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Complete set of observables for photoproduction of two pseudoscalars on a nucleon
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The problem of determining completely the spin amplitudes of photoproduction of two pseudoscalar mesons
on a nucleon from observables is studied. The procedure of reconstruction of the scattering matrix elements from
a complete set of observables is based on the expressions of all observables as quadratic Hermitian forms in the
reaction matrix elements which are derived explicitly. Their inversion allows one to find explicit solutions for
the reaction matrix elements in terms of observables. Two methods for finding a complete set of observables are
presented. In particular, one set was found that does not contain a triple polarization observable.
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I. INTRODUCTION

Experiments presently being conducted at Mainz
Microtron, European Laboratory for Structural Assessment,
Continuous Electron Beam Accelerator Facility (at Jefferson
Lab) and other research centers yield a large amount of new,
very precise data on meson photoproduction on nucleons. This
has awakened renewed interest in a comprehensive theoretical
analysis of these reactions. The main purpose of this study is
to get unambiguous quantitative information on the reaction
amplitudes. An obvious method of solving this task is a model-
independent analysis of a complete set of measurements.
Because the observables are nonlinear (quadratic) functions of
the amplitudes, the number of linearly independent forms of
observables generally exceeds the number of the amplitudes
sought. Thus, a challenging task is to find a minimal set of
observables, i.e., a so-called complete experiment, which,
on the one hand, allows one to unambiguously determine
the reaction amplitudes and, on the other hand, whose
measurement is technically as simple as possible.

Concerning reactions in which two pseudoscalar mesons
are produced, one faces at present quite an unusual situation
insofar as a large amount of precise data exists, in particular
on polarization observables, but only few theoretical studies
are devoted to this problem. Among the latter is the work
of Roberts and Oed [1], where general expressions for
polarization observables in terms of helicity and transversity
amplitudes were obtained. Recently, the problem of a truncated
partial-wave analysis of a complete experiment for such type
of reaction was considered in detail in Ref. [2].

As was noted in Refs. [1] and [2], to determine all
spin amplitudes for the photoproduction of two spin-zero
pseudoscalar mesons (up to an overall phase) one needs at least
15 observables. Such a minimal set of linearly independent
observables is called a “complete set,” which, however, may
suffer from so-called discrete ambiguities. The question of
such a complete set was already addressed in Ref. [1], where
it was pointed out that it will contain at least one triple
polarization observable.

*arenhoev@kph.uni-mainz.de
†fix@tpu.ru

The present paper is devoted to a mathematical solution
of the problem of finding a complete set of observables for
reactions in which two pseudoscalar mesons are produced on
a nucleon. In particular, we have obtained expressions that
allow one to determine all photoproduction amplitudes if the
required minimal set of observables is known. In the next
two sections we review the general expressions of Ref. [3]
for the reaction matrix and the various observables which
determine the most general differential cross section, including
beam and target polarization and the target nucleon recoil
polarization. In Sec. IV we present two methods, allowing an
explicit construction of a complete set of observables. Here we
also address a question, concerning the elimination of triple
polarization observables from a complete set. Some formal
ingredients and details are collected in Appendixes A to D.

II. THE T MATRIX

All observables are determined by the reaction or T matrix.
Its specific form depends on the reference frame. Thus, we
briefly review the framework adopted in Ref. [4] for the
photoproduction of two pseudoscalar mesons on a nucleon,
namely η and π . Cross-section and recoil polarization are
defined with respect to the overall c.m. system. With respect to
this system, the four-momenta of incoming photons, outgoing
two mesons, and initial and final nucleons are denoted by
(ωγ ,�k ), (ω1,�q1 ), (ω2,�q2 ), (Ei, �pi ), and (Ef , �pf ), respectively.
The definition of the reference frame is shown in Fig. 1. The
z axis is taken along the incoming photon momentum and
x and y axes are chosen arbitrarily to form a right-handed
coordinate system. In the case of linearly polarized photons
the direction of linear polarization defines another plane, the
“polarization plane” with an angle φγ with respect to the x-z
plane. Meson “1” with momentum �q1 = (q1,�1) is called
the active particle. Its momentum together with the photon
momentum defines the “active particle plane” which is inclined
by an angle φ1 with respect to the x-z plane. Furthermore, the
momenta of the final three particles define a plane which we
call the “reaction plane.”

We choose as independent variables for the description
of this reaction the photon energy ω = k, the momentum
of the outgoing active particle �q1, and the spherical angles
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FIG. 1. Definition of the coordinate frame in the c.m. system.

�p = (θp,φp) of the relative momentum �p of the outgoing
meson “2” and nucleon as given by

�p = (Mp �q2 − m2 �pf )/(Mp + m2) = (p,�p). (1)

The momentum �p is located in the reaction plane. Then the
momenta of the second meson and the outgoing nucleon are
fixed. For example, the meson momentum reads

�q2 = �p − m2

Mp + m2
�q1. (2)

In the following we use for the active particle �q = (q,�q)
instead of �q1 for convenience.

In Ref. [4] the following expression for the T matrix had
been derived by expansion of the final state into partial waves,

Tmf μmi
(�p,�q) = ei(μ+mi−mf )φq tmf μmi

(θp, θq, φpq), (3)

allowing the separation of the φq dependence such that the
small t-matrix elements depend on θp, θq , and the relative
azimuthal angle φpq = φp − φq only. The spin quantum
numbers μ, mi , and mf refer to the photon and initial and
final nucleon, respectively, where the photon momentum is
chosen as the quantization axis.

From parity conservation the following symmetry property
of the small t-matrix elements holds:

t−mf −μ−mi
(θp, θq, φpq)

= (−1)−mf +μ+mi tmf μmi
(θp, θq,−φpq). (4)

Thus, in contrast to single meson photoproduction on a
nucleon, parity conservation does not lead to a reduction of the
number of independent amplitudes, as has been noted already
in Ref. [1]. However, this symmetry will allow one to classify
the observables being even or odd under the transformation
φpq → −φpq .

III. OBSERVABLES

In this section we briefly review the main steps for deriving
all possible observables for the present reaction as developed
for π0η photoproduction on the nucleon in Ref. [4]. It also will
allow us to introduce a more compact notation and to correct
some misprints in Ref. [4].

The basic quantity is the following general trace with
respect to the spin degrees of freedom of photon and initial
and final nucleon,

AI ′M ′ = ckintr
(
T †τf,[I ′]

M ′ e−iM ′φq Tρi

)
, (5)

with ckin as a kinematical factor,

ckin(q,�q,�pq)

= 1

(2π )5

M2
p

Ei + pi

1

8ωγ ωq

× p2
p

pp(ω2 + Ef ) + (�q2+ �pf )· �pp

pp(Mp+m2) (Ef m2 − ω2Mp)
, (6)

and where ρi denotes the density matrix of the initial spin
degrees of freedom of photon and nucleon and τ

f,[I ′]
M ′ is a

spin operator with respect to the final nucleon spin space (see
Ref. [4] for details). The trace has the property

A∗
I ′M ′ = (−)M

′
AI ′−M ′ . (7)

Differential cross section and recoil polarization components
are obtained from

A±
I ′M ′ = 1

2 [AI ′M ′ ± (−)M
′
AI ′−M ′]. (8)

Namely, the differential cross section including all possible
polarization effects is given by

d5σ

d3qd�pq

= A+
00, (9)

where �pq = (θp,φq − φp), and the recoil nucleon polariza-
tion components with respect to the active particle frame are
given by

Px

d5σ

d3qd�pq

= −
√

2 A+
11 = −

√
2 Re A+

11, (10)

Py

d5σ

d3qd�pq

=
√

2 i A−
11 = −

√
2 Im A−

11, (11)

Pz

d5σ

d3qd�pq

= A+
10. (12)

In view of Eq. (7), the quantity A+
I ′M ′ is real and A−

I ′M ′ is purely
imaginary. Obviously, A−

I ′0 vanishes and one has A+
I ′0 = AI ′0.

Explicitly, the general trace becomes

AI ′M ′ = 1

2

∑
IM

P
p
I eiMφqs dI

M0(θs)

×
∑

μ

[(
1 + μP γ

c

)
u

μμ
I ′M ′;IM − P

γ
� u

μ−μ
I ′M ′;IMe−2iμφqγ

]
,

(13)

where |P γ
c | and P

γ
� describe the degrees of circular and

linear polarization, respectively, and φqγ = φq − φγ , where
φγ denotes the angle of maximal linear polarization. With
respect to the nucleon polarization parameters P

p
I , one has

P
p
0 = 1, and P

p
1 describes the degree of nucleon polarization

along a direction with spherical angles �s = (θs,φs) and
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φqs = φq − φs . Furthermore, we have defined

u
μ′μ
I ′M ′;IM (q, θq, θp, φpq) = ckin Î ′Î

∑
mf m′

f mim
′
i

(−1)m
′
f −mi

(
1
2

1
2 I ′

mf −m′
f M ′

)(
1
2

1
2 I

mi −m′
i −M

)

× t∗m′
f μ′m′

i
(q, θq, θp, φpq) tmf μmi

(q, θq, θp, φpq). (14)

These quantities have the following symmetry properties.

(i) For complex conjugation one finds[
u

μ′μ
I ′M ′;IM (q, θq, θp, φpq)

]∗

= (−1)M
′+M u

μμ′
I ′−M ′;I−M (q, θq, θp, φpq). (15)

(ii) For reversing the sign of the photon helicities μ and μ′
from parity conservation [see Eq. (4)],

u
−μ′−μ
I ′M ′;IM (q, θq, θp, φpq )

= (−1)I
′+M ′+I+M+μ′+μ u

μ′μ
I ′−M ′;I−M (q, θq, θp,−φpq).

(16)

A specific consequence of the symmetry in Eq. (15) is that
u

μμ
I ′0;I0 is real. Combining these two properties results in[

u
μ′μ
I ′M ′;IM (q, θq, θp, φpq)

]∗

= (−1)I
′+I+μ′+μ u

−μ−μ′
I ′M ′;IM (q, θq, θp,−φpq). (17)

As one sees below, this property leads to the aforementioned
classification of the observables.

For the separation of the various types of photon polariza-
tion, we introduce for α ∈ {0,c,�} referring to unpolarized and
circularly and linearly polarized radiation, respectively,

uα
I ′M ′;IM =

∑
μ′μ

[(δα,0 + μδα,c) δμ′,μ − δα,� δμ′,−μe−2iμ′φqγ ]

× u
μ′μ
I ′M ′;IM, (18)

or in detail,

u0
I ′M ′;IM =

∑
μ

u
μμ
I ′M ′;IM, (19)

uc
I ′M ′;IM =

∑
μ

μu
μμ
I ′M ′;IM, (20)

u�
I ′M ′;IM = −

∑
μ

e−2iμφqγ u
μ−μ
I ′M ′;IM. (21)

These quantities have the symmetry property according to
Eq. (15), (

uα
I ′M ′;IM

)∗ = (−)M
′+M uα

I ′−M ′;I−M, (22)

which allows one to bring the trace of Eq. (5) into the form

AI ′M ′ = BI ′M ′ + (−)M
′
B∗

I ′−M ′ , (23)

with

BI ′M ′ = 1

2

1∑
I=0

I∑
M=0

P
p
I

1 + δM0
eiMφqs dI

M0(θs)

×
∑

α∈{0,c,�}
P γ

α uα
I ′M ′;IM. (24)

Now it is useful to introduce the following notation for α ∈
{0,c} and M � 0:

v
0/c
I ′M ′;IM = 1

1 + δM0
u

0/c
I ′M ′;IM. (25)

In view of Eq. (22) the v
0/c
I ′M ′;IM have the symmetry property(

v
0/c
I ′M ′;IM

)∗ = (−)M
′+M v

0/c
I ′−M ′;I−M. (26)

Furthermore, for all M we define

v�
I ′M ′;IM = −u1−1

I ′M ′;IM (27)

and use, according to Eq. (15),

u−11
I ′M ′;IM = −(−)M

′+M v� ∗
I ′−M ′;I−M. (28)

With the help of the combined symmetry of Eq. (17) one finds
the following behavior under the transformation φpq → −φpq :

v
0/�
I ′M ′;IM (q, θq, θp,−φpq)

= (−)I
′+I

[
v

0/�
I ′M ′;IM (q, θq, θp, φpq)

]∗
, (29)

vc
I ′M ′;IM (q, θq, θp,−φpq)

= −(−)I
′+I

[
vc

I ′M ′;IM (q, θq, θp, φpq)
]∗

. (30)

In view of the fact that real and imaginary parts of vα
I ′M ′;IM

represent the observables (see below), this property allows the
classification of them into even and odd with respect to this
transformation.

Finally, one obtains

BI ′M ′ = 1

2

1∑
I=0

I∑
M=0

P
p
I eiMφqs dI

M0(θs)

⎡⎣ ∑
α∈{0,c}

P γ
α vα

I ′M ′;IM

+ e−2iφqγ v�
I ′M ′;IM + (−)M

′+M e2iφqγ v� ∗
I ′−M ′;I−M

⎤⎦ .

(31)

For the quantities in Eq. (8) one finds

A+
I ′M ′ = Re [BI ′M ′ + (−)M

′
BI ′−M ′], (32)

A−
I ′M ′ = i Im[BI ′M ′ + (−)M

′
BI ′−M ′ ]. (33)
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Thus, one obtains for the differential cross section and the
recoil polarization according to Eqs. (9) through (12)

d5σ

d3qd�pq

= 2 Re B00, (34)

Px

d5σ

d3qd�pq

= −
√

2 Re (B11 − B1−1), (35)

Py

d5σ

d3qd�pq

= −
√

2 Im (B11 + B1−1), (36)

Pz

d5σ

d3qd�pq

= 2 Re B10. (37)

Now we proceed to list explicit expressions for the differential
cross section and the recoil polarization of the emerging
nucleon determining the various observables of this reaction.

A. Differential cross section

For convenience we introduce

Uα
IM = vα

00;IM (38)

and separate real and imaginary parts according to

Uα
IM = T α

IM + i Sα
IM (39)

for α ∈ {0,c,�}. One should note that S0
I0 and Sc

I0 vanish
according to Eq. (26). In view of Eqs. (29) and (30), one finds
as symmetry property under the transformation φpq → −φpq

Uα
IM (−φpq) = (−)I+δα,c

[
Uα

IM (φpq)
]∗

; (40)

i.e., T α
IM is symmetric for I = 0 and α ∈ {0,�} and for I = 1

and α = c and antisymmetric for I = 1 and α ∈ {0,�} and for
I = 0 and α = c, whereas the Sα

IM ’s have just the opposite
behavior.

Then one obtains explicitly for the differential cross section
with inclusion of beam and target polarization effects

d5σ
(
P

γ
c ,P

γ
� ,P

p
1

)
d3qd�pq

= d5σ0

d3qd�pq

{
1 + P γ

c �c + P
γ
� ��(φqγ )

+P
p
1

[
�p0(θs,φqs) + P γ

c �pc(θs,φqs)

+P
γ
� �p�(θs,φqs,φqγ )

]}
, (41)

where the unpolarized differential cross section is given by

d5σ0

d3qd�pq

= T 0
00. (42)

Furthermore, one has beam asymmetries for circular and linear
photon polarization,

�c T 0
00 = T c

00, (43)

��(φqγ ) T 0
00 = T �

00 cos 2φqγ + S�
00 sin 2φqγ , (44)

target asymmetry for a polarized target proton but unpolarized
photons,

�p0(θs,φqs) T 0
00

= cos θs T 0
10 − sin θs√

2

(
cos φqs T 0

11 − sin φqs S0
11

)
, (45)

and beam-target asymmetries for polarized radiation and an
oriented target,

�pc(θs,φqs) T 0
00 = cos θs T c

10 − sin θs√
2

× (
cos φqs T c

11 − sin φqs Sc
11

)
, (46)

�p�(θs,φqs,φqγ ) T 0
00 = cos θs

(
cos 2φqγ T �

10 + sin 2φqγ S�
10

)
− sin θs√

2

{
cos φqs

[
cos 2φqγ

(
T �

11−T �
1−1

)
+ sin 2φqγ

(
S�

11 − S�
1−1

)]
+ sin φqs

[
sin 2φqγ

(
T �

11 + T �
1−1

)
− cos 2φqγ

(
S�

11 + S�
1−1

)]}
. (47)

The T α
IM and Sα

IM constitute all possible observables of the
differential cross section. For α ∈ {0,c} one has for each case
4 observables, namely, T 0/c

00 , T 0/c
10 , T 0/c

11 , and S
0/c
11 , and for α = �

8 observables, T �
IM and S�

IM for I = 0,1 and M = −I, . . . ,I .
Altogether, one finds 16 observables for the differential cross
section. Besides one unpolarized observable, the unpolarized
differential cross section, one has 6 single polarization and
9 double polarization observables. They can be separated by
appropriate choices of the polarization parameters and angles.

B. Recoil polarization

Now we turn to the corresponding expressions for the recoil
polarization of the outgoing nucleon. The three components
are determined by B1M according to Eqs. (35) through (37).
For convenience, we introduce for α ∈ {0,c,�}

R
x,α
IM = − 1√

2

(
vα

11;IM − vα
1−1;IM

)
, (48)

R
y,α
IM = i√

2

(
vα

11;IM + vα
1−1;IM

)
, (49)

R
z,α
IM = vα

10;IM, (50)

and separate into real and imaginary parts,

R
xi,α
IM = P

xi,α
IM + i Q

xi,α
IM . (51)

One should note that the R
xi,0/c
I0 are real. Furthermore, for

α ∈ {0,c}, R
xi,0/c
IM appear with M � 0 only.

As symmetry property under the transformation φpq →
−φpq one obtains

R
xi,α
IM (−φpq) = −(−)I+δα,c+δxi ,y

[
R

xi,α
IM (φpq)

]∗
, (52)

which means P
xi,α
IM is symmetric and Q

xi,α
IM antisymmetric for

xi = x,z and either I = 1 and α ∈ {0,�} or I = 0 and α = c,
as well as for xi = y and either I = 0 and α ∈ {0,�} or I = 1
and α = c. In all other cases one has just the opposite behavior.

For later purpose we introduce also the spherical compo-
nents μ = 0,±1

R
μ,α
IM = δμ,0 R

z,α
IM − μ√

2

(
R

x,α
IM + i μR

y,α
IM

) = vα
1μ;IM. (53)

For α ∈ {0,c} one finds from the symmetry property in Eq. (26)

R
μ,α ∗
IM = (−)μ+M R

−μ,α
I−M , (54)

034003-4



COMPLETE SET OF OBSERVABLES FOR . . . PHYSICAL REVIEW C 89, 034003 (2014)

from which follows, in particular for M = 0,

R
μ,0/c ∗
I0 = (−)μ R

−μ,0/c
I0 . (55)

Thus, one obtains finally for the recoil polarization compo-
nent Pxi

Pxi

d5σ
(
P

γ
c ,P

γ
� ,P

p
1

)
d3qd�pq

= dσ0

d3qd�pq

{
P 0

xi
+ P γ

c P c
xi
+P

γ
� P �

xi
(φqγ )

+P
p
1

[
P p0

xi
(θs,φqs) + P γ

c P pc
xi

(θs,φqs)

+P
γ
� P p�

xi
(θs,φqs,φqγ )

]}
, (56)

with recoil polarizations for unpolarized beam and target

P 0
xi

T 0
00 = P

xi,0
00 , (57)

as well as beam asymmetries for circularly and linearly
polarized photons,

P c
xi

T 0
00 = P

xi,c
00 , (58)

P �
xi

(φqγ ) T 0
00 = cos 2φqγ P

xi ,�
00 + sin 2φqγ ,Q

xi,�
00 , (59)

target asymmetry for a polarized proton target,

P p0
xi

(θs,φqs) T 0
00

= cos θs P
xi ,0
10 − sin θs√

2

(
cos φqs P

xi ,0
11 − sin φqs Q

xi,0
11

)
,

(60)

and beam-target asymmetries,

P pc
xi

(θs,φqs) T 0
00

= cos θs P
xi ,c
10 − sin θs√

2

(
cos φqs P

xi ,c
11 − sin φqs Q

xi,c
11

)
,

(61)

P p�
xi

(θs,φqs,φqγ ) T 0
00

= cos θs

(
cos 2φqγ P

xi ,�
10 + sin 2φqγ Q

xi,�
10

)
− sin θs√

2

{
cos φqs

[
cos 2φqγ

(
P

xi,�
11 − P

xi,�
1−1

)
+ sin 2φqγ

(
Q

xi,�
11 − Q

xi,�
1−1

)]
− sin φqs

[
cos 2φqγ

(
Q

xi,�
11 + Q

xi,�
1−1

)
− sin 2φqγ

(
P

xi,�
11 + P

xi,�
1−1

)]}
, (62)

constituting 48 observables for the recoil polarization com-
ponents. Of these, 3 are single, 18 double, and 27 triple
polarization observables. They can be separated by appropriate
choices of the polarization parameters and angles.

Together with the 16 observables of the differential cross
section this gives a total number of 64 observables, which
number coincides with the maximal number of linearly
independent quadratic Hermitian forms one can form from
eight independent complex amplitudes. However, the eight
complex amplitudes with one arbitrary phase constitute 15
independent parameters. Thus, a minimal set of observables
for the determination of these amplitudes should comprise
at least 15 observables, a so-called complete set. Although

TABLE I. Enumeration j of the small tj -matrix elements with
j = {mf μ mi}.

j 1 2 3 4 5 6 7 8

mf 1/2 −1/2 1/2 −1/2 1/2 −1/2 1/2 −1/2
μ 1 1 −1 −1 1 1 −1 −1
mi 1/2 1/2 1/2 1/2 −1/2 −1/2 −1/2 −1/2

the above 64 observables are linearly independent, there exist
quadratic relations between them, and thus it is a challenge to
find minimal (complete) sets of observables.

C. Observables in terms of t-matrix elements

In view of a detailed determination of the t-matrix elements
from observables it is useful to have explicit expressions of the
latter as linear forms in the bilinear terms Tj ′j = t∗j ′ tj . Here
j = {mf μmi} numbers the t-matrix elements according to
Table I.

The basic quantities in which all observables are expressed
are the vα

I ′M ′;IM as defined in Eqs. (25) and (27),

vα
I ′M ′;IM = ckin

∑
j ′j

CI ′M ′;IM
j ′j f

α,M
j ′j Tj ′j , (63)

with

CI ′M ′;IM
j ′j = CI ′M ′;IM

{m′
f μ′m′

i }{mf μ mi }

= (−)m
′
f −mi Î ′Î

(
1
2

1
2 I ′

mf −m′
f M ′

)

×
(

1
2

1
2 I

mi −m′
i −M

)
(64)

and

f
α,M
j ′j = f α

{m′
f μ′m′

i }{mf μ mi }

= (δα,0 + μδα,c)
δμ′μ

1 + δM,0
− δα,�δμ′,1δμ,−1. (65)

Evaluation of the observables in Eqs. (38) and (48) through
(50) yields then the expressions listed in Appendix A.

D. Bilinear T -matrix expressions in term of observables

With respect to the question of a minimal set of observables
needed for a complete analysis we now derive explicit
expressions for Tj ′j in terms of observables. The starting point

is Eq. (14) for u
μ′μ
I ′M ′;IM , which are the basic quantities for

all observables in terms of the t-matrix elements. It is easily
inverted, yielding with j ′ = {m′

f μ′m′
i} and j = {mf μmi}

Tj ′j = 1

ckin

∑
I ′M ′IM

CI ′M ′;IM
j ′j u

μ′μ
I ′M ′;IMδM,mi−m′

i
δM ′,m′

f −mf
,

(66)

where CI ′M ′;IM
j ′j is given in Eq. (64). The next step is to express

the u
μ′μ
I ′M ′;IM by the quantities vα

I ′M ′;IM . According to Eqs. (25),

034003-5
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(27), and (28) one obtains

u
μ′μ
I ′M ′;IM = 1 + δM,0

2
δμ′,μ

(
v0

I ′M ′;IM + μvc
I ′M ′;IM

) − δμ′,1 δμ,−1 v�
I ′M ′;IM − δμ′,−1δμ,1(−)M

′+Mv� ∗
I ′−M ′;I−M. (67)

As final step we relate vα
I ′M ′;IM to the various observables of the differential cross section and the recoil polarization components

using Eqs. (38) and (53),

v
0/c
I ′M ′;IM = δI ′,0

(
δM,0 T

0/c
I0 + δM,1 U

0/c
11 − δM,−1 U

0/c ∗
11

) + δI ′,1
[
δM,0 P

M ′,0/c
I0 + δM,1 R

M ′,0/c
11 − δM,−1 (−)M

′
R

M ′,0/c ∗
11

]
, (68)

v�
I ′M ′;IM = δI ′,0 U�

IM + δI ′,1 R
M ′,�
IM . (69)

Thus, one obtains for Tj ′j in terms of observables:

Tj ′j = 1

ckin

∑
I ′M ′IM

CI ′M ′;IM
j ′j δM,mi−m′

i
δM ′,m′

f −mf

×
(

1 + δM,0

2
δμ′,μ

{
δI ′,0

[
δM,0

(
T 0

I0 + μT c
I0

) + δM,1
(
U 0

11 + μUc
11

) − δM,−1
(
U 0 ∗

11 + μUc ∗
11

)]
+ δI ′,1

[
δM,0

(
P

M ′,0
I0 + μP

M ′,c
I0

) + δM,1
(
R

M ′,0
11 + μR

M ′,c
11

) − δM,−1 (−)M
′(
R

M ′,0 ∗
11 + μR

M ′,c ∗
11

)]}
− δμ′,1 δμ,−1

[
δI ′,0 U�

IM + δI ′,1 R
M ′,�
IM

] − δμ′,−1δμ,1(−)M
′+M

[
δI ′,0 U� ∗

I−M + δI ′,1 R
−M ′,� ∗
I−M

])
. (70)

A listing of the resulting expressions is given in Appendix B, where also a graphical representation is introduced.

IV. ON COMPLETE SETS OF
POLARIZATION OBSERVABLES

In this section we consider two strategies for finding a
minimal complete set of observables allowing the determi-
nation of all t-matrix elements up to an arbitrary phase.
The first one was developed in Ref. [5] and applied to
the analysis of deuteron electro- and photodisintegration in
Ref. [6]. Recently, it has also been applied to the analysis of
photoproduction of two pseudoscalar mesons on a nucleon
within a truncated partial-wave approach [2]. The second
method was developed and applied in Ref. [6] again to deuteron
electro- and photodisintegration.

A. First method

We start with a brief description of the salient features of this
method as reported in Refs. [5,6]. The idea is as follows: Given
for an n-dimensional t matrix a minimal set of m = 2n − 1
observables,

Oα =
∑

i,j=1,n

t∗i Hα
ij tj , α = 1, . . . ,m, (71)

constituting a set of m Hermitian quadratic forms in the
t-matrix elements, of which ti0 is chosen to be real, then a
necessary condition for the invertability is that the associated
Jacobian is nonvanishing in the vicinity of a solution. The eval-
uation of the Jacobian then leads to the following condition:
For each of the n × n matrices,

Hα
ij = Aα

ij + i Bα
ij , (72)

associated with the observable Oα , where Aα
ij is a real

symmetric and Bα
ij a real antisymmetric matrix, one constructs

a m × m matrix,

H̃ α =
(

Aα (B̃α)T

B̃α Âα

)
. (73)

Here Âα is obtained from Aα by canceling the i0th row and
column, and B̃α is obtained from Bα by canceling the i0th
row. For all possible sets {k1, . . . ,km} with kα ∈ {1, . . . ,m},
one builds by choosing from H̃ α the kαth column the matrix

W̃ (k1, . . . ,km) =

⎛⎜⎜⎝
H̃ 1

1k1
· · · H̃m

1km

...
...

H̃ 1
mk1

· · · H̃m
mkm

⎞⎟⎟⎠ . (74)

One should note that the kα need not be different. Now
the condition is that at least one of the determinants of
W̃ (k1, . . . ,km) is nonvanishing. This condition, however, is, in
general, not sufficient in case that several of these determinants
are nonvanishing. If only one determinant is nonvanishing,
then this condition is also sufficient. Moreover, one might
encounter quadratic ambiguities in the solution.

Turning now to the present reaction, one readily notes that,
according to the explicit listing of all observables in terms of
the t-matrix elements, all matrices Hα

ij have a simple structure.
They are either real symmetric, i.e., of type Aα , or imaginary
antisymmetric, i.e., of type iBα . Moreover, they have for each
row and each column at most only one nonvanishing entry.
Thus, the associated matrices H̃ α are easily constructed and
have a similar structure. For this reason, it turns out that for
any selection of 15 observables the above criterion is fulfilled.
However, in all cases one can find more than one nonvanishing
determinant.

As an example, we have selected the following set of
15 observables, guided by their representation in terms of
Tj ′j (see Appendix B): T 0

00, U 0
11 = T 0

11 + i S0
11, Uc

11 = T c
11 +
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i Sc
11, R

z,0
11 = P

z,0
11 + i Q

z,0
11 , R

z,c
11 = P

z,c
11 + i Q

z,c
11 , U�

00 =
T �

00 + i S�
00, U�

10 = T �
10 + i S�

10, P
x+iy,0
00 = P

x,0
00 + i P

y,0
00 . This

set contains one unpolarized observable and four single, eight
double, and two triple polarization observables.

In Appendix C it is shown how all seven matrix elements
t2, . . . ,t8 can be expressed by t1 and the chosen observables.
In detail, one finds tj = σj

t∗1
for j = 2,3,5,8 with

σ2 = c12, σ3 = c13, σ5 = c∗
51, σ8 = c12 c∗

84

c∗
24

, (75)

and tj = τj t1 for j = 4,6,7 with

τ4 = c24

c∗
12

, τ6 = c∗
62

c∗
12

, τ7 = c∗
73

c∗
13

. (76)

The various complex constants cij , expressed in terms of
observables, may be found in Appendix C. The constants c12

and c13 contain quadratic ambiguities.
Finally, the remaining matrix element t1 is obtained from

the unpolarized differential cross section in Eq. (C1), i.e.,

c0 = 4 ckin T 0
00 = a1 |t1|2 + b1

|t1|2 , (77)

with

a1 = 1 + |τ4|2 + |τ6|2 + |τ8|2,
(78)

b1 = |σ2|2 + |σ3|2 + |σ5|2 + σ8|2.
It has as its solution

|t1|2 = 1

2a1
[c0 ±

√
(c0)2 − 4 a1 b1], (79)

introducing a third ambiguity. However, it turns out that some
of these ambiguities are eliminated by the condition

(c0)2 − 4 a1 b1 � 0. (80)

Indeed, taking a specific numerical example, we found that
only the ambiguity of Eq. (79) remains, which is easily
resolved by selecting one additional observables, for example,
P

z,0
00 . Altogether, these 16 observables allow one to determine

uniquely the eight complex t-matrix elements.

B. Second method

Another possibility of constructing a complete set of
polarization observables is to study first the representation
of the bilinear t-matrix products Tj ′j in terms of observables.
In Appendix B we have listed explicit expressions and also
outlined a graphical representation as devised in Ref. [6].
It turns out that they can be divided into groups according
to the participating observables. This division is unique and
there is no overlap of observables between different groups.
Altogether, one obtains eight groups, one containing the eight
diagonal terms |tj |2 with eight observables, and seven groups
for the 28 interference terms, each containing four interference
terms with eight observables.

One can now try to combine the various interference terms
in a complete chain of interference terms tj1j2 , . . . ,tjn−1jn

with
(j1, . . . ,jn) as a permutation of (1, . . . ,n). The ideal case
is that the participating observables of such a chain plus

8 2

3

5

6

1

4

7

FIG. 2. Combined graphical representation of the groups A1
(solid lines) and B (dashed lines).

an additional independent observable constitute a minimal
complete set, i.e., are sufficient for the determination of all
t-matrix elements. However, such an ideal situation is seldom
found. In fact, for the present reaction this is not the case as the
graphical representations of the various groups in Appendix B
demonstrate. However, we can utilize these representations
by combining various groups to construct such a chain. In
such combinations one finds closed loops which constitute
higher-order relations between observables, which then can be
used for the elimination of superfluous observables.

For example, considering the observables of the differential
cross section and recoil polarization component Pz and
combining group “A1”, containing U 0

11, Uc
11, R

z,0
11 , and R

z,c
11 ,

with group “B”, containing U�
00, U�

10, R
z,�
00 , and R

z,�
10 , one

obtains the pattern displayed in Fig. 2. Here one can distinguish
two connected groups: (i) group “I” with the matrix elements
t1, t3, t5, and t7 and (ii) group “II” with the matrix elements
of even number t2, t4, t6, and t8. For each group the matrix
elements are connected by interference terms building two
four-point closed loops, namely “1-3-7-5-1” and “2-4-8-6-2”.

Thus, for both groups all t-matrix elements terms can be
expressed relative to one matrix element, for example, in the
first group I with respect to t1, i.e.,

t3 = T13

t∗1
, t5 = T15

t∗1
, t7 = T57

T51
t1 = T37

T31
t1. (81)

The last equation yields, because of the closed loop 1-3-7-5-1,
a quadratic relation between observables,

T31T57 = T37T51, (82)

or explicitly in terms of observables,

2
(
U�

00 + U�
10 + R

z,�
00 + R

z,�
10

)∗(
U�

00 − U�
10 + R

z,�
00 − R

z,�
10

)
= (

U 0
11 − Uc

11 + R
z,0
11 − R

z,c
11

)∗(
U 0

11 + Uc
11 + R

z,0
11 + R

z,c
11

)
.

(83)
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Similarly, one can express all matrix elements of the second
group II in terms of, say, t2 according to

t4 = T24

t∗2
, t6 = T26

t∗2
, t8 = T48

T42
t2 = T68

T62
t2. (84)

Again, one finds from the last equation a quadratic relation
from the second closed loop 2-4-8-6-2,

T42T68 = T48T62, (85)

and in terms of observables,

2
(
U�

00 + U�
10 − R

z,�
00 − R

z,�
10

)∗(
U�

00 − U�
10 − R

z,�
00 + R

z,�
10

)
= (

U 0
11 − Uc

11 − R
z,0
11 + R

z,c
11

)∗(
U 0

11 + Uc
11 − R

z,0
11 − R

z,c
11

)
.

(86)

Formally this relation can be obtained from Eq. (83) by the
substitutions R

z,�
00/10 → −R

z,�
00/10 and R

z,0/c
11 → −R

z,0/c
11 . These

two relations can be utilized for the elimination of the four
triple polarization observables contained in R

z,c
11 and R

z,�
10 . This

is shown in Appendix D. The remaining group contains only
single and double polarization observables.

Thus, the matrix elements with odd numbers t3, t5, and t7
can be expressed by the observables of A1 and B and t1, while
the ones with even numbers t4, t6, and t8 can be expressed
by the same observables and t2. Of the 16 observables of A1
and B, 4, namely R

z,c
11 and R

z,�
10 , are eliminated, leaving twelve

observables.
Obviously, for a complete determination one needs an

interference term connecting these two groups, i.e., an in-
terference term Tj ′j with j ′ even and j odd or vice versa.
Because the interference terms given in terms of observables
of the differential cross section and the recoil polarization
component Pz involve t-matrix elements of either both even
or both odd numbers, one has to choose one of the groups
of interference terms involving observables of the recoil
polarization components Px and Py , i.e., one of the groups
“C” through “D1”. For example, choosing T12 as the missing
link, one has to add the group C, containing P

1,0
00 , P

1,c
00 , P

1,0
10 ,

and P
1,c
10 , two single, four double, and two triple polarization

observables. The resulting pattern is shown in Fig. 3. Now one
can express t2 in terms of observables and t1:

t2 = T12

t∗1
. (87)

However, now we have more observables than needed,
namely 20, which means that 6 of them are superfluous and
that more interrelations must exist. In fact, adding the group
C generates four more four-point loops, namely “1-2-4-3-1”,
“5-6-8-7-5”, “1-2-6-5-1”, and “3-4-8-7-3”. However, only two
of the additional quadratic relations are independent. This can
be seen as follows. The two new four-point loops 1-2-4-3-1 and
5-6-8-7-5 between the groups B and C generate as quadratic
relations

T21T34 = T24T31, (88)

T65T78 = T68T75, (89)

8 2

3

5

6

1

4

7

8 2

3

5

6

1

4

7
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1

4

7

FIG. 3. Combined graphical representation of the groups A1
(solid lines), B (dashed lines), and C (dotted lines).

and the other two loops 1-2-6-5-1 and 3-4-8-7-3 between the
groups A1 and C generate

T65T21 = T61T25, (90)

T78T34 = T74T38. (91)

However, the latter two are not independent from the previous
quadratic relations in Eqs. (88) and (89). For example, using
Eqs. (88) and (89) one finds

T34 = T31T24

T21
and T78 = T75T68

T65
. (92)

Inserting these expressions into Eq. (91) one obtains, consec-
utively,

T75T68

T65

T31T24

T21
= T74T38 (93)

and thus

T31T24 = T74T38T65

T75T68
T21 = T74T35

T75
T21 = T34T21, (94)

which is the relation in Eq. (88).
The quadratic relations in Eqs. (88) and (89) read in terms

of observables of groups B and C

2
(
P

1,0
00 + P

1,c
00 + P

1,0
10 + P

1,c
10

)∗(
P

1,0
00 − P

1,c
00 + P

1,0
10 − P

1,c
10

)
= (

U�
00 + U�

10 + R
z,�
00 + R

z,�
10

)∗(
U�

00 + U�
10 − R

z,�
00 − R

z,�
10

)
,

(95)

2
(
P

1,0
00 + P

1,c
00 − P

1,0
10 − P

1,c
10

)∗(
P

1,0
00 − P

1,c
00 − P

1,0
10 + P

1,c
10

)
= (

U�
00 − U�

10 + R
z,�
00 − R

z,�
10

)∗(
U�

00 − U�
10 − R

z,�
00 + R

z,�
10

)
.

(96)

These two complex relations would allow one to eliminate
only four of the six observables.

However, besides the four-point loops one finds 16 six-point
loops, of which, however, only 1 is independent, which one can
show easily in the same manner as before for the four-point
loops. Thus, one has one additional relation of third order
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between observables of all three groups. Taking the six-point loop “1-2-6-5-7-3-1”, one obtains the relation

T37T56T21 = T26T57T31, (97)

which reads in terms of observables

2
(
U 0

11 − Uc
11 + R

z,0
11 − R

z,c
11

)∗(
P

1,0
00 + P

1,c
00 − P

1,0
10 − P

1,c
10

)(
P

1,0
00 + P

1,c
00 + P

1,0
10 + P

1,c
10

)∗

= (
U 0

11 + Uc
11 − R

z,0
11 − R

z,c
11

)∗(
U�

00 − U�
10 + R

z,�
00 − R

z,�
10

)(
U�

00 + U�
10 + R

z,�
00 + R

z,�
10

)∗
. (98)

This relation now provides the means to eliminate two more
observables. As the six observables to be eliminated we have
chosen from the group C P

1,c
00 , P 1,0

10 , and P
1,c
10 . How this is done

is outlined in Appendix D.
Thus, all seven matrix elements t2, . . . ,t8 are given by t1 and

14 observables, because the 24 observables of the groups A1,
B, and C are reduced by five complex relations to 14, namely
U 0

11, Uc
11, R

z,0
11 , U�

00, U�
10, R

z,�
00 , and P

1,0
00 . For the determination

of t1 one can use again the unpolarized differential cross
section.

Altogether we can obtain all eight t-matrix elements from
15 observables up to some quadratic ambiguities without the
need of a triple polarization observable. Like in the first
method, two ambiguities are ruled out by the condition in
Eq. (80) as we have checked by a numerical example.

V. CONCLUSION

We have presented two methods for allowing one to choose
a minimal set of observables, which may be used for a complete
determination of the t-matrix elements for photoproduction of
two pseudoscalar mesons on a nucleon. The methods are based
on the inversion of the exact expressions for all observables as
Hermitian forms in t∗i tj of the t-matrix elements. We also
have demonstrated that one can choose a complete set of
observables without the need of triple polarization observables.
This important theoretical result reduces to some extent the
pessimism around the realization of a complete experiment
for photoproduction of two pseudoscalars in view of a possible
need of triple polarization observables, which constitutes quite
a severe condition for such an experiment. However, we are
aware that, at least presently, our results are primarily of
theoretical interest and still many experimental efforts have
to be undertaken towards the achievement of conditions that
will allow a practical realization of the methods developed in
the present work.
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APPENDIX A: LISTING OF OBSERVABLES IN TERMS
OF t-MATRIX ELEMENTS

In this appendix we list all observables as bilinear forms
t∗j ′ tj of the small t-matrix elements, where we have introduced
the notation Tj ′j = t∗j ′ tj .

(i) Differential cross section without and with target
polarization for

(a) unpolarized photons,

T 0
00 = ckin

4
(T11 + T22 + T33 + T44 + T55

+ T66 + T77 + T88), (A1)

T 0
10 = ckin

4
(T11 + T22 + T33 + T44 − T55

− T66 − T77 − T88), (A2)

U 0
11 = T 0

11 + i S0
11

= −ckin√
2

(T51 + T62 + T73 + T84); (A3)

(b) circularly polarized photons,

T c
00 = ckin

4
(T11 + T22 − T33 − T44 + T55

+ T66 − T77 − T88), (A4)

T c
10 = ckin

4
(T11 + T22 − T33 − T44 − T55

− T66 + T77 + T88), (A5)

Uc
11 = T c

11 + i Sc
11

= −ckin√
2

(T51 + T62 − T73 − T84); (A6)

(c) linearly polarized photons,

U�
00 = T �

00 + i S�
00

= −ckin

2
(T13 + T24 + T57 + T68), (A7)

U�
1−1 = T �

1−1 + i S�
1−1 = −ckin√

2
(T17 + T28), (A8)

U�
10 = T �

10 + i S�
10

= −ckin

2
(T13 + T24 − T57 − T68), (A9)

U�
11 = T �

11 + i S�
11 = ckin√

2
(T53 + T64). (A10)

(ii) Recoil polarization P z without and with target polar-
ization for

(a) unpolarized photons,

P
z,0
00 = ckin

4
(T11 − T22 + T33 − T44 + T55

− T66 + T77 − T88), (A11)
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P
z,0
10 = ckin

4
(T11 − T22 + T33 − T44 − T55

+T66 − T77 + T88), (A12)

R
z,0
11 = P

z,0
11 + i Q

z,0
11

= −ckin√
2

(T51 − T62 + T73 − T84); (A13)

(b) circularly polarized photons,

P
z,c
00 = ckin

4
(T11 − T22 − T33 + T44 + T55

−T66 − T77 + T88), (A14)

P
z,c
10 = ckin

4
(T11 − T22 − T33 + T44 − T55

+ T66 + T77 − T88), (A15)

R
z,c
11 = P

z,c
11 + i Q

z,c
11

= −ckin√
2

(T51 − T62 − T73 + T84); (A16)

(c) linearly polarized photons:

R
z,�
00 = P

z,�
00 + i Q

z,�
00

= −ckin

2
(T13 − T24 + T57 − T68), (A17)

R
z,�
1−1 = P

z,�
1−1 + i Q

z,�
1−1 = −ckin√

2
(T17 − T28),

(A18)

R
z,�
10 = P

z,�
10 + i Q

z,�
10

= −ckin

2
(T13 − T24 − T57 + T68), (A19)

R
z,�
11 = P

z,�
11 + i Q

z,�
11 = ckin√

2
(T53 − T64). (A20)

(iii) Recoil polarization P x and P y without and with target
polarization for

(a) unpolarized photons,

P
x,0
00 = ckin

2
Re(T21 + T43 + T65 + T87), (A21)

P
y,0
00 = ckin

2
Im(T21 + T43 + T65 + T87), (A22)

P
x,0
10 = ckin

2
Re(T21 + T43 − T65 − T87), (A23)

P
y,0
10 = ckin

2
Im(T21 + T43 − T65 − T87), (A24)

R
x,0
11 = P

x,0
11 + i Q

x,0
11

= −ckin√
2

(T52 + T61 + T74 + T83), (A25)

R
y,0
11 = P

y,0
11 + i Q

y,0
11

= i
ckin√

2
(T52 − T61 − T74 + T83); (A26)

(b) circularly polarized photons,

P
x,c
00 = ckin

2
Re(T21 − T43 + T65 − T87), (A27)

P
y,c
00 = ckin

2
Im(T21 − T43 + T65 − T87), (A28)

P
x,c
10 = ckin

2
Re(T21 − T43 − T65 + T87), (A29)

P
y,c
10 = ckin

2
Im(T21 − T43 − T65 + T87), (A30)

R
x,c
11 = P

x,c
11 + i Q

x,c
11

= −ckin√
2

(T52 + T61 − T74 − T83), (A31)

R
y,c
11 = P

y,c
11 + i Q

y,c
11

= i
ckin√

2
(T52 − T61 + T74 − T83); (A32)

(c) linearly polarized photons,

R
x,�
00 = P

x,�
00 + i Q

x,�
00

= −ckin

2
(T14 + T23 + T58 + T67), (A33)

R
y,�
00 = P

y,�
00 + i Q

y,�
00

= i
ckin

2
(T14 − T23 + T58 − T67), (A34)

R
x,�
1−1 = P

x,�
1−1 + i Q

x,�
1−1 = −ckin√

2
(T18 + T27), (A35)

R
y,�
1−1 = P

y,�
1−1 + i Q

y,�
1−1 = i

ckin√
2

(T18 − T27), (A36)

R
x,�
10 = P

x,�
10 + i Q

x,�
10

= −ckin√
2

(T14 + T23 − T58 − T67), (A37)

R
y,�
10 = P

y,�
10 + i Q

y,�
10

= i
ckin√

2
(T14 − T23 − T58 + T67), (A38)

R
x,�
11 = P

x,�
11 + i Q

x,�
11 = ckin√

2
(T54 + T63), (A39)

R
y,�
11 = P

y,�
11 + i Q

y,�
11

= −i
ckin√

2
(T54 − T63). (A40)

APPENDIX B: LISTING OF THE BILINEAR t-MATRIX
EXPRESSIONS IN TERMS OF OBSERVABLES

In this appendix we list explicit expressions of the bilinear
forms Tj ′j = t∗j ′ tj in terms of observables. We have divided
them into groups according to the type of participating
observables. Each group is accompanied by a graphical
representation as originally devised in Ref. [6], in which each
matrix element tj is represented by a point labeled “j” on a
circle and to a bilinear term ti tj is associated a straight line
connecting the points “i” and “j”. As pointed out in Ref. [6],
a closed loop with four points leads to a quadratic relation
between observables because of the following, immediately
evident, property:

TabTcd = TadTcb. (B1)
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Two special cases follow from this relation:

TaaTbc = TacTba, (B2)

TaaTbb = |Tab|2. (B3)

Though these relations are trivial in terms of t-matrix elements,
they are not if expressed in terms of observables.

(A) Absolute squares determined by T 0
I0, T c

I0, P z,0
I0 , and P

z,c
I0

for I = 0,1, i.e., differential cross section and z component of
recoil polarization for unpolarized and circularly polarized
photons and unpolarized and polarized target:

T11 = 1

2 ckin

(
T 0

00 + T c
00 + T 0

10 + T c
10 + P

z,0
00 + P

z,c
00

+P
z,0
10 + P

z,c
10

)
, (B4)

T22 = 1

2 ckin

(
T 0

00 + T c
00 + T 0

10 + T c
10 − P

z,0
00 − P

z,c
00

−P
z,0
10 − P

z,c
10

)
, (B5)

T33 = 1

2 ckin

(
T 0

00 − T c
00 + T 0

10 − T c
10 + P

z,0
00 − P

z,c
00

+P
z,0
10 − P

z,c
10

)
, (B6)

T44 = 1

2 ckin

(
T 0

00 − T c
00 + T 0

10 − T c
10 − P

z,0
00 + P

z,c
00

−P
z,0
10 + P

z,c
10

)
, (B7)

T55 = 1

2 ckin

(
T 0

00 + T c
00 − T 0

10 − T c
10 + P

z,0
00 + P

z,c
00

−P
z,0
10 − P

z,c
10

)
, (B8)

T66 = 1

2 ckin

(
T 0

00 + T c
00 − T 0

10 − T c
10 − P

z,0
00 − P

z,c
00

+P
z,0
10 + P

z,c
10

)
, (B9)

T77 = 1

2 ckin

(
T 0

00 − T c
00 − T 0

10 + T c
10 + P

z,0
00 − P

z,c
00

−P
z,0
10 + P

z,c
10

)
, (B10)

T88 = 1

2 ckin

(
T 0

00 − T c
00 − T 0

10 + T c
10 − P

z,0
00 + P

z,c
00

+P
z,0
10 − P

z,c
10

)
. (B11)

The graphical representation is shown in the left panel (a) of
Fig. 4.

(A1) Interference terms determined by U 0
11, Uc

11, R
z,0
11 , and

R
z,c
11 , i.e., differential cross section and z component of recoil

polarization for unpolarized and circularly polarized photons
and polarized target:

T51 = − 1

2
√

2 ckin

(
U 0

11 + Uc
11 + R

z,0
11 + R

z,c
11

)
, (B12)

T62 = − 1

2
√

2 ckin

(
U 0

11 + Uc
11 − R

z,0
11 − R

z,c
11

)
, (B13)

T73 = − 1

2
√

2 ckin

(
U 0

11 − Uc
11 + R

z,0
11 − R

z,c
11

)
, (B14)

(b)

2

3

5

6

1

4

7

8

(a)

2

3

6

1

4

7

8

5

FIG. 4. (a) Representation of the group A. (b) Representation of
the group A1.

T84 = − 1

2
√

2 ckin

(
U 0

11 − Uc
11 − R

z,0
11 + R

z,c
11

)
. (B15)

The graphical representation is shown in the right panel (b) of
Fig. 4.

(B) Interference terms determined by U�
I0 and R

z,�
I0 for I =

0,1, i.e., differential cross section and z component of recoil
polarization for linearly polarized photons and unpolarized
and polarized target:

T13 = − 1

2 ckin

(
U�

00 + U�
10 + R

z,�
00 + R

z,�
10

)
, (B16)

T24 = − 1

2 ckin

(
U�

00 + U�
10 − R

z,�
00 − R

z,�
10

)
, (B17)

T57 = − 1

2 ckin

(
U�

00 − U�
10 + R

z,�
00 − R

z,�
10

)
, (B18)

T68 = − 1

2 ckin

(
U�

00 − U�
10 − R

z,�
00 + R

z,�
10

)
. (B19)

The graphical representation is shown in the left panel (a) of
Fig. 5.

(B1) Interference terms determined by U�
1±1 and R

z,�
1±1,

i.e., differential cross section and z component of recoil
polarization for linearly polarized photons and polarized
target:

T17 = − 1√
2 ckin

(
U�

1−1 + R
z,�
1−1

)
, (B20)

(b)

2

3

5

6

1

4

7

8

(a)

2

3

5

6

1

4

7

8

FIG. 5. (a) Representation of the group B. (b) Representation of
the group B1.

034003-11
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(b)

2

3

5

6

1

4

7

8

(a)

2

3

5

6

1

4

7

8

FIG. 6. (a) Representation of the group C. (b) Representation of
the group C1.

T28 = − 1√
2 ckin

(
U�

1−1 − R
z,�
1−1

)
, (B21)

T53 = 1√
2 ckin

(
U�

11 + R
z,�
11

)
, (B22)

T64 = 1√
2 ckin

(
U�

11 − R
z,�
11

)
. (B23)

The graphical representation is shown in the right panel (b) of
Fig. 5.

(C) Interference terms determined by P
1,0/c
I0 = −(P x,0/c

I0 +
i P

y,0
I0/c)/

√
2 for I = 0,1, i.e., the transverse spherical com-

ponents of recoil polarization for unpolarized and circularly
polarized photons and unpolarized and polarized target:

T12 = − 1√
2 ckin

(
P

1,0
00 + P

1,c
00 + P

1,0
10 + P

1,c
10

)
, (B24)

T34 = − 1√
2 ckin

(
P

1,0
00 − P

1,c
00 + P

1,0
10 − P

1,c
10

)
, (B25)

T56 = − 1√
2 ckin

(
P

1,0
00 + P

1,c
00 − P

1,0
10 − P

1,c
10

)
, (B26)

T78 = − 1√
2 ckin

(
P

1,0
00 − P

1,c
00 − P

1,0
10 + P

1,c
10

)
. (B27)

The graphical representation is shown in the left panel (a) of
Fig. 6.

(C1) Interference terms determined by R
±1,0/c
11 =

∓(Rx,0/c
11 ± i P

y,0/c
11 )/

√
2, i.e., the transverse spherical com-

ponent of recoil polarization for unpolarized and circularly
polarized photons and polarized target:

T61 = − 1

2 ckin

(
R

−1,0
11 + R

−1,c
11

)
, (B28)

T52 = 1

2 ckin

(
R

1,0
11 + R

1,c
11

)
, (B29)

T83 = − 1

2 ckin

(
R

−1,0
11 − R

−1,c
11

)
, (B30)

T74 = 1

2 ckin

(
R

1,0
11 − R

1,c
11

)
. (B31)

The graphical representation is shown in the right panel (b) of
Fig. 6.

(b)

2

3

5

6

1

4

7

8

(a)

2

3

5

6

1

4

7

8

FIG. 7. (a) Representation of the group D. (b) Representation of
the group D1.

(D) Interference terms determined by R
±1,�
I0 for I = 0,1,

i.e., the transverse spherical components of recoil polarization
for linearly polarized photons and unpolarized and polarized
target:

T14 = 1√
2 ckin

(
R

1,�
00 + R

1,�
10

)
, (B32)

T23 = − 1√
2 ckin

(
R

−1,�
00 + R

−1,�
10

)
, (B33)

T58 = 1√
2 ckin

(
R

1,�
00 − R

1,�
10

)
, (B34)

T67 = − 1√
2 ckin

(
R

−1,�
00 − R

−1,�
10

)
. (B35)

The graphical representation is shown in the left panel (a) of
Fig. 7.

(D1) Interference terms determined by R
±1,�
1±1 , i.e., the

transverse spherical components of recoil polarization for
linearly polarized photons and a polarized target:

T18 = 1

ckin
R

1,�
1−1, (B36)

T27 = − 1

ckin
R

−1,�
1−1 , (B37)

T63 = 1

ckin
R

−1,�
11 , (B38)

T54 = − 1

ckin
R

1,�
11 . (B39)

The graphical representation is shown in the right panel (b) of
Fig. 7.

One should note that each group is represented by eight
polarization observables, and there is no overlap between the
observables of the various groups; thus, the total number of
64 observables is evenly distributed over the eight groups. The
four groups A through B1 are associated with the observables
of the differential cross section and recoil polarization compo-
nent Pz. The interference terms Tj ′j of the groups A1 through
B1 connect matrix elements with (j ′,j ) either both even or
both odd. The other four groups C through D1 are associated
with those of the recoil polarization components Px and Py .
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Here we have interference terms Tj ′j with j ′ even and j odd
or vice versa.

APPENDIX C: CONSTRUCTION OF A COMPLETE
SET—FIRST METHOD

In this appendix, we show how to express the matrix
elements t2, . . . ,t8 by t1 and the following observables:

T 0
00 = ckin

4
(T11 + T22 + T33 + T44 + T55 + T66

+ T77 + T88), (C1)

U 0
11 = T 0

11 + i S0
11 = −ckin√

2
(T51 + T62 + T73 + T84),

(C2)

Uc
11 = T c

11 + i Sc
11 = −ckin√

2
(T51 + T62 − T73 − T84),

(C3)

R
z,0
11 = P

z,0
11 + i Q

z,0
11 = −ckin√

2
(T51 − T62 + T73 − T84),

(C4)

R
z,c
11 = P

z,c
11 + i Q

z,c
11 = −ckin√

2
(T51 − T62 − T73 + T84),

(C5)

U�
00 = T �

00 + i S�
00 = −ckin

2
(T13 + T24 + T57 + T68),

(C6)

U�
10 = T �

10 + i S�
10 = −ckin

2
(T13 + T24 − T57 − T68),

(C7)

P
x+iy,0
00 = P

x,0
00 + i P

y,0
00 = ckin

2
(T21 + T43 + T65 + T87).

(C8)

From Eqs. (C2) through (C5) one first obtains

T51 = c51 = − 1

2
√

2 ckin

(
U 0

11 + Uc
11 + R

z,0
11 + R

z,c
11

)
, (C9)

T62 = c62 = − 1

2
√

2 ckin

(
U 0

11 + Uc
11 − R

z,0
11 − R

z,c
11

)
, (C10)

T73 = c73 = − 1

2
√

2 ckin

(
U 0

11 − Uc
11 + R

z,0
11 − R

z,c
11

)
, (C11)

T84 = c84 = − 1

2
√

2 ckin

(
U 0

11 − Uc
11 − R

z,0
11 + R

z,c
11

)
. (C12)

This allows one to determine the matrix elements tj for j =
5, . . . 8 from the ones for j = 1, . . . 4.

Next we relate tj for j = 2, . . . 4 to t1. To this end we will
consider Eqs. (C6) and (C7) and obtain

c�
+ = − 1

ckin

(
U�

00 + U�
10

) = T13 + T24, (C13)

c�
− = − 1

ckin

(
U�

00 − U�
10

) = T57 + T68. (C14)

First we express T24 by T13 using the obvious general
relation

Tab = TacTdb

Tdc

, (C15)

and insert into Eq. (C14) for T57 and T68 the relations

T57 = T51T ∗
73

T31
= c51 c∗

73

T31
and T68 = T62T ∗

84

T42
= c62 c∗

84

T42
,

(C16)

yielding

c62 c∗
84

T42
= c�

− − c51 c∗
73

T31
. (C17)

This allows one to express T24 by T13,

T24 = c∗
62 c84 T13

c�∗− T13 − c∗
51 c73

. (C18)

With the help of this last relation one can eliminate T24

from Eq. (C13), resulting in a quadratic equation for
T13,

c�∗
− T 2

13 + (c∗
62 c84 − c∗

51 c73 − c�
+ c�∗

− ) T13 = −c�
+c∗

51 c73,

(C19)

whose solution yields t3 inverse proportional to t∗1 , i.e.,

c13 = T13 = 1
2

(−a3 ±
√

a2
3 + 4a3b3

)
, (C20)

with

a3 = 1

c�∗−
(c∗

62 c84 − c∗
51 c73 − c�

+ c�∗
− ), (C21)

b3 = −c�
+ c∗

51 c73

c�∗−
. (C22)

This is the first quadratic ambiguity one encounters. With
c13 = T13 known, T24 is also found in terms of the considered
observables according to Eq. (C13), i.e.,

c24 = T24 = c�
+ − c13. (C23)

Finally, using first

T34 = T31T24

T21
= c∗

13 c24

T21
, T56 = T51T ∗

62

T21
= c∗

62 c51

T21
,

and T78 = T ∗
84T73

T ∗
24T13

T12 = c∗
84 c73

c∗
24 c13

T12, (C24)

one obtains from Eq. (C8)

cx+iy = 2

ckin
P

x+iy,0
00 = T ∗

12

(
1 + c84c

∗
73

c24 c∗
13

)
+ 1

T12
(c∗

24 c13 + c∗
51c62), (C25)

which is a quadratic equation for T12 of the type

|T12|2 + a2 T12 = b2, (C26)
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with

a2 = −cx+iy

c2
, b2 = − 1

c2
(c∗

24 c13 + c∗
51 c62),

(C27)

c2 = 1 + c∗
73c84

c24 c∗
13

.

The solution reads with c12 = T12

Re c12 = − 1
2 (γ ±

√
γ 2 + 4γ δ), (C28)

Im c12 = 1

Re a2
(Im b2 − Im a2 Re c12), (C29)

where

γ = Re a2 − 2
Im a2Im b2

|a2|2 , (C30)

δ = 1

|a2|2 [(Re a2)2Re b2 + (Re a2Im a2 − Im b2)Im b2].

(C31)

The quadratic solution for Re c12 introduces a second
ambiguity.

Thus, all matrix elements tj for j = 2, . . . ,8 can be
expressed by t1. In detail, one finds tj = σj

t∗1
for j = 2,3,5,8

with

σ2 = c12, σ3 = c13, σ5 = c∗
51, σ8 = c12 c∗

84

c∗
24

, (C32)

and tj = τj t1 for j = 4,6,7 with

τ4 = c24

c∗
12

, τ6 = c∗
62

c∗
12

, τ7 = c∗
73

c∗
13

. (C33)

APPENDIX D: CONSTRUCTION OF A COMPLETE
SET—SECOND METHOD

In this appendix we will give some calculational details of
the second method.

(i) Elimination of the triple polarization observables R
z,c
11

and R
z,�
10 using the two quadratic relations in Eqs. (83)

and (86).

Introducing for convenience the notation

a1 = U�
00 + U�

10 + R
z,�
00 , b1 = (

U 0
11 + Uc

11 + R
z,0
11

)
, (D1)

a2 = U�
00 − U�

10 + R
z,�
00 , b2 = (

U 0
11 − Uc

11 + R
z,0
11

)
, (D2)

a3 = U�
00 + U�

10 − R
z,�
00 , b3 = (U 0

11 + Uc
11 − R

z,0
11 ), (D3)

a4 = U�
00 − U�

10 − R
z,�
00 , b4 = (U 0

11 − Uc
11 − R

z,0
11 ), (D4)

the two equations read

2
(
a1 + R

z,�
10

)∗
(a2 − R

z,�
10 ) = (

b1 + R
z,c
11

)(
b2 − R

z,c
11

)∗
, (D5)

2
(
a3 − R

z,�
10

)∗(
a4 + R

z,�
10

) = (
b3 − R

z,c
11

)(
b4 + R

z,c
11

)∗
. (D6)

Taking the sum and the difference, one obtains

−2 (a1 − a3)∗Rz,�
10 + 2 (a2 − a4) R

z,� ∗
10 − 4

∣∣Rz,�
10

∣∣2

= −2 a∗
1a2 − 2 a∗

3a4 + b1 b∗
2 + b3 b∗

4

+ (b2 − b4)∗ R
z,c
11 − (b1 − b3) R

z,c ∗
11 − 2

∣∣Rz,c
11

∣∣2
, (D7)

−2 (a1 + a3)∗Rz,�
10 + 2 (a2 + a4) R

z,� ∗
10

= −2 a∗
1a2 + 2 a∗

3a4 + b1 b∗
2 − b3 b∗

4

+ (b∗
2 + b∗

4) R
z,c
11 − (b1 + b3) R

z,c ∗
11 . (D8)

The latter is a linear equation between R
z,�
10 and R

z,c
11 , which

reads explicitly

−2
(
U�

00 + U�
10

)∗
R

z,�
10 + 2

(
U�

00 − U�
10

)
R

z,� ∗
10

= (
U 0

11 − Uc
11

)∗
R

z,c
11 − (

U 0
11 + Uc

11

)
R

z,c ∗
11 + ε, (D9)

with

ε = −2
[
R

z,� ∗
00

(
U�

00 − U�
10

) + R
z,�
00

(
U� ∗

00 + U� ∗
10

)]
+ [

R
z,c
11

(
U 0 ∗

11 − Uc ∗
11

) + R
z,c ∗
11

(
U 0

11 + Uc
11

)]
. (D10)

Thus, one can eliminate R
z,�
10 by relating it to R

z,c
11 in the form

R
z,�
10 = x R

z,c
11 + y R

z,c ∗
11 + z. Explicitly, one finds

R
z,�
10 = 1

4 Re
(
U�

00U
�∗
10

) [(
U�

00U
c ∗
11 − U�

10U
0 ∗
11

)
R

z,c
11

+ (
U�

00U
c
11 + U�

10U
0
11

)
R

z,c ∗
11

+ 4 R
z,� ∗
00 U�

00 − U�
00Re

(
R

z,0 ∗
11 U 0

11

)
− 2 i U�

10Im
(
2 R

z,� ∗
00 U�

10 + R
z,0 ∗
11 Uc

11

)]
. (D11)

Finally, for the elimination of R
z,c
11 one can use Eq. (D7).

First, its imaginary part yields a linear equation between the
real and the imaginary part of R

z,c
11 , i.e.,

2 Im(Rz,�
00 R

z,� ∗
10 ) = Im

(
R

z,0 ∗
11 R

z,c
11

)
+ Im

(
U 0 ∗

11 Uc
11 − 2 U� ∗

10 U�
00

)
. (D12)

It allows the elimination of Im R
z,c
11 . For the elimination of

the remaining real part Re R
z,c
11 one can utilize the real part of

Eq. (D7), which takes the simple form of a quadratic equation
in Re R

z,c
11 ,

2
∣∣Rz,c

11

∣∣2 − 4
∣∣x R

z,c
11 + y R

z,c ∗
11 + z

∣∣2

= ∣∣U 0
11

∣∣2 + ∣∣Uc
11

∣∣2 + ∣∣Rz,0
11

∣∣2

− (∣∣U�
00

∣∣2 + ∣∣U�
10

∣∣2 + ∣∣Rz,�
00

∣∣2)
, (D13)

resulting in another quadratic ambiguity.

(ii) Elimination of the polarization observables P
1,0
10 , P

1,c
00 ,

and P
1,c
10 using the three relations in Eqs. (88), (89),

and (97).

To simplify the notation, we introduce for convenience

a = P
1,0
00 , x = P

1,c
00 , y = P

1,0
10 , z = P

1,c
10 . (D14)
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The three equations then read in the forms

(a + x + y + z)∗(a − x + y − z) = c1, (D15)

(a + x − y − z)∗(a − x − y + z) = c2, (D16)

(a + x + y + z)∗(a + x − y − z) = c3, (D17)

where

c1 = 1

2

(
U�

00 + U�
10 + R

z,�
00 + R

z,�
10

)∗

× (
U�

00 + U�
10 − R

z,�
00 − R

z,�
10

)
, (D18)

c2 = 1

2

(
U�

00 − U�
10 + R

z,�
00 − R

z,�
10

)∗

× (
U�

00 − U�
10 − R

z,�
00 + R

z,�
10

)
, (D19)

c3 = 1

2

(
U 0

11 + Uc
11 − R

z,0
11 − R

z,c
11

)∗(
U�

00 − U�
10 + R

z,�
00

−R
z,�
10

) U�
00 + U�

10 + R
z,�
00 + R

z,�
10(

U 0
11 − Uc

11 + R
z,0
11 − R

z,c
11

)∗ . (D20)

Dividing Eq. (D15) and the complex conjugate of Eq. (D16)
by Eq. (D17) yields two linear equations, i.e.,

(a − x + y − z) = c1

c3
(a + x − y − z), (D21)

(a − x − y + z)∗ = c∗
2

c3
(a + x + y + z)∗, (D22)

from which x and y can be related to z according to

x = αx z + βx, y = αy z + βy, (D23)

with

αx = 1

2

(
c1 − c3

c1 + c3
+ c∗

3 − c2

c∗
3 + c2

)
,

αy = 1

2

(
−c1 − c3

c1 + c3
+ c∗

3 − c2

c∗
3 + c2

)
, (D24)

βx = αy a, βy = αx a.

To determine z we take the sum of Eqs. (D15) and (D17),
resulting in

(a + x + y + z) (a − z)∗ = 1
2 (c1 + c3)∗. (D25)

Insertion of the expressions for x and y yields a quadratic
equation for z,

a + βx + βy

1 + αx + αy

(a − z)∗ + a∗z − |z|2 = (c1 + c3)∗

2 (1 + αx + αy)
,

(D26)

which is solved easily.
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