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Cluster-liquid transition in finite, saturated fermionic systems
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The role of saturation for cluster formation in atomic nuclei is analyzed by considering three length-scale ratios
and performing deformation-constrained self-consistent mean-field calculations. The effect of clusterization in
deformed light systems is related to the saturation property of the internucleon interaction. The formation of
clusters at low nucleon density is illustrated by expanding the radius of 16O in a constrained calculation. A phase
diagram shows that the formation of clusters can be interpreted as a hybrid state between the crystal and the
liquid phases. In the hybrid cluster phase the confining potential attenuates the delocalization generated by the
effective nuclear interaction.
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When temperature decreases and density increases, a
system of particles interacting through a short-range force
undergoes a transition from a classical gaseous state to a
liquid one. Lowering the temperature further, in most cases a
first-order phase transition from the liquid state to a solid state
occurs. By increasing the density, that is, adding constituents
between the nodes of the microscopic crystal structure, their
wave functions start to overlap and clusters can be formed.
With a further increase of the density the system becomes
more homogeneous, finally reaching the quantum-liquid state
[1]. Quantum effects become important when the typical
dispersion of the constituent particles, that is, the thermal de
Broglie wavelength of a particle,

λ = h

p
� �√

2mkT
, (1)

becomes comparable to the average interparticle spacing. In
a transition to a quantum-liquid state the constituent particles
are delocalized and the system reaches a homogeneous density.
Both the bosonic/fermionic characteristic of a many-body sys-
tem and the inter-particle interaction determine the properties
of a quantum liquid [1].

The cluster to liquid transition in atomic nuclei character-
ized by a typical internucleon distance, r0, at saturation density
can be analyzed by considering three concomitant length-scale
ratios. In addition to λ/r0 [2], where λ is given by Eq. (1), one
can also consider b0/r0, where

b0=̂ �√
2mV ′

0

(2)

and V ′
0 corresponds to the typical magnitude of the interparticle

interaction (V ′
0 � 100 MeV in the case of the nucleon-nucleon

interaction). This ratio is related to the quantality parameter �
introduced by Mottelson in Ref. [3]:
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The quantality � is defined as the ratio of the zero-point kinetic
energy of the confined particle to its potential energy. The

liquid phase corresponds to � > 0.1, whereas the crystalline
solid phase is characterized by values of � < 0.1. Finally, one
can also consider the localization parameter α introduced in
Ref. [4], which takes into account the finite size of the system:

α=̂�r

r0
�

√
�A1/6

(
2mV0r

2
0

)1/4 , (4)

with �r denoting the spatial dispersion of the single-particle
wave function, A the number of constituents of the system, and
V0 the depth of the confining potential. The right-hand side of
this relation corresponds to the case when the single-nucleon
potential is approximated by an isotropic harmonic oscillator
potential (V0 � 75 MeV for the nuclear mean field [4]). For
α > 1 the single-nucleon orbits are delocalized and the system
is in the Fermi liquid phase. For α ∼ 1 one finds a transition
from the quantum-liquid phase to a hybrid phase of cluster
states [5].

The parameters defined by Eqs. (1), (3), and (4) can be used
to characterize quantum phases of matter and, in particular,
nuclear matter. The formation and dissociation of clusters in
nuclear matter as a function of density is determined by their
binding energy due to Pauli blocking that leads to the Mott
effect for vanishing binding [6]. The formation of nuclear
clusters is similar to a transition from a superfluid to a Mott
insulator phase in a gas of ultracold atoms held in a three-
dimensional optical lattice potential [7]. As the potential depth
of the lattice is increased, a transition is observed from a phase
in which each atom is spread out over the entire lattice to the
insulating phase in which atoms are localized with no phase
coherence across the lattice. In the crust of a neutron star
the transition from the Wigner crystal phase to the quantum
liquid also proceeds through a cluster phase as a function
of density [8]. Clustering occurs as a transition between the
quantum-liquid and solid-state phases because of frustration
effects, that is, due to the interplay between an attractive and
a repulsive interaction [9,10]. This is the case in the crust of
neutron stars or for gelification in condensed matter.

The aim of this article is to analyze in more detail the role
of saturation for cluster formation in finite nuclear systems.
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Cluster states can occur in light nuclei and, generally, in dilute
nuclear systems [6,11,12]. In light nuclei deformation can
favor clustering because of a local increase in density toward
its saturation value and, therefore, an increase in the binding
of the system. In Ref. [5] we have shown that, contrary to
the case of the crust of a neutron star, crystal-like structures
cannot be formed in a nucleus. It should be noted that another
possibility for the formation of nuclear clusters or even a
crystal phase is to heat the nucleus. Using Eq. (1) one can
estimate the temperature at which clusters form (λ ∼ r0) to be
10 MeV. This is in quantitative agreement with recent studies
of critical temperatures for α-particle condensation in nuclear
matter [13,14] and shows the relevance of the parameter λ/r0

for cluster formation. Pauli blocking can be considered as
a leading mechanism that suppresses clusterization at higher
densities, also at finite temperatures [15]. In the present study,
however, we focus on cluster formation in light nuclei, without
considering effects of finite temperature.

We first consider the role of deformation in the formation
of clusters and relate it to the saturation of nucleonic matter.
The localization parameter (4) establishes a link between
clusterization and the single-nucleon spectrum [4,5]. The
relationship between α clusters and single-particle states in
deformed nuclei is well known [16–18]. Rae [19] and von
Oertzen et al. [11] have predicted that the degeneracy of
single-nucleon states at a given deformation could generate
clusters because of levels crossing. As already suggested by
Aberg and Jönsson [18] and Freer et al. [20], an isolated
single-particle state of the single-particle energy spectrum
in a deformed self-conjugate N = Z nucleus can correspond
to an α cluster, due to both the Kramers (time-invariance)
degeneracy and the isospin symmetry: two protons and two
neutrons have similar wave functions, and the localization of
these functions facilitates the formation of α clusters.

To illustrate the effect of nuclear deformation we employ
the framework of deformation-constrained self-consistent
mean-field calculations based on microscopic energy density
functionals (EDFs). This approach has recently been suc-
cessfully applied in studies of cluster phenomena in light
and medium-heavy nuclei [4,5,21–26]. It has an advantage
over dedicated cluster models in that it does not a priori
assume the existence of such structures, cluster formation is
described starting from microscopic single-nucleon degrees
of freedom, and applications are not limited only to the
lightest nuclei [26]. In fact, microscopic EDFs implicitly
include many-body correlations that enable the formation of
nucleon cluster structures. In Fig. 1 we display the binding
energy of the self-conjugate nucleus 20Ne as a function
of the axial quadrupole deformation parameter β2. As in
our previous studies of nuclear clustering [4,5], the self-
consistent relativistic Hartree-Bogoliubov (RHB) model [27]
has been employed in the calculation, based on the EDF
DD-ME2 [28]. The curve of the total energy as a function
of quadrupole deformation is obtained in a self-consistent
mean-field calculation by imposing a constraint on the axial
quadrupole moment. The parameter β2 is directly proportional
to the intrinsic quadrupole moment. β2 > 0 corresponds to
axial prolate shapes, whereas the shape is oblate for β2 < 0.
The calculated equilibrium shape of 20Ne is a prolate,

FIG. 1. (Color online) Self-consistent deformation energy curve
of 20Ne as a function of the quadrupole deformation parameter β2,
calculated using the RHB model with the DD-ME2 functional. The
insets display the corresponding three-dimensional intrinsic nucleon
density distributions.

axially symmetric quadrupole ellipsoid with β2 ≈ 0.55, and
the characteristic observables (binding energy, charge, and
matter radii) reproduce the available data within 1%. For the
equilibrium deformation and two additional values of β2, in
the inserts of Fig. 1 we also include the corresponding intrinsic
nucleon density distributions in the reference frame defined by
the principal axes of the nucleus. As noted in Refs. [4,5], the
equilibrium self-consistent solution calculated with DD-ME2
yields two regions of pronounced nucleon localization at the
outer ends of the symmetry axis and an oblate deformed
core. Thus the intrinsic density displays a quasimolecular
α-12C-α structure. The pronounced density peaks enhance the
probability of formation of α clusters in excited states close
to the energy threshold for α-particle emission [11,29–31].
This is clearly seen in the axial prolate density plots for values
of the deformation parameter β2 > 2, as well as in Fig. 2
where we show the self-consistent reflection-asymmetric
axial intrinsic density of 20Ne, calculated with DD-ME2 by
imposing constraints on both the axial quadrupole and octupole

FIG. 2. (Color online) Self-consistent reflection-asymmetric ax-
ial intrinsic density of 20Ne, calculated with by imposing constraints
on both the axial quadrupole and octupole deformation parameters.
β2 = 0.55 corresponds to the equilibrium quadrupole deformation,
and β3 = 0.50.
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deformation parameters β2 and β3, respectively. For these
particular values of the deformation parameters (β2 = 0.55
corresponds to the equilibrium quadrupole deformation, and
β3 = 0.50), the intrinsic density clearly presents the structure
of an 16O core plus the α cluster.

The intrinsic densities shown in Figs. 1 and 2 display local-
ized latticelike structures, characteristic of the self-consistent
mean-field approach that fixes the center-of-mass coordinates
of α-like clusters. The RHB self-consistent solution contains
the energy of the spurious center-of-mass motion of each
α cluster that needs to be subtracted. A fully microscopic
method for this subtraction has not been developed yet and,
thus, a heuristic procedure was adopted in the analysis of
Ref. [26], which yields an extra binding of ≈7 MeV per
α particle. By restoring broken symmetries (translational,
rotational, and parity in the case of octupole deformations),
and allowing for configuration mixing, one would obtain
solutions that correspond to nonlocalized clusters. The concept
of nonlocalized clustering has recently been investigated
using an angular-momentum-projected version of the Tohsaki-
Horiuchi-Schuck-Röpke (THSR) wave function [32]. In light
nuclei at low densities α-like clusters display a strong
tendency to condense in the same orbital with respect to
their center-of-mass motion [33]. Deforming the nucleus
by imposing constraints on the mass multipole moments
leads to excited configurations in which the single-nucleon
density is reduced along the deformation axis with respect
to the equilibrium. Because of the saturation property of
the internucleon interaction, that is, due to the fact that the
energy of nucleonic matter displays a pronounced minimum
at an equilibrium density of ρeq ≈ 0.16 fm−3, the nucleus
strengthens the binding by increasing the density locally. For
a relatively light nucleus, and especially for self-conjugate
systems, the most effective way to increase the density locally
is the formation of α clusters. This effect has very recently
been investigated by Girod and Schuck [26]. By performing
constrained HFB calculations of self-conjugate nuclei, with a
restriction to spherically symmetric configurations, they have
shown that by expanding an n-α nucleus the corresponding
total energy as a function of the nuclear radius goes over a
maximum before reaching the asymptotic low-density limit of
a gas of α particles.

In Fig. 3 we illustrate the role saturation plays in the
formation of α clusters in dilute nucleonic matter. In a
self-consistent calculation similar to the one of Ref. [26] but
using the relativistic functional DD-ME2, a constraint on the
nuclear radius is used to gradually reduce the density of 16O
by inflating the spherical nucleus. As the spherical nucleus
increases in size, the total energy of the system also increases
with respect to the equilibrium configuration. However, when
the density is reduced to ρ/ρeq ≈ 1/3, the system undergoes a
Mott-like phase transition [6,26] to a configuration of four
α particles, thus locally strengthening the binding due to
the saturation property of the internucleon interaction. This
transition occurs at a radius of rc = 3.33 fm, as shown in Fig. 3.
The corresponding ratio of the critical radius to the ground-
state radius rc/rg.s. ≈ 1.3 is smaller than the value ≈1.7
obtained with the Gogny effective interaction in Ref. [26]. This
can be explained by the fact that single-nucleon localization in

FIG. 3. (Color online) Self-consistent intrinsic nucleon density
of 16O for a radius constrained to 3.32 fm (a) and 3.34 fm (b).

the equilibrium intrinsic density calculated with the relativistic
functional DD-ME2 is more pronounced [4,5] and, therefore,
facilitates the formation of α clusters in excited states.

Saturation therefore plays a crucial role in the emergence
of clusters in self-bound systems such as nuclei. In a saturated
system there is a natural length scale—the equilibrium inter-
particle distance, which in nuclei is r0 � 1.2 fm. Because of
this characteristic length scale, nucleons tend to form clusters
when the spatial dispersion of the single-particle wave function
is of the order of r0. Equation (4) allows us to show that
in a large nucleus the localization parameter α increases
since, as it is well known, V0 remains rather constant due to
saturation. Because of the approximate A1/6 dependence of α,
medium-heavy and heavy nuclei will exhibit a quantum-liquid
behavior, whereas cluster states can occur in light nuclei.

By inserting Eq. (3) into Eq. (4) one can relate the
localization and quantality parameters:

α = A1/6

(
�

2γ

)1/4

, (5)

where V0 = γV ′
0. Clustering occurs for α � 1 [5], that is,

when the spatial dispersion of the single-particle wave function
is of the same order as the typical interparticle distance.
Inserting this last condition into Eq. (5) yields an estimate
for the typical nucleon number A0 at which one could expect
clusters to occur:

A0 �
(

2γ

�

)3/2

. (6)
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FIG. 4. Phase diagram obtained from Eq. (6), with γ = 3/4. A0

is the nucleon number for which clustering effects are likely to occur.
� is the quantality parameter, and the arrow denotes the typical value
obtained for nuclear matter [3].

For typical values of γ in nuclei (γ ∼ 3/4), and � in
nuclear matter [3], one finds A0 � 10 in agreement with the
mass region where cluster effects are observed [11]. Figure 4
displays the corresponding phases in finite saturated systems,

with the curve that separates the liquid and cluster phases
determined by Eq. (6). This analysis supports the interpretation
of clusters as a hybrid phase: for a system to behave as a liquid,
� should be greater than 0.1 but also A > A0 (α > 1), and this
underlines the importance of finite size effects in the formation
of clusters. The cluster phase corresponds to � > 0.1 and
α < 1. In other words, the relation between α and � shows
that in the cluster phase the confining potential attenuates the
single-nucleon quantum-liquid delocalization generated by the
internucleon interaction.

In summary, we have analyzed the role of saturation in
the mechanism of cluster formation in finite nuclei and in
dilute nuclear matter. The localization parameter describes
how saturation allows for cluster and quantum-liquid phases
of nuclei by relating them with the single-particle behavior
through the depth of the confining potential. In deformed light
nuclei the formation of clusters is favored because it locally
enhances the nucleonic density toward its saturation value,
thus increasing the binding of the system. In those nuclei the
confining potential weakens the quantum-liquid delocalization
induced by the internucleon interaction. In general, when the
density of nucleonic matter is reduced below its equilibrium
values, saturation causes a Mott-like transition to a hybrid
phase composed of clusters of α particles.

This work was supported by the Institut Universitaire
de France. The authors thank Peter Schuck for reading the
manuscript and many valuable discussions.

[1] D. Pines and P. Nozieres, The Theory of Quantum Liquids
(Benjamin, Elmsford, NY, 1966).

[2] N. T. Zinner and A. S. Jensen, J. Phys. G: Nucl. Part. Phys. 40,
053101 (2013).

[3] B. Mottelson, in Proceedings of the Les Houches Summer School
of Theoretical Physics, LXVI (Elsevier, Amsterdam, 1996),
p. 25.
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A. Tohsaki, in Clusters in Nuclei, Vol. 2, edited by C. Beck,
Lecture Notes in Physics Vol. 848 (Springer, Berlin-Heidelberg,
2012), p. 229.

031303-5

http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1016/j.physrep.2004.10.001
http://dx.doi.org/10.1103/PhysRevC.71.024312
http://dx.doi.org/10.1103/PhysRevC.71.024312
http://dx.doi.org/10.1103/PhysRevC.71.024312
http://dx.doi.org/10.1103/PhysRevC.71.024312
http://dx.doi.org/10.1143/PTPS.E68.464
http://dx.doi.org/10.1143/PTPS.E68.464
http://dx.doi.org/10.1143/PTPS.E68.464
http://dx.doi.org/10.1143/PTPS.E68.464
http://dx.doi.org/10.1143/PTPS.196.230
http://dx.doi.org/10.1143/PTPS.196.230
http://dx.doi.org/10.1143/PTPS.196.230
http://dx.doi.org/10.1143/PTPS.196.230
http://dx.doi.org/10.1038/487309a
http://dx.doi.org/10.1038/487309a
http://dx.doi.org/10.1038/487309a
http://dx.doi.org/10.1038/487309a
http://dx.doi.org/10.1103/PhysRevLett.110.262501
http://dx.doi.org/10.1103/PhysRevLett.110.262501
http://dx.doi.org/10.1103/PhysRevLett.110.262501
http://dx.doi.org/10.1103/PhysRevLett.110.262501



