2d3/2 0.945 −8.044 −0.080 0.177 0.051 −7.904 −7.39
1h11/2 0.948 −7.472 0.215 0.135 0.047 −7.096 −7.63
3s1/2 0.939 −8.159 −0.120 0.201 0.029 −8.056 −7.72
2d5/2 0.727 −9.993 0.619 0.206 0.031 −9.371 −9.04
1g7/2 0.942 −9.620 0.173 0.193 0.059 −9.220 −9.82

Protons
1h11/2 0.832 −7.056 −0.174 −0.044 0.056 −7.190 −6.86
2d3/2 0.858 −7.606 −0.104 −0.304 0.065 −7.900 −6.95
2d5/2 0.921 −9.420 −0.153 −0.063 0.048 −9.576 −8.69
1g7/2 0.967 −9.892 0.182 −0.010 0.063 −9.665 −9.65
1g9/2 0.963 −14.842 0.221 0.094 0.062 −14.479 −15.78
2p1/2 0.963 −16.073 −0.059 0.100 0.052 −15.983 −16.13
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TABLE XIII. PC corrections to single-particle energies (MeV) in 208Pb.

λ Zλ ε
(0)
λ δελ ελ ε

exp
λ [19]

3− 5−
1 2+

1

∑
rest 1−

Neutrons
3d3/2 0.879 −0.709 −0.137 −0.027 −0.086 −0.278 0.004 −1.171 −1.40
2g7/2 0.886 −1.091 −0.081 −0.013 −0.095 −0.215 0.026 −1.426 −1.45
4s1/2 0.895 −1.080 −0.118 −0.028 −0.066 −0.240 0.003 −1.483 −1.90
3d5/2 0.873 −1.599 −0.124 −0.034 −0.104 −0.234 0.009 −2.023 −2.37
1j15/2 0.618 −2.167 −0.504 −0.016 −0.025 0.009 0.025 −2.483 −2.51
1i11/2 0.945 −2.511 0.140 0.022 −0.030 0.023 0.041 −2.327 −3.16
2g9/2 0.882 −3.674 −0.167 −0.005 −0.032 −0.097 0.018 −3.924 −3.94
3p1/2 0.926 −7.506 −0.167 −0.033 0.074 0.058 0.022 −7.549 −7.37
2f5/2 0.923 −8.430 −0.092 −0.006 0.066 0.124 0.032 −8.316 −7.94
3p3/2 0.913 −8.363 −0.149 0.004 0.081 0.074 0.016 −8.338 −8.27
1i13/2 0.902 −9.411 0.269 0.052 0.054 0.154 0.032 −8.905 −9.00
2f7/2 0.567 −10.708 0.815 0.023 0.098 0.190 0.020 −10.059 −9.71
1h9/2 0.892 −11.009 0.184 0.021 0.070 0.223 0.033 −10.535 −10.78

Protons
3p1/2 0.005 0.484 – – – – – 0.484 0.68
3p3/2 0.690 −0.249 −0.219 −0.100 −0.154 −0.365 0.026 −0.810 −0.17
2f5/2 0.812 −0.964 −0.110 −0.016 −0.106 −0.248 0.036 −1.325 −0.98
1i13/2 0.741 −2.082 −0.268 0.012 −0.021 0.039 0.034 −2.234 −2.19
2f7/2 0.859 −3.007 −0.240 −0.014 −0.013 −0.095 0.025 −3.298 −2.90
1h9/2 0.958 −4.232 0.168 0.023 0.007 0.052 0.035 −3.959 −3.80
3s1/2 0.929 −7.611 −0.167 0.018 0.048 0.051 0.026 −7.633 −8.01
2d3/2 0.937 −8.283 −0.095 0.006 0.052 0.068 0.031 −8.223 −8.36
1h11/2 0.931 −8.810 0.229 0.021 0.020 0.134 0.037 −8.399 −9.36
2d5/2 0.711 −9.782 0.582 0.006 0.043 0.113 0.024 −9.234 −9.70
1g7/2 0.423 −11.735 −0.074 0.056 0.087 0.190 0.029 −11.613 −11.49

The average deviations 〈δελ〉rms for all nuclei we consider
for the DF3-a functional, with and without PC corrections, are
presented in Table XIV. For lighter nuclei, A = 40 ÷ 100, PC
corrections worsen the agreement a bit, with the only exception
of 78Ni. For heavy nuclei, 132Sn and 208Pb, the agreement
becomes better.

To conclude this section, we compare in Table XV our
results for 208Pb with predictions of the RMF theory [27],
the only calculation we know where PC corrections to the
single-particle spectrum are found self-consistently. In this
calculation only the pole diagram in Fig. 8 is taken into
account. It is seen that the agreement of our result with the

TABLE XIV. PC effect on average deviations 〈δελ〉rms (MeV)
of the theory predictions for single-particle energies from the
experimental values for the DF3-a functional.

Nucleus N DF3-a + ph DF3-a

40Ca 14 1.30 1.25
48Ca 12 1.08 1.00
56Ni 14 0.98 0.97
78Ni 11 1.34 1.41
100Sn 13 1.21 1.17
132Sn 17 0.60 0.66
208Pb 24 0.34 0.51

Total 105 0.97 0.98

data is significantly better. For the RMF spectrum the average
deviation from the data is 〈δελ〉rms = 0.81 MeV, which is two
times worse than the result of the DF3-a functional with PC
corrections.

IV. CONCLUSION

Single-particle spectra of seven magic nuclei, from 40Ca to
208Pb, some of which have become available recently [19], are
described within the EDF method of Fayans et al. Comparison
is made with the predictions of the SHF method with the
functional HFB-17, the record holder in describing nuclear
masses among self-consistent approaches. Three versions of
the Fayans functional are used, DF3 [16] and two options, DF3-
a and DF3-b, with different spin-orbit parameter values. One of
these, DF3-a, was suggested in [30] to describe nuclei heavier
than lead. The second option, DF3-b, is found in this paper to
give a better description of the spin-orbit differences �nls . The
bulk of the data [19] provides 35 such differences, which makes
it possible to find the optimal set of spin-orbit parameters.
The DF3-b set is the most successful: the average deviation
from experimental values 〈δ�nls〉rms is equal to 0.60 MeV. For
comparison, it is 0.68 MeV for the DF3-a functional, about
1 MeV for the original DF3 functional, and more than 2 MeV
for the HFB-17 functional.

Description of the single-particle energies for all three
versions of the DF3 functional is also significantly better
than for the HFB-17 functional. To compare the accuracy of
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TABLE XV. Single-particle energies (MeV) with PC corrections
in 208Pb. Comparison with predictions of the RMF theory [27].

λ ελ[DF3 − a + ph] ε
exp
λ [19] ελ[RMF + ph]

Neutrons
3d3/2 −1.171 −1.40 −0.63
2g7/2 −1.426 −1.45 −1.14
4s1/2 −1.483 −1.90 −0.92
3d5/2 −2.023 −2.37 −1.39
1j15/2 −2.483 −2.51 −1.84
1i11/2 −2.327 −3.16 −3.30
2g9/2 −3.924 −3.94 −3.29
3p1/2 −7.549 −7.37 −7.68
2f5/2 −8.316 −7.94 −8.66
3p3/2 −8.338 −8.27 −8.26
1i13/2 −8.905 −9.00 −9.10
2f7/2 −10.059 −9.71 −9.71
1h9/2 −10.535 −10.78 −11.96

Protons
3p1/2 0.484 0.68 1.09
3p3/2 −0.810 −0.17 −0.16
2f5/2 −1.325 −0.98 −1.07
1i13/2 −2.234 −2.19 −2.49
2f7/2 −3.298 −2.90 −2.87
1h9/2 −3.959 −3.80 −5.04
3s1/2 −7.633 −8.01 −8.41
2d3/2 −8.223 −8.36 −9.33
1h11/2 −8.399 −9.36 −9.92
2d5/2 −9.234 −9.70 −10.05
1g7/2 −11.613 −11.49 −13.74

〈δελ〉rms 0.34 0.81

different theories, on average, we found the average differences
〈δελ〉rms between theoretical and experimental values of the
single-particle energies ελ. These quantities are found for
each nucleus and for the whole set of 105 levels. For each
of the nuclei under consideration the predictions of the Fayans
functional are more accurate. For example, for 40Ca, 〈δελ〉rms

values are equal to 1.08-1.35 MeV for the three versions of the
DF3 functional and 1.64 MeV for the HFB-17 functional. For
the 208Pb nucleus, the advantage of the Fayans functional is
even more pronounced; the corresponding values of 〈δελ〉rms

are 0.43–0.51 MeV for the DF3 functionals and 1.15 MeV for
the HFB-17 one. As for the overall values of 〈δελ〉rms, they are
equal to 0.89 MeV for the DF3 functional, 0.98 MeV for the
DF3-a functional, and 0.89 MeV for DF3-b. For the HFB-17
functional it is equal to 1.40 MeV.

Thus, all three versions of the DF3 functional describe
the single-particle levels with an accuracy of, on average,
better than 1 MeV. We explain this by two main features
of the Fayans EDF. First, the Fayans EDF uses the bare
mass, m∗ = m, prescription of the Kohn-Sham method. The
self-consistent TFFS [9]—which takes into account not only

the momentum dependence, as does the SHF method, but
also the energy dependence effects—leads to a result which
is rather close to the Kohn-Sham prescription. This occurs
due to the strong, almost-exact cancellation of the so-called
k mass and E mass. The latter appears due to the energy
dependence of the quasiparticle mass operator on energy,
which has no analog in the SHF method. Second, the density
dependence of the Fayans EDF is much more sophisticated
than that of the SHF one. This is also an implicit consequence
of the energy dependence effects taken into account in the
TFFS. In our opinion, the reason why the HFB-17 functional,
which describes nuclear masses perfectly well, is less accurate
for single-particle spectra is that the density dependence of
SHF functionals is oversimplified for describing more delicate
nuclear characteristics.

The self-consistent description of the PC corrections to
single-particle spectra in magic nuclei is another subject of this
paper. Calculations are carried out for the DF3-a functional,
which was successful in describing the excitation energies
and B(E2) values [18,31], as well as the quadrupole moments
[32,33], in semimagic nuclei. The method developed in [9] and
[29] is used, which permits us to calculate PC contributions
not only from the usual pole diagram but also from the
tadpole one. The latter is taken into account approximately,
with ansatz (28), which neglects the in-volume components
of the vertices gL(r) of the surface vibrations. As shown in
[29], this approximation works well for heavy nuclei but it
is questionable for lighter ones. The tadpole contribution is
almost always positive as long as the pole contribution is
usually negative. As a result, the two terms, pole and tadpole,
usually cancel each other and the absolute value of the sum is
less than that from the pole diagram alone. The contribution
to ελ from the spurious 1− state, which describes the recoil
effect due to the CM motion, is also taken into account. It is
very important for lighter nuclei but rather minor for 208Pb.
After accounting for the PC effects the average description
of single-particle spectra becomes a little worse for light
nuclei but definitely better for heavy nuclei. For example. for
208Pb we obtained an average error equal to 0.34 MeV, versus
0.51 MeV without PC corrections. As for overall accuracy,
the deviations of the theoretical predictions for single-particle
energies ελ from the experimental values 〈δελ〉rms averaged
over more than 100 states are 0.97 and 0.98 MeV with and
without PC corrections, respectively. To improve the accuracy
for light nuclei, it is necessary to find the tadpole termtaking
into account exactly the in-volume contributions.
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Q. E. Krömer, and D. Zawischa, Z. Phys. A 335, 117 (1996).

[17] S. A. Fayans, S. V. Tolokonnikov, E. L. Trykov, and D. Zawischa,
Nucl. Phys. A 676, 49 (2000).

[18] S. V. Tolokonnikov, S. Kamerdzhiev, D. Voitenkov, S. Krewald,
and E. E. Saperstein, Phys. Rev. C 84, 064324 (2011).

[19] H. Grawe, K. Langanke, and G. Martı́nez-Pinedo, Rep. Prog.
Phys. 70, 1525 (2007).

[20] V. G. Soloviev, Theory of Complex Nuclei (Pergamon Press,
Oxford, 1976).

[21] R. A. Broglia, R. Liotta, and V. Paar, Phys. Lett. B 38, 480
(1972).

[22] V. Bernard and v. G. Nguyen, Nucl. Phys. A 348, 75
(1980).

[23] A. P. Severyukhin, V. V. Voronov, and N. V. Giai, Phys. Rev. C
77, 024322 (2008).

[24] F. Barranco, R. A. Broglia, G. Colo et al., Eur. Phys. J. A 21, 57
(2004).

[25] A. Pastore, F. Barranco, R. A. Broglia, and E. Vigezzi, Phys.
Rev. C 78, 024315 (2008).
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