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Formation and dynamics of fission fragments
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Although the overall time scale for nuclear fission is long, suggesting a slow process, rapid shape evolution
occurs in its later stages near scission. Theoretical prediction of the fission fragments and their characteristics
are often based on the assumption that the internal degrees of freedom are equilibrated along the fission path.
However, this adiabatic approximation may break down near scission. This is studied for the symmetric fission of
238.264Fm. The nonadiabatic evolution is computed using the time-dependent Hartree-Fock method, starting from
an adiabatic configuration where the fragments have acquired their identity. It is shown that dynamics has an
important effect on the kinetic and excitation energies of the fragments. The vibrational modes of the fragments

in the post-scission evolution are also analyzed.
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Fission can be found in different complex quantum systems
such as atomic nuclei [1,2] and atomic clusters [3]. This is one
of the most challenging quantum many-body problems, due
to the difficulty of finding an adequate and computationally
tractable formulation of the evolution from the compound
system to the formation of the final fragments. For atomic
nuclei, the minimum average time scale for such an evolution
is of the order of 2050 zs [4]. This is slow enough to consider,
as a first approximation, nuclear fission as an adiabatic process.
This means that the nucleonic degrees of freedom are fully
equilibrated while the system evolves over a potential energy
surface (PES) defined by the macroscopic degrees of freedom
such as elongation and mass asymmetry [5].

However, the adiabatic approximation is expected to break
down in the final stages of the fission process, when scission
of the neck between the fragments occurs [6]. In this phase,
fragments can experience a rapid change in shape [7], which
would be better described with a nonadiabatic approach.
A realistic description of the entire fission process could
then be achieved with an adiabatic model describing the
slow evolution across the barrier, followed by a nonadiabatic
treatment of the scission and post-scission dynamics. The
transition between the adiabatic and nonadiabatic pictures is
expected to occur somewhere between the top of the fission
barrier and the scission point. It is desirable that these two
methods are based on a consistent approach to the many-body
problem.

To date, most of the theoretical works have focused on the
adiabatic part of the fission process. Microscopic approaches
have been widely used to study fission paths (see Refs. [7-20]
for recent applications). In particular, the time-dependent
generator coordinate method [8] and the adiabatic time-
dependent Hartree-Fock theory [21] provide a description of
the evolution of collective and internal degrees of freedom.
Simplifications using the strongly damped character of fission
have also been widely used. For instance, random walks on a
phenomenological five-dimensional PES [22], in analogy with
Brownian motion, have led to a good description of fragment
mass distributions [23].
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All of these approaches aim to describe the fission process
up to the scission point and to predict the properties of
the fragments (mass, charge, kinetic energy), which are the
main experimental observables. These properties are estimated
in a sudden approximation from the scission configuration
assuming sharp cuts across the neck [24] and ignoring nona-
diabatic effects coming from couplings between collective
and intrinsic degrees of freedom [6,25]. This approximation
induces a strong limitation in the predicting power of fragment
characteristics. For instance, part of the kinetic energy could
come from pre-scission dynamics [12]. In addition, the
approach is not able to describe post-scission dynamics of the
fragments, such as their vibrational modes. For this reason, it is
highly desirable to go beyond this approximation and describe
the later stages of the fission process in a dynamical and
nonadiabatic fashion [26]. The time-dependent Hartree-Fock
(TDHF) theory [27] is an ideal tool to study the latter stage of
fission as it is a fully microscopic and nonadiabatic approach.
An early attempt to describe fission with such a model was
proposed in Ref. [28]. Due to computational limitations, these
calculations were essentially qualitative, assuming spatial
symmetries and using a simplified effective interaction. A
pairing gap with arbitrarily large values was also used as a
phenomenological parameter to trigger scission.

Here, we investigate the formation and dynamics of
fission fragments using a realistic three-dimensional mean-
field description. The adiabatic phase is described in the
traditional way, using a static mean-field approach with an
external constraint inducing deformation. The shell structure
and level crossings are used to determine at which deformation
the fragments have established their identity, which occurs
between the saddle and scission points [29]. This determines
the initial condition for the time-dependent calculations of the
nonadiabatic evolution, including scission and post-scission
dynamics.

As a proof of concept and to establish the feasibility of
this approach we studied the symmetric fission of 2*Fm. This
exotic nucleus represents an important milestone in fission
studies as it is predicted to spontaneously fission into two
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FIG. 1. (Color online) Adiabatic fission potential of **Fm —
1328n + 132Sn (solid line) as function of the distance R between
the fragment centers of mass. The reference energy is chosen such
that £ =0 for R — oco. Adiabatic (purple surfaces) isodensities
at half the saturation density py/2 = 0.08 fm~> are shown at R =

7,8,...,15 fm. Half a fragment is represented, the fission axis
being vertical. TDHF isodensities are represented by dashed lines
at R = 11,12, ...,15 fm. The nonlinear axis (top) relates the time ¢

with R during the nonadiabatic evolution, with origint = 0 associated
with preformation of '¥2Sn fragments.

doubly magic '*?Sn fragments [18,30,31]. Its study could be
envisaged with upcoming radioactive beams or, alternatively,
using multi-nucleon transfer reactions in actinide collisions,
which have been the focus of recent experimental [32] and
theoretical [33-35] efforts.

The adiabatic configurations are obtained by solving the
Hartree-Fock (HF) equations with the BCS pairing residual
interaction (HF4-BCS) using the EV8 code [36]. The calcula-
tions are performed on a Cartesian grid with mesh size 0.8 fm.
The mean field is obtained from the SLy4d [37] Skyrme energy
density functional [38], and a surface pairing interaction [39]
is used to describe the nuclear superfluid phase. Elongations
along the z axis are induced by adding an external constraint
A((R) — R)z to the single-particle potential. The Lagrange
parameter A quantifies the strength of the constraint and R is
the desired expectation value of the operator R measuring the
distance between the centers of mass of the matter on each
side of the neck plane assuming a sharp cut. For symmetric
fission, the neck is at z = 0.

The adiabatic potential obtained from the constraint calcu-
lations is shown in Fig. 1. The fission barrier height is Vp ~
4.3 MeV at Rg ~ 7.3 fm. This height is in excellent agreement
with recent theoretical calculations [10,11,18,40,41]. A neck
is observed up to R >~ 14.5 fm. It is interesting to note that
the pre-scission configuration consists of two quasi-spherical
fragments. In fact, three different fission valleys have been
predicted in fermium isotopes [9,31]: (i) a mass asymmetric
one, (ii) a mass symmetric one with elongated fragments, and
(iii) a mass symmetric one with compact fragments like the one
in Fig. 1. The latter is the dominant fission path in neutron-rich
fermium isotopes due to the spherical shells in the vicinity of
1328n [42,43].
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FIG. 2. (Color online) Proton (a) and neutron (b) pairing energies
as functions of R. Proton (c) and neutron (d) single-particle energies
for states with positive (blue) and negative (red) parity. The green
solid lines indicate the Fermi levels in the presence of pairing. These
are continued by green dashed lines, which represent the Fermi levels
located arbitrarily in the magic gaps.

The transition criteria between adiabatic and nonadiabatic
phases has yet to be defined. A distance Ry where fragments
are pre-formed can be determined by examining the shell
structure of the system. The proton and neutron single-particle
energies are plotted near the Fermi level for R > 9 fm in
Figs. 2(c) and 2(d), respectively. We observe that the shell
gaps, Z = 50 and N = 82, associated with '3>Sn appear after
R ~ 10 fm. This is also confirmed by the evolution of the
proton and neutron pairing energies shown in Figs. 2(a)
and 2(b), respectively. The latter vanish around the same
point, because the pairing residual interaction is not able
to scatter Cooper pairs across the magic shell gaps [44].
We consider that the fragments are pre-formed at this point
and experience a nonadiabatic evolution from Ry =~ 10.5 fm
onward, corresponding to the vanishing of all pairing energies.

Consistent with the adiabatic phase, the nonadiabatic
evolution is computed at the mean-field level with the TDHF
theory [27]. The latter has been widely used to investigate low-
energy nuclear dynamics (see Refs. [45-47] for reviews). Al-
though one-body dissipation mechanisms are well accounted
for in the TDHF approach, it does not include the Landau-
Zener effect which is crucial to properly describe dissipation
when single-particle levels with different occupation numbers
cross. This effect could be partly accounted for with the inclu-
sion of pairing correlations [48] which have been the subject
of several recent works [49-52]. Here, the transition between
adiabatic and nonadiabatic regimes is supposed to occur after
the last crossing. Consequently, the Landau-Zener effect is not
expected to affect the dynamics in the nonadiabatic phase.

The TDHF3D code [37] is used with a mesh spacing of 0.8 fm
and a time step 1.5 x 1072* 5. The z = 0 plane represents the
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FIG. 3. (Color online) Time evolution of various energies in the
nonadiabatic phase (see text).

plane of symmetry. The Cartesian grid extends to 16 fm from
the center in x and y and to 64 fm in z direction. Pairing is
not included in the dynamics as the fragments maintain their
double magicity at all times.

TDHF isodensities are shown in Fig. 1. In this case, the neck
remains at elongations up to R >~ 15.4 fm. It is interesting to
quantify the time needed for the nonadiabatic evolution to
reach scission. The axis shown in the top of Fig. 1 indicates
at which times different values of R are reached. Scission
occurs after ~1.6 zs of nonadiabatic evolution. This time is
too short for the system to find the minimum of the potential
energy surface around scission, which is why the scission
point is found to be different when nonadiabatic effects are
included.

We now investigate the effect of the nonadiabatic evolution
on the kinetic energy E\i, of the fragments. Figure 3 shows the
evolution of Ey;, and of the potential energy Ecoy arising from
mutual Coulomb repulsion. Note that before the fragments are
well separated, these energies could depend on the definition of
the fragments and on localization effects [12]. When the neck
breaks at t ~ 1.6 zs, the fragments have already acquired a
kinetic energy Eyi, 2~ 19 MeV. This nonadiabatic contribution
to the kinetic energy is usually neglected in models based
on the adiabatic approximation [12]. The total kinetic energy
(TKE) corresponding to the asymptotic value of Ey;, can be
obtained by summing the Coulomb and kinetic energies when
the nuclear attraction between the fragments vanishes. We get
from Fig. 3 a TKE of ~241 MeV. This TKE is much larger
than the prediction from the Viola systematics [53] which is
~192 MeV. This effect, already observed in lighter fermium
isotopes [42], can be attributed to the strong spherical shell
effects in the fragments which are responsible for the compact
shape at scission [43].

A similar analysis can be performed for the excitation en-
ergy of the fragments. If we consider spontaneous fission, the
264Fm is initially in its ground state, corresponding to the first
potential well at R >~ 6.8 fm with an energy E, ;. ~ 275 MeV
in Fig. 1. At Ry >~ 10.5 fm, where the transition between
adiabatic and nonadiabatic regimes occurs, the potential is
at Eg ~ 263 MeV and the system has acquired an excitation
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energy during its adiabatic evolution E}. . = E, — Ey ~
12 MeV. Note that E}; . is much larger than the pairing
energy and our conclusions are not affected by the choice
of the pairing strength. During the nonadiabatic evolution,
and up to scission, the excitation energy keeps increasing due
to dissipation mechanisms. The TDHF approach incorporates
the one-body dissipation mechanisms which are dominant at
low energy [54,55]. As a result, the TDHF prediction of the
excitation energy acquired during the nonadiabatic phase is
Efpur = Eo — TKE =~ 22 MeV. The asymptotic value of the
total excitation energy is then E* = E}. -+ Ejjqe ~2 34 MeV.
The nonadiabatic evolution is then responsible for almost
~2/3 of the final excitation energy of the fragments.

Further inquiry is required to get a deeper insight into
the nature of the excitation energy acquired during the
nonadiabatic evolution. In the present case, the magic gap of
1328n is expected to hinder incoherent particle-hole excitations
and subsequent thermalization of the fragments. However,
collective vibrations, some of which lie at low excitation
energies, could be easily excited. Such collective modes are
accounted for in the TDHF framework [54,56]. The TDHF
simulation of the post-scission evolution of the fragments can
then be used to investigate the excitation of such vibrations.

Figures 4(a)—-4(d) show the evolution of different multipole
moments computed for z > O up to a time T = 5.7 zs before
the fragments reach the edge of the grid. At > #; ~ 1.8 zs,
i.e., after the neck has fully disappeared, these moments exhibit
oscillations associated with vibrational modes of the outgoing
fission fragments. The Fourier transform of [Q(¢) — Q(#))]
f(t —t), where t > t; and f(t) = cos’[nt/2(T — ;)] is a
filtering function to avoid spurious oscillations in the Fourier
analysis, are shown in Figs. 4(e)—4(h) (solid lines). They are
compared with the same quantities computed after a boost

¢~k applied to the '*2Sn HF ground state with a boost
velocity, k, small enough to be in the linear regime, i.e., to have
Q(t) « k (dashed lines). This provides a numerical estimate
of the random-phase approximation (RPA) strength function
of O [44].

The higher energy peaks in the strength functions are
associated with giant resonances. Apart from the high-energy
octupole resonance (HEOR), all giant resonances are excited
in the fission fragments. However, the excitation of low-lying
collective vibrations is predominant for the octupole (3] state)
and quadrupole (2] state) modes. Such vibrations are often
excited in fusion reactions [57], as shown in recent TDHF
calculations [58,59]. The isovector dipole response and, to a
lesser extent, the monopole one also exhibit other high-energy
modes not visible in the RPA strength functions. A possible
explanation is that these vibrations are built on top of a static
polarization induced by the Coulomb interaction with the
other fragment. Indeed, the isovector dipole moment, which
is proportional to the distance between the proton and neutron
centers of mass, is almost always positive [see Fig. 4(d)]. Note
that couplings between collective modes in large amplitude
motion [60] could also induce nonlinearities in the vibrational
spectra [61,62].

Finally, to test this approach with experimental data, similar
calculations have been performed for >Fm. In this case,
neutron pairing does not vanish. The TDHF calculations

031601-3



C. SIMENEL AND A. S. UMAR

Monopole Quadrupole

10 15 20 0 15
E (MeV) E (MeV)

RAPID COMMUNICATIONS

PHYSICAL REVIEW C 89, 031601(R) (2014)

Octupole

Isovector dipole
| (d

500

Q, (fm*)

-500

0 15 20
E (MeV)

FIG. 4. (Color online) (a)—(d) Evolution of multipole moments in the nonadiabatic phase. (e)—(h) Fourier transforms are computed for
t > t; = 1.8 zs (right of dashed line in top panels). The RPA strength functions of '32Sn are plotted with dashed lines (bottom) with arbitrary

normalization.

are performed with frozen occupation numbers starting at
Ry = 12-13 fm, for which the occupation numbers are close
to the post-scission ones. The calculated TKEs are in the
range 238-241 MeV, in relatively good agreement with the
high-energy mode in 28FEm (TKE ~ 232 MeV) [42].
Symmetric fission of 2%2%*Fm has been studied. For the
first time, adiabatic and nonadiabatic phases of fission are
described with realistic mean-field codes. The evolution is
assumed to be adiabatic until the fragments’ identity can be
established from their shell structure. Nonadiabatic effects
are then investigated employing the TDHF evolution toward
scission. This nonadiabatic evolution affects the kinetic and
excitation energies of the fragments. The post-scission TDHF
evolution of the fragments is also used to analyze their vibra-
tional modes. As in the case of fusion, the low-lying collective
vibrations are more easily excited than giant resonances. The

present techniques could be easily extended to other systems,
including asymmetric fission, and other observables, such as
neutron emission [4]. Recent mean-field codes [50-52,63]
including pairing could be used. Extensions of these codes to
compute mass and charge distributions of the fragments could
also be used [64,65] in order to compare with experimental
data [66].
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