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Proton polarizabilities from Compton data using covariant chiral effective field theory
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We present a fit of the spin-independent electromagnetic polarizabilities of the proton to low-energy Compton
scattering data in the framework of covariant baryon chiral effective field theory. Using the Baldin sum rule
to constrain their sum, we obtain αE1 = [10.6 ± 0.25(stat) ± 0.2(Baldin) ± 0.4(theory)] × 10−4 fm3 and βM1 =
[3.2 ∓ 0.25(stat) ± 0.2(Baldin) ∓ 0.4(theory)] × 10−4 fm3, in excellent agreement with other chiral extractions
of the same quantities.
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The electromagnetic polarizabilities of the proton have
been a subject of investigation for many years; the earliest
extractions from low-energy Compton scattering data were
carried out in the 1950s, and the relevant database was greatly
expanded in the 1990s. In the very-low-energy regime one can
make an expansion of the cross section which deviates from
the Powell one only through the inclusion of the two spin-
independent polarizabilities αE1 and βM1. However, since very
few measurements have been taken below 80 MeV, almost all
extractions require theoretical input to describe the evolution
of the cross section with energy. Historically, dispersion
relation (DR) approaches were used, with input from pion
photoproduction data. A model-independent constraint can be
obtained from the Baldin sum rule, most recently evaluated
to give αE1 + βM1 = 13.8 ± 0.4 in units of 10−4 fm3 [1], so
typically the parameter extracted is αE1 − βM1. In 2001 Olmos
de León et al. published the most comprehensive data set
yet, obtained with the TAPS detector at the Mainz Microtron,
and in a DR framework they analyzed it together with other
“modern” data to give αE1 − βM1 = 10.5 ± 0.9 ± 0.7 in the
same units [1]. For some time this was regarded as the definitive
result.

However, chiral effective field theories (χEFTs) can also
be used to describe Compton scattering amplitudes. These
are field theories in which the interactions of low-energy
degrees of freedom are governed by the symmetries of QCD,
and scattering amplitudes can be systematically expanded in
powers of the ratio of light to heavy scales. The former are
typically external particle momenta of the order of the pion
mass, and the latter are governed by those particles such as
the ρ meson which are not included explicitly in the theory
but whose effects, along with other short distance physics, are
encoded in low-energy constants. At leading one-loop order
in the theory with pions and nucleons these predictions are
parameter free, but beyond leading order αE1 and βM1 are free
parameters which can be fit to data. The first attempt to do this
was the work of Beane et al. [2,3], working in heavy baryon
(HB) chiral perturbation theory. The absence of a dynamical
� isobar restricted the fit to relatively low momentum transfer,
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and as a result the statistical errors were large. However,
the inclusion of the � followed shortly [4–6]. Most recently,
the result αE1 − βM1 = 7.5 ± 0.7 ± 0.6 has been obtained by
McGovern et al. in Ref. [7]. Although this value is compatible
with the previous chiral extractions [2,3,6], the calculation was
carried out to a sufficiently high order, and fit a sufficiently
large set of experimental data, that the results were precise
enough to demonstrate a tension with DR-based results at,
roughly, the 2σ level (combining all errors in quadrature).1

In addition to αE1 and βM1 there are also four spin
polarizabilities of the proton. One combination of these,
γ0, satisfies a Baldin-like sum rule and so is reasonably
well known: γ0 = −0.90 ± 0.08(stat) ± 0.11(sys) in units of
10−4 fm4 [9]. In looking for sources of the discrepancy in
the extracted values of αE1 − βM1, it has been suggested
that the problem is that the EFT and DR values of the spin
polarizabilities are quite discrepant; since those obtained at
this order in the EFT are not in good agreement with the
sum-rule determination of γ0, this has been used to suggest
that the EFT extraction is less reliable, or at least that the
errors are underestimated.

In this paper we consider the situation in a different variant
of χEFT, namely, one which does not use the heavy baryon
expansion but treats the nucleon fields as Dirac spinors [10].
Compton scattering amplitudes were first calculated in this
approach by Lensky and Pascalutsa in Ref. [11], using (a
modification of) the extended on-mass-shell (EOMS) renor-
malization scheme [12]. The power-counting scheme we use
is the so-called δ counting, with the small parameter δ ∼
mπ/� ∼ �/�χ ∼ 0.4, where � = M� − MN and �χ ∼ mρ

is the chiral scale [5]. In this counting, the HB work of Ref. [7]
is O(e2δ4) in the low-energy region. The covariant work of
Ref. [11] is O(e2δ3), at which order αE1 and βM1 are not
free parameters but predicted. Substantial contributions to
one or both come from πN and π� loops and from �-pole
graphs, and the final values, which are the result of significant

1Because the paper is not easily available, the rather better
agreement with the work of Baranov et al. [8] which, using a
DR-based fit to world data, finds αE1 − βM1 = 9.5 ± 1.0 ± 0.7, has
been less noted. In fact for “modern” pre-TAPS data alone, Baranov’s
result is 7.7 ± 1.2.
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TABLE I. Predictions for the spin polarizabilities in three variants
of χPT and in DR, in units of 10−4 fm4.

γE1E1 γM1M1 γE1M2 γM1E2

HB δ3 [13] −5.5 2.1 0.5 1.3
HB δ4 [7] −1.1 2.2a −0.4 1.9
Cov. δ3 [14] −3.3 3.0 0.2 1.1
DR [13,15] −3.85 ± 0.45 2.8 ± 0.1 −0.15 ± 0.15 2.0 ± 0.1

aThis value was fit in Ref. [7]; the predicted value would be
γM1M1 = 6.4.

cancellations, are αE1 = 10.8 ± 0.7 and βM1 = 4.0 ± 0.7. The
errors are theory only. Though no fit to data is involved, plots
were presented in Ref. [11] to show that the trend of world data
up to around 170 MeV is well reproduced in this calculation.
The spin polarizabilities are also predictions of the theory at
this order, and interestingly they are in good agreement with
the DR results, including for instance γ0 = −0.9; see Table I.

As yet no full calculation has been carried out in the
covariant theory at O(e2δ4). The extra graphs required at
this order are not only πN loop graphs with insertions of
second-order LECs, namely, the proton and neutron anomalous
magnetic moments and the πN scattering LECs ci , but also
photon-nucleon seagull graphs with fourth-order LECs which
contribute directly to αE1 and βM1. All of these were included
in the heavy baryon calculations of Ref. [7]. There, it was
shown that the contribution of the extra loop graphs was quite
modest. However, the new counter-terms δαE1 and δβM1 must
be fit to Compton scattering data, and seem to be the principal
new effect at this order. In view of the interest in the apparent
discrepancy between DR and χEFT extractions of αE1 and
βM1, we consider a partial O(e2δ4) covariant result to be of
interest, and so we supplement the Lagrangian for proton fields
used in [11] with the term [16,17]

L(4)
πN = πe2

[
ψδβM1F

μρFμρψ

− 2

M2
N

(δαE1 + δβM1)(∂μψ)FμρF ν
ρ∂νψ

]
. (1)

For a review of the power counting, and of the principles
underlying the application of χEFT to Compton scattering,
the reader is referred to Ref. [13].

The database of experimental Compton scattering results
for energies below 170 MeV, and its treatment, is the same one
as was used in Refs. [7,13]; the following is only the briefest
of summaries and a thorough discussion may be found in
Ref. [13]. The largest single data set is from TAPS [1], for
which we allow a point-to-point systematic error of 4% as
advocated by Wissmann [18]; other modern data are from [19–
22], and a number of older experiments also contribute some
points. Normalization uncertainties are incorporated into the
χ2 function in the usual way. As in Refs. [7,13], for our final
result we use the data of Hallin et al. [21] below 150 MeV
only.

We do not fit to any higher-energy data but check by eye
that the agreement continues to be good at higher energies (at
least as far as the deficiencies of the data sets allow such a
judgment). We take the γN� coupling constants obtained in
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FIG. 1. (Color online) 1σ contours for the one-parameter
(Baldin-constrained) and two-parameter (unconstrained) fits, for
three variants of the data set: the solid (black) line is our final result,
while the dashed (blue) lines exclude all Hallin data, and the dotted
(green) line uses an upper cutoff of 150 MeV. These are sets (III),
(II), and (I), respectively, of Ref. [7].

a fit to photoproduction data: gM = 2.97 and gE = −1.0 [23].
Other parameters are given in Ref. [7]. We present results both
with and without imposing the Baldin sum rule αE1 + βM1 =
13.8 ± 0.4 [1] as follows:

αE1 = 10.9 ± 0.45(stat) ± 0.4(theory),
(2)

βM1 = 3.6 ± 0.55(stat) ± 0.4(theory),

with χ2 of 111.8 for 135 degrees of freedom (d.o.f.).
For the Baldin-constrained fit we obtain αE1 − βM1 = 7.4 ±
0.5(stat) ± 0.4(theory), giving

αE1 = 10.6 ± 0.25(stat) ± 0.2(Baldin) ± 0.4(theory),
(3)

βM1 = 3.2 ∓ 0.25(stat) ∓ 0.2(Baldin) ± 0.4(theory),

with χ2 of 112.5 for 136 d.o.f. The theory errors have been
conservatively calculated, based on the shift of αE1 − βM1

from e2δ3 to partial e2δ4, multiplied by the parameter δ ∼ 0.4.
As can be seen from Fig. 1 (which also demonstrates the

sensitivity to variations of the choice of database), these results
are completely consistent with one another. Furthermore
they are consistent with the corresponding results in the
heavy baryon extraction [7], and in fact the central values
of the Baldin-constrained fit are essentially equal to those
of that work, namely, αE1 = 10.65 ± 0.35(stat), βM1 = 3.2 ∓
0.35(stat). (The statistical error is higher than in the current
work because an extra parameter, γM1M1, was fitted in Ref. [7].)
It is also interesting to recall that partial and full O(e2δ4) HB
extractions of αE1 − βM1 agree very well [7].

In Fig. 2 we show the fit along with a selection of data. The
low-energy fit is excellent, and below the photoproduction
threshold the predictions of covariant and heavy-baryon χPT
are largely indistinguishable. (The similarity of the covariant
and HB predictions for the unpolarized cross sections in
this region was already noted in Ref. [24].) The values of
αE1 and βM1 in all three cases are extremely close, but the
spin polarizabilities are quite disparate. The HB O(e2δ3)
curves give a stronger cusp than the covariant version, but
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FIG. 2. (Color online) Predictions for the cross section in nb/sr as a function of incoming photon energy in MeV (both in the laboratory
frame), using the values from the Baldin-constrained fit αE1 = 10.6 and βM1 = 3.2, and with the band showing statistical errors only (solid line,
red). For comparison the results of HB χPT are shown: O(e2δ3) [13] (dotted, light blue) and O(e2δ4) [7] (dashed, dark blue). Data points are
shown without floating normalization, and including those points which were excluded from the fit. The key is given in Table 3.1 of Ref. [13]; in
particular purple diamonds are Mainz data [1,25]; red squares, MacGibbon [22]; black squares, Hallin [21]; and blue triangles, Federspiel [19].
The insets show the extended range beyond ωlab = 200 MeV.

the HB O(e2δ4) is in very good agreement with the covariant
calculation up to 200 MeV and beyond. Though only low-
energy data are used in the fit, the good agreement with the
Mainz data [25] continues into the resonance region, though
at most angles the � peak is somewhat too high. It should be
noted though that in this region the power counting changes
and the EFT calculation is only leading order. Moreover the
HB fits varied the γN� coupling constant gM whereas in
the present, covariant fit we have used the value obtained
in the covariant theory from photoproduction [23], which is
around 10% higher. The leading dependence of the height
of the peak on the coupling constant is g4

M , and a better
fit in the resonance region could be obtained by allowing a
modest variation of this parameter with negligible effect on
the low-energy fit.

In summary, we have shown that in a fit to low-energy
Compton scattering data, very similar results are obtained
for the electromagnetic polarizabilities of the proton, αE1

and βM1, whether the covariant or heavy baryon versions
of chiral effective field theory are used. In particular if the
Baldin sum-rule constraint is applied, the extracted values of
αE1 − βM1 are essentially identical. This result is unexpected

because some other predictions of the two versions, notably
the spin polarizabilities, are apparently not in good agreement.
However, these are not the dominant drivers of the energy
evolution at photon energies comparable to mπ , and the two
versions of the theory make very similar predictions for the
overall cross section. It should be noted that this energy
dependence, including the cusp at photoproduction threshold
generated by chiral loops, is highly nontrivial. The excellent
fit to data with only one free parameter demonstrates the
predictive power of χEFT.

It is still to be tested whether the tension between the χEFT
extraction and the widely accepted dispersion-relation-based
one of Ref. [1] is due to the larger and more carefully handled
data set used in the chiral extractions, or to some other feature
of the predictions of the two theories. More unpolarized
data, particularly at energies around mπ at backward angles,
might be needed to resolve the issue. To further explore spin
polarizabilities, though, it is clear that polarized scattering
measurements will be required.
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