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Extended quark mean-field model for neutron stars

J. N. Hu,2 A. Li,1,3,* H. Toki,4 and W. Zuo3,5

1Department of Astronomy and Institute of Theoretical Physics and Astrophysics, Xiamen University, Xiamen, Fujian 361005, China
2State Key Laboratory of Nuclear Physics and Technology, School of Physics, Peking University, Beijing 100871, China

3State Key Laboratory of Theoretical Physics, Institute of Theoretical Physics, Chinese Academy of Sciences, Beijing 100190, China
4Research Center for Nuclear Physics (RCNP), Osaka University, Ibaraki, Osaka 567-0047, Japan

5Institute of Modern Physics, Chinese Academy of Sciences, Lanzhou 730000, China
(Received 16 July 2013; revised manuscript received 2 January 2014; published 5 February 2014)

We extend the quark mean-field (QMF) model to strangeness freedom to study the properties of hyperons
(�,�,�) in infinite baryon matter and neutron star properties. The baryon-scalar meson couplings in the QMF
model are determined self-consistently from the quark level, where the quark confinement is taken into account
in terms of a scalar-vector harmonic oscillator potential. The strength of such confinement potential for u,d

quarks is constrained by the properties of finite nuclei, while that for an s quark is limited by the properties of
nuclei with a � hyperon. These two strengths are not the same, which represents the SU(3) symmetry breaking
effectively in the QMF model. Also, we use an enhanced � coupling with the vector meson, and both � and
� hyperon potentials can be properly described in the model. The effects of the SU(3) symmetry breaking on
the neutron star structures are then studied. We find that the SU(3) breaking shifts the hyperon onset density
earlier and makes hyperons more abundant in the star, in comparison with the results of the SU(3) symmetry
case. However, it has little effect on the star’s maximum mass. The maximum masses are found to be 1.62M�
with hyperons and 1.88M� without hyperons. The present neutron star model is shown to have limitations in
explaining the recently measured heavy pulsars around 2M�.
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I. INTRODUCTION

Hyperon-meson couplings and their repulsive and/or attrac-
tive natures are crucial for hypernuclei physics and neutron
star (NS) properties in relativistic effective field theories,
such as the relativistic mean-field (RMF) model [1–13], the
quark-meson-coupling (QMC) model [14–23], and the quark
mean-field (QMF) model [24–33].

For the case of hypernuclei, they essentially determine
whether there is a possibility of the production of the
relevant hypernuclei in the laboratory. For example, �-nucleus
[34] and �� interactions [35] have long been known as
attractive interactions, while an opposite sign is indicated for
the �-nucleus interaction (see, e.g., Refs. [1,2]). Recently
an attractive nature has been suggested for the �-nucleus
interaction [36,37]. For example, the BNL-E885 Collaboration
measured the missing mass spectra for the 12C(K−,K+)X
reaction [36], and reasonable agreement between this data
and theory is realized by assuming a �-nucleus Wood-Saxon
potential with a depth of −14 MeV. Within the realistic
Nijmegen ESC08 baryon-baryon interaction models [38], the
� nucleus for low densities is also found to be attractive
enough to produce � hypernuclear states in finite systems
[39,40]. Presently, � hypernulcei have been planned for
several radiation active beam factories around the world
[for example, in the Japan Proton Accelerator Research
Complex (J-PARC)]. They are very promising objects that will
contribute significantly to understanding nuclear structure and
interactions in S = −2 systems, giving us more insight into
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the general understanding of the baryon-baryon interaction, as
many successfully produced � hypernuclei have done.

Therefore any effective many-body theory should respect
those hypernuclei data before proceeding to other sophisticated
studies. The adopted hyperon-meson couplings need to at least
reproduce unambiguous hypernuclear data, for example, the
single � potential well depth in symmetric nuclear matter,
U

(N)
� ∼ −30 MeV [34]. Specifically, the usually employed

flavor SU(3) symmetry, as a way to determine hyperon
couplings from the corresponding nucleon coupling, may
have modified [3], since the construction of realistic hyperon
interactions has already been performed based on a broken-
flavor SU(3) symmetry [38].

Furthermore, one can more microscopically constrain the
hyperon-scalar couplings consistently from the quark level.
Regarding this issue, the QMC model and the QMF model can
serve equally well in a different manner. These two models
have the same root from the Guichon model proposed in
1988 [41], where the meson fields couple not with nucleons,
as in the RMF theory [42], but directly with the quarks in
nucleons. Then the nucleon properties change according to the
strengths of the mean fields acting on the quarks, allowing us to
study properties of nuclear many-body systems directly from
a phenomenological model of the quark-quark confinement
potential. Before doing that, a nucleon model is necessary. Two
nucleon models available, namely, the MIT bag model [43]
and the constituent quark model [44], were finally developed
as the QMC model and the QMF model, respectively. For
a more detailed comparison of these two models, we refer
to Ref. [24]. Briefly, the first model assumes the nucleon
constitutes bare quarks in the perturbative vacuum, i.e., current
quarks, with a bag constant to account for the energy difference
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between the perturbative vacuum and the nonperturbative
vacuum, while in the second model, the nucleon is described
in terms of constituent quarks which couple with mesons and
gluons.

The QMC model has been generalized by Fleck et al. [14]
and Saito and Thomas [15], and employed extensively in many
calculations of finite nuclei and infinite nuclear matter [16–23].
The QMF model has been applied to nuclear matter [24] and
then to finite nuclei [25]. More recently, Wang et al. [26]
included the chiral symmetry in the QMF model, and it was
then called by authors as “the chiral SU(3) QMF model” or “a
QMC model based on SU(3)L × SU(3)R symmetry.” In this
chiral SU(3) QMF model [26], an effective chiral Lagrangian
was introduced with an explicit symmetry-breaking term for
reproducing the reasonable hyperon potentials in hadronic
matter. They use two parameters, h1 and h2, to achieve an
overall good agreement of all the hyperon potentials for the
four types of quark confinement potentials. In Ref. [27], Wang
and co-workers further introduced a linear definition of the
effective baryon mass to postpone the critical density of a zero
effective baryon mass (i.e., achieve a slower decrease of mass
at high density) than the usual square root ansatz. This linear
definition of the effective mass was applied to a NS study in
Ref. [28], together with a scalar confining potential. In their
calculation, the values of a single hyperon in nuclear matter
are obtained as U

(N)
� = U

(N)
� = −28 MeV and U

(N)
� = 8 MeV.

They finally got a maximum mass of 1.45M� (1.7M�) with
(without) hyperons in the star’s dense core.

In the present work, based on our previous studies [24,25],
an extended-QMF (EQMF) model is formulated to the study of
the properties of hyperons (�,�,�) in infinite nuclear matter
and NSs. Special efforts are devoted to effectively introduce
the SU(3) symmetry breaking in a different way than Ref. [26].
That is, we do not include an explicit symmetry-breaking
term [26] in the effective Lagrangian. Instead, we assume a
different confining strength for the s quark with the u,d quarks
in the corresponding Dirac equations (under the influence
of the meson mean fields). Also, the confining strength of
the u,d quarks is constrained from finite nuclei properties
and that of the s quark by the well-established empirical
value of U

(N)
� ∼ −30 MeV. The presently expected single �

potential of U
(N)
� ∼ 30 MeV [1] is then used to determine

the � coupling with the vector ω meson. Namely, a slightly
larger � − ω coupling was taken, as compared to � − ω
coupling, to simulate the additional repulsion on the �-nucleon
channel.

We use a scalar-vector type of harmonic oscillator potential
for the confinement instead of the scalar one used in Ref. [28],
since a denser matter can be achieved before the effective
mass drop to zero (shown in Ref. [24]), which serves our
purpose of studying NSs with hyperon cores. Also, based
on those fairly developed model calculations, we also try to
emphasize some general features of relativistic models widely
used in the literature and contribute a more comprehensive
understanding of effective many-body theories. Moreover,
since we do connect the theoretical NS maximum mass with
the underlying quark-quark confining potentials, an analysis of
their dependence is feasible, and we also discuss the theoretical
implications to the recent NS mass measurements.

The paper is organized as follows. In Sec. II we demonstrate
how the EQMF model is obtained by incorporating all
eight octet baryons, including a differently modeled s-quark
potential strength, the consistent determination of baryon-
scalar coupling from the quark level, and the consequential
description of NS properties. The numerical results and
discussion are given in Sec. III. Finally, Sec. IV con-
tains the main conclusions and future perspectives of this
work.

II. FORMALISM

We shall begin with a possible Lagrangian [24,25,29,45]
of the quark many-body system, taking into account the non-
perturbative gluon dynamics of spontaneous chiral symmetry
breaking and quark confinement. In this effective Lagrangian,
we construct the interaction between baryons through the
meson fields σ , ω, and ρ. The nucleon and meson fields are
treated as a mean-field approximation. The inclusion of other
mesons is straightforward. Then, in the second step, we solve
the entire baryon system by knowing the individual baryon
properties due to the presence of the mean fields.

In the first step, octet baryons (N,�,�,�) are described as
composites of three quarks satisfying the Dirac equations with
confinement potentials. The Dirac equations for constituent
quarks can be written as

[ − i �α · �∇ + βm∗
i + βχi

c

]
qi(r) = e∗

i q
i(r), (1)

where i = q,s with the subscript q denote as u or d quark.
The quark masses, mq = 313 MeV and ms = 490 MeV, are
modified to m∗

i = mi + gi
σ σ due to the presence of the σ mean

field. e∗
i = ei − gi

ωω − gi
ρρτ i

3, with σ , ω, and ρ being the mean
fields at the middle of the baryon, where ei is the energy of the
quark under the influence of the σ , ω, and ρ mean fields. The
confinement potential is chosen to be a scalar-vector confine-
ment, as χi

c = 1
2kir2(1 + γ 0)/2. For the potential strength,

a previous study [25] of � hypernuclei chose kq = ks =
700 MeV/fm2, applying the SU(3) symmetry. We here respect
the difference between u,s quarks and the s quark, and adjust ks

to properly reproduce the hypernuclei experimental data. We
then generate the mass difference among baryons by taking
into account the spin correlations E∗

B = ∑
i e

∗
i + EB

spin, where
B = N,�,�,�. The spin correlations are fixed by fitting the
baryon masses in free space, namely, MN = 939 MeV, M� =
1116 MeV, M� = 1192 MeV, and M� = 1318 MeV. We get
EN

spin = 795 MeV, E�
spin = 821 MeV, E�

spin = 759 MeV, and
E�

spin = 825 MeV at ks = 1100 MeV/fm2, where the single

� potential is U
(N)
� ∼ −30 MeV. In addition, the spurious

center-of-mass motion is removed in the usual square root
method as M∗

B =
√

E∗2
B − 〈p2

c.m.〉.
By solving the above Dirac equations, we work out the

change of the baryon mass M∗
B as a function of the quark

mass correction δmq = mq − m∗
q , which is used as input in

the next step of the study of nuclear many-body systems,
that is, infinite strange nuclear matter. Baryons inside the
matter interact through exchange of σ,ω,ρ mesons, and the

025802-2



EXTENDED QUARK MEAN-FIELD MODEL FOR NEUTRON STARS PHYSICAL REVIEW C 89, 025802 (2014)

corresponding Lagrangian can be written as

LQMF =
∑
B

ψ̄B[iγμ∂μ − M∗
B − gωBωγ 0 − gρBρτ3Bγ 0]ψB

− 1

2
(
σ )2 − 1

2
m2

σ σ 2 − 1

4
g3σ

4

+ 1

2
(
ω)2 + 1

2
m2

ωω2 + 1

4
c3ω

4

+ 1

2
(
ρ)2 + 1

2
m2

ρρ
2, (2)

where ψB are the Dirac spinors of baryon B, and τ3B is
the corresponding isospin projection. mσ , mω, and mρ are
the meson masses. The mean-field approximation has been
adopted for the exchanged σ , ω, and ρ mesons, while the
mean-field values of these mesons are denoted by σ , ω, and ρ,
respectively. The contribution of the σ meson is contained in
M∗

B , and ω and ρ mesons couple to baryons with the following
coupling constants:

gωN = 3gq
ω, gω� = cgω� = 2gq

ω, gω� = gq
ω, (3)

gρN = gq
ρ, gρ� = 0, gρ� = 2gq

ρ, gρ� = gq
ρ . (4)

The basic parameters are the quark-meson couplings (gq
σ , g

q
ω,

and g
q
ρ ), the nonlinear self-coupling constants (g3 and c3), and

the mass of the σ meson (mσ ), which are given in Ref. [24]
with kq = 700 MeV/fm−2. The saturation properties of nuclear
matter with such a parameter set are listed in Table I. As
done in our previous work [45], a factor c is introduced
before gω� for a large � − ω coupling. From reproducing
the presently expected single � potential U

(N)
� = 30 MeV at

nuclear saturation density [1], we choose c = 0.785 (0.772)
for ks = 700 MeV/fm−2 (1100 MeV/fm−2). When c = 1 it
goes back to the quark counting rule usually employed.

For infinite matter, introducing the mean-field approxima-
tion, we can write the equations of motion from the Lagrangian
given in Eq. (2) as

m2
σ σ + g3σ

3 =
∑
B

∂M∗
B

∂σ

2JB + 1

2
ρs

B, (5)

m2
ωω + c3ω

3 =
∑
B

gωB

2JB + 1

2
ρB, (6)

m2
ρρ =

∑
B

gρBI3B

2JB + 1

2
ρB, (7)

TABLE I. Saturation properties of nuclear matter used to deter-
mined the free parameters (gq

σ , gq
ω, gq

ρ , g3, c3, mσ ) in the present
model. The saturation density and the energy per particle are denoted
by ρ0 and E/A, and the incompressibility by K , the effective mass
by M∗

n , the symmetry energy by asym.

ρ0 E/A K M∗
n/Mn asym

(fm−3) (MeV) (MeV) (MeV)

0.145 –16.3 280 0.63 35

where JB and I3B denote the spin and the isospin projection
of baryon B, and the baryon-scalar density ρs

B is defined as

ρs
B = 1

π2

∫ kB

0
dk k2 M∗

B√
M∗2

B + k2
B

, (8)

with kB the Fermi momentum of the baryon species B. The
total baryon density is calculated as ρ = ρN + ρ� + ρ� + ρ�.

To add leptons Ll = ∑
L=e,μ ψL(iγ μ∂μ − mL)ψL to the

above Lagrangian of hadronic matter [Eq. (2)], the charge
neutrality requires

ρp + ρ�+ = ρe + ρμ + ρ�− + ρ�− , (9)

and equilibrium under the weak process (B1 and B2 denote
baryons)

B1 → B2 + L B2 + L → B1

leads to the following relations among the involved chemical
potentials:

μp = μ�+ = μn − μe, μ� = μ�0 = μ�0 = μn,
(10)

μ�− = μ�− = μn + μe, μμ = μe,

where μi is the chemical potential of species i.
We solve the coupled Eqs. (5), (6), (7), (9), and (10) at a

given baryon density ρ, with the effective masses M∗
B obtained

at the quark level. The equation of state (EoS) of the system can
be calculated in the standard way. The stable configurations of
a NS then can be obtained from the well-known hydrostatic
equilibrium equations of Tolman, Oppenheimer, and Volkoff
[46–48] for the pressure P and the enclosed mass m,

dP (r)

dr
= −Gm(r)E(r)

r2

[
1 + P (r)

E(r)

][
1 + 4πr3P (r)

m(r)

]
1 − 2Gm(r)

r

, (11)

dm(r)

dr
= 4πr2E(r), (12)

once the EoS P (E) is specified, E being the total energy density
(G is the gravitational constant). For a chosen central value
of the energy density, the numerical integration of Eqs. (11)
and (12) provides the mass-radius relation. For the description
of the NS crust, we have joined the hadronic EoSs above
described with the ones by Negele and Vautherin [49] in
the medium-density regime (0.001 fm−3 < ρ < 0.08 fm−3),
and the ones by Feynman-Metropolis-Teller [50] and Baym-
Pethick-Sutherland [51] for the outer crust (ρ < 0.001 fm−3).

III. RESULTS

The potential strength of strange quark ks must be equal
to the strength of the u,d quark kq if the SU(3) symmetry
is considered. However, the SU(3) symmetry is not strictly
conserved in nuclear physics, e.g., there is a mass difference
between the � and � hyperon. Therefore the strange potential
strength ks will differ from the u,d quark case to take the
effect of SU(3) symmetry breaking. kq in the QMF model
is determined by the ground-state properties of finite nuclei.
Similarly, the magnitude of ks can be extracted from the
properties of hypernulcei, such as � hypernuclei, which is well
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FIG. 1. (Color online) Single hyperon potentials U
(N)
i as a func-

tion of density.

known in the strangeness physics. Its single-particle potential
U

(N)
� is around −30 MeV at nuclear saturation density. With

such a constraint, we can choose the strange potential strength
in the QMF model as ks = 1100 MeV/fm2, which can generate
the single � potential as U

(N)
� = −29.64 MeV at the saturation

density ρ = 0.145 fm−3. This value is only U
(N)
� = −25 MeV

when an equal value of kq = ks = 700 MeV/fm2 is chosen, as
done in the previous study [25]. Meanwhile, we have checked
that a reasonable description of baryon radii at around 0.6 fm
is fulfilled.

In Fig. 1, the single hyperon (�,�,�) potentials as a
function of density are plotted with ks = 1100 MeV/fm2.
With density increasing, the single hyperon potentials are
reduced the same as in the nucleon case, which is caused by the
repulsive effect being stronger at high density. Furthermore,
it is possible that the � hypernuclei exist from our attractive
� potential, although such a bound state is a little bit weak at
about 10 MeV, consistent with the experiments [36]. However,
we notice that in the study of the SU(3) QMF model [28],
a repulsive � potential is obtained with U

(N)
� = 8 MeV. As

for the � potential, it is always repulsive, as caused by the
use of slightly larger ω coupling strength. This is consistent
with the experimental facts that no middle and heavier mass �
hypernuclei have been found. The different hyperon potentials
will manifest themselves in the relevant fractions of the stellar
matter, as shown later.

Once the strange potential strength ks is known, we can
calculate the effective baryon mass M∗

B by solving the Dirac
equation, namely, Eq. (1). The baryon masses M∗

B of �, �, and
� are given in Fig. 2 as functions of the quark mass correction.
They are almost linear with the quark mass correction. Such
behavior is strongly dependent on the form of quark potential,
as shown in Ref. [24], and a linear relation is expected if a
scalar-vector confining potential is employed. The hyperons
in a many-body system will be influenced by the surrounding
hyperons and nucleons; this is reflected in the effective hyperon
masses shown here.

In the QMF model, the hadron part is dealt with by
the RMF theory [42]. The interactions between baryons in
the RMF theory are provided by meson exchanges. The
coupling between σ mesons and baryons can be extracted

FIG. 2. (Color online) Effective baryon mass M∗
B as a function

of the quark mass correction δmq = mq − m∗
q = −gi

σ σ .

from the baryon structure in the QMF model. They are strongly
dependent on the baryon effective mass ∂M∗

B , as defined by
gσB = ∂M∗

B/∂σ . The ratios of gσ�, gσ� , gσ� to gσN are
shown in Fig. 3 as a function of the total baryon density ρ
for β equilibrium matter. At very low density, these ratios
almost satisfy the quark counting rules, approaching 2/3 for
�,� and 1/3 for �, while with the increase of density all
of them decrease steadily. This density-dependent behavior
shows that the effect of a strange quark is weaker at high
densities. Furthermore, we also notice that there is a small
difference between the ratios of � and �, indicating the SU(3)
symmetry breaking.

Solving the β equilibrium conditions in NS matter, we
obtain the fraction of species i, Yi = ρi/ρ, as a function of
total baryon density ρ, as given in Fig. 4. At the low-density
region (until ρ < 0.21 fm−3), the proton fraction ρp

ρn+ρp
is well

below 1/9, which fulfills the astrophysical observations that
direct URCA cooling does not occur at densities which are too
low.

With the properly chosen �, �, and � hyperon potentials,
� is the first hyperon appearing at ρ = 0.34 fm−3, which is
lower than the hyperon from the SU(3) symmetry calculation,
0.40 fm −3. Namely, � hyperons appear earlier in the SU(3)-
breaking case, as a result of a larger �-nucleon attraction.

FIG. 3. (Color online) gσB/gσN as a function of the baryon
density ρ for β equilibrium matter, with gσB defined by ∂M∗

B/∂σ

in the present QMF model.
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FIG. 4. (Color online) Fractions of leptons and baryons in NS
matter are shown as a function of total baryon density, for both (upper
panel) ks = 700 MeV/fm2 and (lower panel) ks = 1100 MeV/fm2

cases.

Then �− hyperons appear at ρ = 0.46 fm−3, followed by �0

hyperons at ρ = 0.96 fm−3. These two values do not change
much whether we choose the SU(3) breaking potential or
the SU(3) symmetry. The fractions of hyperons increase with
density. Above ρ > 1.25 fm−3, the fractions of � and �− are
almost the same as the fractions of protons and neutrons. �−,
however, will not appear until very high density, up to 2.0 fm−3.
The appearing hyperon sequences are essentially different
from the previous calculations using the quark counting rule
for � − ω coupling [13], where �− would be the first hyperon
appearing at a similar density of �, as is also the case for the
SU(3) QMF model [28].

We also show the pressure of β-equilibrated matter as a
function of energy density in Fig. 5. The solid curve represents
the EoS including the hyperon, and the dot-dashed curve is
the EoS without hyperons. The EoS becomes softer after the
presence of the strangeness freedom.

The NS properties are calculated by using the EoSs with
or without hyperons obtained from the EQMF theory. The
NS mass-radius relations are plotted in Fig. 6. It is found
that the maximum mass of the NSs, including hyperons, is
around 1.62M�, while it is around 1.88M� without hyperons.
Those values are larger than the corresponding results in the
SU(3) QMF model mentioned before. However, both of them
could not explain the observations of 2M� NSs [52]. Our

FIG. 5. (Color online) Pressures for β-equilibrated matter are
shown as a function of the energy density, for cases with or without
hyperons.

results are consistent with the conventional RMF calcula-
tions, including hyperons [1,2,4–6,13,53], and microscopic
studies [54–56] based on developed realistic baryon-baryon
interactions [38].

Since the NS maximum mass is determined by the high-
density region of EoS, a stiffer EoS generates a heavier NS.
It is necessary to introduce the extra repulsive mechanism
in the QMF scheme, as theoretical efforts are done in the
RMF framework in Refs. [3,9–12]. Also, in a recent work
of the QMC model [23], besides the usual σ , ω, ρ fields, a
nonlinear ω − ρ term was introduced (with a new coupling
parameter �v) in the Lagrangian to correct the stiff behavior
of the symmetry energy at large densities. For example, the
slope parameter L of the symmetry energy was lowered from
93.59 MeV to 39.04 MeV for �v = 0.1. As a result, they
got a softer nuclear EoS at high densities (which hinders
the onset of hyperons) and a harder EoS with hyperons.
With the help of the reduction of the attractiveness of �
potential U�, a 2M� NS was finally possible in the model.
Similar extensions can be done in the QMF model. However,
since the maximum mass of the pure NSs is as heavy as
1.88M� in the present QMF model, one would not expect that

FIG. 6. (Color online) Gravitational masses of NSs are shown as
a function of radius, for cases with or without hyperons in the star’s
core. The recently measured pulsar, PSR J1614-2230, is also indicated
with a horizontal shadowed area.
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FIG. 7. (Color online) Gravitational masses of hyperon stars are
shown as a function of radius for both ks = 700 MeV/fm2 and ks =
1100 MeV/fm2 cases.

the corresponding hyperon stars could be heavier than that.
This demonstrates the limitations of the present neutron star
model.

To discuss the effect of SU(3) symmetry breaking on the
NS structure, we also calculate the mass-radius relation of NS
with ks = 700 MeV/fm2. The results are plotted in Fig. 7,
compared with the breaking case of ks = 1100 MeV/fm2.
The solid curve is the mass-radius relation considering the
SU(3) symmetry breaking, while the dot-dashed curve is SU(3)
symmetry conservation at the quark level. The maximum
masses of NS are not much changed in these two cases.
They are only slightly lowered in the symmetry-breaking case
resulting from more hyperon softening, as indicated in Fig. 4
for various compositions of the matter.

IV. SUMMARY AND FUTURE PERSPECTIVES

We extended the QMF model to study infinite hyperonic
matter, which includes the �, �, and � hyperons. The SU(3)
symmetry was broken in the quark level to be consistent with
the experimental data of � potential at nuclear saturation
density, i.e., U

(N)
� ∼ 30 MeV. Namely, we chose different

potential strengths for u, d, and s quarks at quark mean fields.

Using such quark potential strengths, the coupling constants
between σ mesons and baryons were determined through the
effective baryon masses from the Dirac equation of quarks.
These coupling constants strongly depended on the density and
differed from the results of the quark counting rules supported
by SU(3) symmetry. We also chose a slightly larger ω coupling
with � hyperons, than that of � hyperons, to reproduce the
presently expected single � potential of U� = 30 MeV at the
nuclear saturation density. We could then also obtain a slightly
attractive � potential desired in the hypernuclei experiments,
which was missing in the previous SU(3) QMF model.

We calculated the properties of NSs with the EQMF model
and discussed the SU(3) symmetry-breaking effect on the NS
mass. The onset of hyperons is moved ahead using the SU(3)
breaking potential, and the fraction of hyperons is increased
in the star. However, the maximum mass of NSs was found
to be almost unchanged, compared with the case when we
kept the SU(3) symmetry at the quark level. The maximum
mass of NSs approaches 1.62M� with hyperons and 1.88M�
without hyperons. These results could not explain the 2M�
NS observations.

In order to resolve the limitations of the model, one has to
readjust all the QMF parameters from reproducing finite nuclei
data in order to achieve a proper new parameter set to fulfill
the 2M� constraint. There is also a possibility that the phase
transitions to a strongly interacting quark matter in the star’s
core that can support 2M� gravitational mass. These topics
will be studied in our future works.
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