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Various model-independent aspects of the K̄N → K� reaction are investigated, starting from the determi-
nation of the most general structure of the reaction amplitude for � baryons with JP = 1

2

±
and 3

2

±
and the

observables that allow a complete determination of these amplitudes. Polarization observables are constructed in
terms of spin-density matrix elements. Reflection symmetry about the reaction plane is exploited, in particular,
to determine the parity of the produced � in a model-independent way. In addition, extending the work of Biagi
et al. [Z. Phys. C 34, 175 (1987)], a way of determining simultaneously the spin and parity of the ground state
of � baryons as well as those of the excited � states is presented.
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I. INTRODUCTION

Multistrangeness baryons have played an important role in
the development of our understanding of strong interactions.
For example, the prediction and discovery of the � baryon,
with strangeness S = −3, have been a spectacular confirma-
tion of how well the SU(3) flavor symmetry works in strong
interactions. Nevertheless, more than a half-century later, our
knowledge of multistrangeness baryons is still very limited as
can be seen from the fact that the spin of �−(1672) was only
recently confirmed [1,2].

In this work, we concentrate on � baryons with strangeness
S = −2. So far, studies of � physics have been very scarce.
The present situation can be summarized as follows. (i) The
SU(3) flavor symmetry allows as many � states as there are N∗
and �∗ resonances combined (∼44). However, until now, only
11 � resonances have been discovered [2]. (ii) Being S = −2
baryons, if there are no strange particles in the initial state, �s
are produced only indirectly and have relatively low production
rates. In fact, the yield is only of the order of nanobarns in
the photoproduction reaction [3], whereas the yield is of the
order of microbarns [4] in the hadronic, K̄-induced reaction
(where the � is produced directly because of the presence of
an S = −1 K̄ meson in the initial state).

With the advent of new particle accelerators capable of
reaching higher energies and advances in technologies and
experimental techniques, we are now in a better position than
ever to study multistrangeness baryons. Indeed, the CLAS
Collaboration at the Thomas Jefferson National Accelerator
Facility (JLab) plans to initiate a � spectroscopy program
using the upgraded 12-GeV machine. The Collaboration is
also expected to measure exclusive � photoproduction for the
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first time [5]. Some data for the � ground state are already
available [3], obtained from the 6-GeV machine. In addition,
J-PARC proposes to study � baryons via the K̄N → K� and
πN → KK� reactions as well as � production [6,7], and at
the Facility for Antiproton and Ion Research (FAIR) of GSI, the
reaction p̄p → �̄� will be studied [8]. For a more complete
compilation of baryon spectra, � baryons should be studied as
an integral part of any baryon spectroscopy program.

Theoretical studies of � baryons are hampered mainly by
the scarcity of experimental data. The existing theoretical
models cannot be well constrained, and as a consequence,
there is strong model dependence in predictions of the �
spectrum. In particular, one of the current open issues in
the � spectrum concerns the low mass of �(1690) and
�(1620), i.e., the nature of the third-lowest � state [9].
Here, different approaches, such as the nonrelativistic and
relativistic quark models [10–12], one-boson-exchange model
[13], large-Nc model [14–18], QCD sum rules [19,20], and
Skyrme model [9], yield contradictory predictions for the
nature of these resonances. The planned new experimental
studies as mentioned above are expected to play a key role in
addressing such open problems. Quite recently, lattice QCD
calculations of the baryon spectra, including those of � and �
baryons, have been reported [21,22].

To extract relevant information on � resonances from the
experimental data, a reliable reaction model is required. To
date, for photoproduction reactions, there exists only the work
of some of the present authors [23,24] analyzing the available
CLAS data [3]. In K̄-induced reactions, recent calculations
are reported by Sharov et al. [25] and by Shyam et al. [26].
Thus, further theoretical studies on this subject are timely
for suggesting directions to experimental studies by providing
predictions on � baryon production processes and tools to
analyze the forthcoming data. One feature of these production
processes is that the t-channel processes of intermediate meson
production are suppressed since the exchanged intermediate
meson should be exotic, having two units of strangeness.
As a consequence, the production of a � state is dominated
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by intermediate S = −1 hyperons. Therefore, by analyzing
the production mechanisms of the �, one also hopes to gain
some insight into the spectrum and couplings of the S = −1
hyperons.

Our ongoing efforts to better understand the production
process of � baryons focus on two lines of inquiry. On
the one hand, to build understanding of the dynamics of
reactions involving strange particles, we are engaged in model-
dependent analyses within an effective Lagrangian approach
along the lines employed in the photoprocesses reported by
some of us in Refs. [23] and [24]. Further results of such
model-dependent analyses will be reported elsewhere. On
the other hand, in the present work we report on the study
of model-independent aspects of production processes of �
baryons, exploiting, in particular, some basic symmetries of the
reactions in question to determine the spin and parity quantum
numbers of the � resonances.

The present paper is organized as follows. In Sec. II,
following the method in Ref. [27], the most general structure
of the reaction amplitude for K̄N → K� is derived for a
� of spin 1/2 or of spin 3/2, and a set of observables is
identified that determines the reaction amplitude completely.
Here, the reflection symmetry about the reaction plane is
exploited to determine the parity of the � resonances in a
model-independent manner. Furthermore, the coefficients that
multiply each spin structure in the reaction amplitude are
expressed in terms of partial-wave matrix elements, which
readily allows for a partial-wave analysis when sufficient data
become available. Since the determination of the basic quan-
tum numbers of the produced � involve its spin observables,
the spin-density-matrix (SDM) approach is used, in Sec. III,
to discuss all relevant observables in terms of SDM elements.
The SDM formalism is also very convenient when dealing
with high-spin � resonance productions. In fact, the SDM
approach has often been used in the description of higher-spin
particle production processes such as the (spin-1) vector meson
productions [28,29]. Then, following Refs. [30] and [31], the
SDM elements are extracted from the moments associated
with the decay processes of the produced � in conjunction
with the self-analyzing properties of the ground state � and
� in weak decays. These moments, in turn, can be extracted
from the measured angular distribution of the decay product.
Section IV contains a summary, and some technical details of
the derivations are given in Appendixes A–D.

II. STRUCTURE OF THE K̄ N → K�

REACTION AMPLITUDE

In this section, we derive the most general structure of the
amplitude for the reaction of

K̄(q) + N (p) → K(q ′) + �(p′), (1)

following the method used in Ref. [27]. In the present work,
we consider the production of � of spin 1/2 and 3/2 with both
positive and negative parities. The method is quite general
and, in principle, can be applied to extract the spin structure of
any reaction amplitude. In the above equation, the arguments
denote the four-momenta of the respective particles.

The reaction in Eq. (1) is described in its center-of-
momentum (CM) frame, where q = − p and q ′ = − p′. For
further convenience, we define the three mutually orthogonal
unit vectors n̂i(i = 1,2,3) in terms of the independent mo-
menta available in the reaction; i.e.,

n̂1 ≡ ( p × p′) × p
|( p × p′) × p| , (2a)

n̂2 ≡ p × p′

| p × p′| , (2b)

n̂3 ≡ p
| p| , (2c)

where p and p′ denote the three-momenta of the nucleon
and �, respectively. Note that p and p′ define the reaction
plane, such that n̂2 is perpendicular to the reaction plane.
The coordinate-system setup is shown in Fig. 1. Throughout
this paper, the hat notation for vectors is used to indicate
unit vectors; i.e., â ≡ a/|a| for an arbitrary vector a. The
quantization axis is chosen to be along n̂3. We also use the
alternative Cartesian notation i = x,y,z for the indices of the
unit vectors n̂i .

A. Production of � with J P = 1
2

±

First, we consider spin-parity JP = 1
2

±
for the � produced

in reaction (1). Following the method in Ref. [27], the most
general spin structure of the reaction amplitude, consistent
with basic symmetries, is

M̂ = M ′
0 + M ′

2 σ · ( p̂ × p̂′) for JP = 1
2

+
, (3a)

M̂ = M ′
1 σ · p̂′ + M ′

3 σ · p̂ for JP = 1
2

−
, (3b)

where σ = (σ1,σ2,σ3) stands for the vector built up of the
usual Pauli spin operators.1 Equations (3a) and (3b) are direct
consequences of the amplitude’s reflection symmetry about
the reaction plane [32,33], which is further exploited in our
analysis presented below. Note that the coefficients M ′

1 and
M ′

2 do not contain an S wave in the final state.
For further convenience, we rewrite Eq. (3) as

M̂ = M0 + M2 σ · n̂2 for JP = 1
2

+
, (4a)

M̂ = M1 σ · n̂1 + M3 σ · n̂3 for JP = 1
2

−
, (4b)

using p̂′ = cos θ n̂3 + sin θ n̂1 and n̂3 = p̂. The respective
coefficients in Eqs. (3) and (4) are related by

M ′
0 = M0, M ′

2 = 1

sin θ
M2, (5a)

M ′
1 = 1

sin θ
M1, M ′

3 = M3 − cos θ

sin θ
M1. (5b)

Following Ref. [27], one may also express these coefficients
in terms of partial-wave matrix elements. The corresponding

1Note that the spin structure for the positive-parity � in Eq. (3a)
is identical to the familiar structure of the πN elastic scattering
amplitude. However, obviously, the isospin structure is different.
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FIG. 1. Coordinate systems used in describing the � production reaction and its subsequent decay process. Left: The production reaction
K̄N → K� is shown in its center-of-momentum (CM) frame. The corresponding reaction plane (dark gray) contains the nucleon and �

momenta p and p′, respectively. The basis vectors {n̂1,n̂2,n̂3} are defined in Eq. (2), with n̂3 aligned with the nucleon momentum p and n̂2

perpendicular to the reaction plane; θ indicates the � emission angle. The (primed) frame {n̂′
1,n̂

′
2,n̂

′
3} is obtained from {n̂1,n̂2,n̂3} by rotating

the latter about the n̂2 axis by θ , which aligns n̂′
3 with p′ and leaves n̂′

2 ≡ n̂2. The (light-gray) plane tilted by the angle φ′
� about the n̂′

3 ≡ p̂′

axis is spanned by the momenta of the decay products � and K̄ . The polar and azimuthal angles of the decay product � in the rotated (primed)
CM frame are indicated by θ ′

� and φ′
�, respectively. Right: In this boosted frame, the decay process of the produced � at rest is described in

the {n̂′
1,n̂

′
2,n̂

′
3} coordinate system. The polar and azimuthal angles of the decay product � are indicated here by θ� and φ�, respectively. For

the latter angle, one has φ� ≡ φ′
� since the boost happens along the corresponding tilt axis.

results are given in Appendix A, which show, in particular,
that the coefficients M1 and M2 vanish identically for �
scattering angles θ = 0 and π , as can be seen in Eq. (A3).
The partial-wave expansions will become particularly relevant
once sufficient experimental data become available to permit
their full-fledged partial-wave analysis. The isospin structure
of the amplitudes in Eq. (4) [or in Eq. (3)] is contained in the
coefficients Mi as given explicitly by Eq. (A3) in Appendix A.

Once the spin structure of the reaction amplitude is
determined, all the observables can be readily expressed in
terms of the amplitudes Mi multiplying each spin structure. For
the reaction under consideration, apart from the cross section
(dσ/d�), a complete set of observables includes the target
asymmetry (T ), recoil � polarization (P ), and spin-transfer
coefficient (K). For arbitrary spin orientations along directions
â and b̂, their coordinate-independent expressions are

dσ

d�
≡ 1

2
Tr[M̂M̂†], (6a)

dσ

d�
Ta ≡ 1

2
Tr[M̂ σ · â M̂†], (6b)

dσ

d�
Pa ≡ 1

2
Tr[M̂M̂† σ · â], (6c)

dσ

d�
Kba ≡ 1

2
Tr[M̂ σ · b̂ M̂† σ · â]. (6d)

For Cartesian directions n̂i enumerated by i = 1,2,3 (=x,y,z),
in particular, one obtains

dσ

d�
Ti = 1

2
Tr[M̂σiM̂

†], (7a)

dσ

d�
Pi = 1

2
Tr[M̂M̂†σi], (7b)

dσ

d�
Kij = 1

2
Tr[M̂σiM̂

†σj ]. (7c)

Of course, the T , P , and K observables for arbitrary directions
in Eq. (6) can be expressed as linear combinations of the
specific Cartesian expressions given in Eq. (7).

Due to symmetries of the reaction, eight observables vanish
identically, i.e., Ti = Pi = Kiy = Kyi = 0 for i = x,z, and of
the remaining eight, only four are independent for a given
parity, and they completely determine the amplitudes Mi in
Eq. (4). Indeed, for a positive-parity �, we have

dσ

d�
= dσ

d�
Kyy = |M0|2 + |M2|2, (8a)

dσ

d�
Kxx = dσ

d�
Kzz = |M0|2 − |M2|2, (8b)

dσ

d�
Ty = dσ

d�
Py = 2 Re[M2M

∗
0 ], (8c)

dσ

d�
Kxz = − dσ

d�
Kzx = 2 Im[M2M

∗
0 ], (8d)

and for a negative-parity �, we obtain

dσ

d�
= − dσ

d�
Kyy = |M1|2 + |M3|2, (9a)

dσ

d�
Kxx = − dσ

d�
Kzz = |M1|2 − |M3|2, (9b)

dσ

d�
Ty = − dσ

d�
Py = 2 Im[M3M

∗
1 ], (9c)

dσ

d�
Kxz = dσ

d�
Kzx = 2 Re[M3M

∗
1 ]. (9d)

The respective first two relations in the two equation sets
determine the magnitudes of the amplitudes M0, M2 and M1,
M3, respectively, whereas the respective last two relations
determine their phase differences. Therefore, apart from an
irrelevant overall phase, the observables in Eqs. (8) and (9)
determine the amplitudes Mi , i = 0, . . . ,3, unambiguously.
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These results reveal that it is experimentally demanding to
determine the reaction amplitude completely, for it requires
measuring both the single- and the double-polarization ob-
servables.

Comparing Eqs. (8a) and (9a), one obtains

Kyy = π�, (10)

where π� stands for the parity of the produced �. This result
is actually a direct consequence of the reflection symmetry, as
exploited in Bohr’s theorem [33,34] and applied in Ref. [35]. It,
therefore, provides a model-independent way of determining
the parity of the � resonance. Alternative expressions extracted
from Eqs. (8) and (9) are [35]

Ty = π� Py, (11)

which involves only single polarization observables, and

Kxx = π� Kzz and Kxz = −π� Kzx. (12)

These results are all consequences of the reflection symmetry
about the reaction plane.

In Sec. III, we perform the analysis in terms of the SDM
elements, which are equivalent to the observables discussed
here. The SDM elements are convenient quantities when
dealing with spin observables, especially when higher-spin
particles are produced in the reaction. They can be extracted
from the information on the subsequent decay processes of
the produced particles, in conjunction with the self-analyzing
property of the decaying particles via a weak decay, without
the explicit measurement of the spin polarizations of these
produced particles.

B. Production of � with J P = 3
2

±

We now turn to the spin-parity JP = 3
2

±
. Again, following

Ref. [27], the most general spin structure of the reaction
amplitude is given by

M̂ = F ′
1 T † · ( p̂ × p̂′) + F ′

2 T † · p̂′ σ · p̂′

+F ′
3 [T † · p̂ σ · p̂′ + T † · p̂′ σ · p̂]

+F ′
4 T † · p̂ σ · p̂ (13a)

for JP = 3
2

+
and by

M̂ = G′
1 [T † · p̂ σ · ( p̂ × p̂′) + T † · ( p̂ × p̂′) σ · p̂]

+G′
2 [T † · p̂′ σ · ( p̂ × p̂′) + T † · ( p̂ × p̂′) σ · p̂′]

+G′
3 T † · p̂′ + G′

4 T † · p̂ (13b)

for JP = 3
2

−
. Here, T † stands for the (spin-1/2 → spin 3/2)

transition operator. Its explicit representation may be found
elsewhere [36]. In contrast to the spin-1/2 case, each parity
of the spin-3/2 case has four independent amplitudes, F ′

i and
G′

i (i = 1, . . . ,4), respectively, and one needs at least eight
independent observables to determine them completely apart
from an irrelevant overall phase. From the above equations, it
is obvious that only F ′

4 and G′
4 contain an S wave in the final

state. Also, F ′
2 and G′

2 contain only D and higher waves in the
final state.

The amplitudes in Eq. (13) can be also rewritten as

M̂ = F1 T † · n̂2 + F2 T † · n̂1 σ · n̂1

+ F3 [T † · n̂3 σ · n̂1 + T † · n̂1 σ · n̂3]

+ F4 T † · n̂3 σ · n̂3 (14a)

for JP = 3
2

+
and

M̂ = G1 [T † · n̂3 σ · n̂2 + T † · n̂2 σ · n̂3]

+ G2 [T † · n̂1 σ · n̂2 + T † · n̂2 σ · n̂1]

+ G3 T † · n̂1 + G4 T † · n̂3 (14b)

for JP = 3
2

−
. The coefficients Fi and Gi are expressed in terms

of the partial-wave matrix elements as given in Appendix A.
They are also related to the corresponding coefficients F ′

i and
G′

i in Eq. (13) by

F ′
1 = 1

sin θ
F1, (15a)

F ′
2 = 1

sin2 θ
F2, (15b)

F ′
3 = 1

sin θ
F3 − cos θ

sin2 θ
F2, (15c)

F ′
4 = F4 + cos2 θ

sin2 θ
F2 − 2

cos θ

sin θ
F3 (15d)

and

G′
1 = 1

sin θ
G1 − cos θ

sin2 θ
G2, (15e)

G′
2 = 1

sin2 θ
G2, (15f)

G′
3 = 1

sin θ
G3, (15g)

G′
4 = G4 − cos θ

sin θ
G3. (15h)

The polarization observables for this case are discussed in the
next section in terms of the SDM elements.

III. SPIN-DENSITY-MATRIX APPROACH

As mentioned before, when dealing with higher-spin � (i.e.,
spins higher than 1/2), in particular, it is more convenient to
continue the analysis of the K̄N → K� reaction in terms of
SDM elements. An analysis similar (but not identical) to the
present one based on the SDM formalism was performed in
Ref. [37] for a general two-body reaction with an unpolarized
initial state. Also, the reaction K̄N → ω� was analyzed
within the SDM approach in Ref. [38].

In Sec. II, we have exploited the mirror (or reflection)
symmetry about the reaction plane in our analysis, in particular,
for the parity determination of the � resonances. In fact, as
long as the production process conserves the total parity, the
reaction amplitude should have this symmetry [32,33]. This
mirror operation is equivalent to doing a parity transformation

025206-4



MODEL-INDEPENDENT ASPECTS OF THE REACTION . . . PHYSICAL REVIEW C 89, 025206 (2014)

followed by a subsequent rotation by 180◦ about the n̂2 axis:
P̂y = R̂y(180◦)P̂ . The resulting symmetry, in terms of the spin
matrix element, is

〈Sf mf |M̂|Si mi〉
= 〈Sf mf |P̂†

yPyM̂P†
yPy |Si mi〉

= πf πi (−1)(Sf −mf )−(Si−mi ) 〈Sf − mf |M̂|Si − mi〉 (16)

and holds as long as the quantization axis is in the production
plane. Here, πi(f ) is the intrinsic parity of the initial (final)
state.

Based on this symmetry, the JP = 1
2

±
� production

amplitude, M̂ given by Eq. (4), is completely described by
two complex helicity amplitudes, H1 and H2, given by the
spin matrix elements,

H1 ≡ 〈
λ� = 1

2

∣∣ M̂ ∣∣λN = 1
2

〉
= π�

〈
λ� = − 1

2

∣∣ M̂ ∣∣λN = − 1
2

〉
, (17a)

H2 ≡ 〈
λ� = 1

2

∣∣ M̂ ∣∣λN = − 1
2

〉
= −π�

〈
λ� = − 1

2

∣∣ M̂ ∣∣λN = 1
2

〉
, (17b)

where λN and λ� denote the helicity of the initial nucleon
and final �, respectively. Here, reference to the spin quantum
numbers S� = SN = 1/2 has been suppressed. The helicity
amplitudes are related to the coefficient amplitudes in Eq. (4)
by

H1 = M0 cos
θ

2
+ iM2 sin

θ

2
, (18a)

H2 = −iM2 cos
θ

2
+ M0 sin

θ

2
(18b)

for a positive parity � and by

H1 = M3 cos
θ

2
+ M1 sin

θ

2
, (19a)

H2 = M1 cos
θ

2
− M3 sin

θ

2
(19b)

for a negative parity �. Here, θ is the scattering angle; i.e.,
cos θ ≡ p̂ · p̂′.

Likewise, the production amplitude M̂ for a � with JP =
3
2

±
determined by Eq. (14) is completely described by four

complex amplitudes given as

H1 ≡ 〈
λ� = 3

2

∣∣M̂∣∣λN = 1
2

〉
= π�

〈
λ� = − 3

2

∣∣M̂∣∣λN = − 1
2

〉
, (20a)

H2 ≡ 〈
λ� = 3

2

∣∣M̂∣∣λN = − 1
2

〉
= −π�

〈
λ� = − 3

2

∣∣M̂∣∣λN = 1
2

〉
, (20b)

H3 ≡ 〈
λ� = 1

2

∣∣M̂∣∣λN = 1
2

〉
= −π�

〈
λ� = − 1

2

∣∣M̂∣∣λN = − 1
2

〉
, (20c)

H4 ≡ 〈
λ� = 1

2

∣∣M̂∣∣λN = − 1
2

〉
= π�

〈
λ� = − 1

2

∣∣M̂∣∣λN = 1
2

〉
. (20d)

These helicity amplitudes are related to the coefficient func-
tions in Eq. (14) by

H1 = 1√
2

[
i cos

θ

2
F1 − cos θ sin

θ

2
F2

− cos
3θ

2
F3 + sin θ cos

θ

2
F4

]
, (21a)

H2 = 1√
2

[
i sin

θ

2
F1 − cos θ cos

θ

2
F2

+ sin
3θ

2
F3 − sin θ sin

θ

2
F4

]
, (21b)

H3 = 1√
6

[
−i sin

θ

2
F1 + (2 − 3 cos θ ) cos

θ

2
F2

+ 3 sin
3θ

2
F3 − (1 − 3 cos θ ) cos

θ

2
F4

]
, (21c)

H4 = 1√
6

[
i cos

θ

2
F1 + (2 + 3 cos θ ) sin

θ

2
F2

+ 3 cos
3θ

2
F3 − (1 + 3 cos θ ) sin

θ

2
F4

]
(21d)

for a positive-parity � and by

H1 = 1√
2

[
i (2 − cos θ ) cos

θ

2
G1 + 2i sin3 θ

2
G2

− cos θ cos
θ

2
G3 + sin θ cos

θ

2
G4

]
, (22a)

H2 = 1√
2

[
−i (2 + cos θ ) sin

θ

2
G1 + 2i cos3 θ

2
G2

− cos θ sin
θ

2
G3 + sin θ sin

θ

2
G4

]
, (22b)

H3 = 1√
6

[
3i cos θ sin

θ

2
G1 + 3i sin θ sin

θ

2
G2

+ (2 + 3 cos θ ) sin
θ

2
G3 + (3 cos θ − 1) cos

θ

2
G4

]
,

(22c)

H4 = 1√
6

[
−3i cos θ cos

θ

2
G1 − 3i sin θ cos

θ

2
G2

+ (2 − 3 cos θ ) cos
θ

2
G3 + (3 cos θ + 1) sin

θ

2
G4

]
(22d)

for a negative-parity �.
The SDM elements are defined by

ρ
�,i
λλ′ ≡ 〈λ|ρ̂N,i |λ′〉 = 1

2 〈λ|M̂σiM̂
†|λ′〉 (23)

for i = 0, . . . ,3, where λ and λ′ stand for the helicity of the
produced � baryon and σ0 = 1 is the 2 × 2–unit matrix. For
completeness, a relevant part of the SDM formalism for the
present work is presented in Appendix B. The SDM elements
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have the properties

ρ
�,i
λ,λ′ = (−1)i+λ−λ′

ρ
�,i
−λ,−λ′ , (24a)

ρ
�,i
λ,λ′ = ρ

�,i∗
λ′,λ (24b)

due to the Hermiticity of ρ̂ [cf. Eq. (23)] and the symmetry of
the spin matrix elements in Eq. (16).

We now relate the SDM elements, ρ
�,i
λ,λ′ , to the helicity

amplitudes Hj given by Eqs. (17) and (20), which determine
the reaction amplitudes. The purpose is to find a set of SDM
elements that fixes these helicity amplitudes completely.

A. � of J P = 1
2

±

Starting with J = 1
2 , there are 16 possible SDM elements

ρ
�,i
λλ′ . However, only four of them are independent for a given

parity and they determine the amplitudesH1 andH2 apart from
an irrelevant overall phase. Inserting Eq. (17) into Eq. (23), a
set of four independent SDM elements can be determined as

2ρ0
1
2 , 1

2
= 2iπ� ρ2

1
2 ,− 1

2
= |H1|2 + |H2|2, (25a)

2ρ3
1
2 , 1

2
= 2π� ρ1

1
2 ,− 1

2
= |H1|2 − |H2|2, (25b)

ρ2
1
2 , 1

2
= iπ� ρ0

1
2 ,− 1

2
= Im[H1H∗

2], (25c)

ρ1
1
2 , 1

2
= −π� ρ3

1
2 ,− 1

2
= Re[H1H∗

2], (25d)

where the superindex � in ρ
�,i
λλ′ was dropped for simplicity.

A complete list of SDM elements ρi
λ,λ′ in terms of helicity

amplitudes Hi is given in Appendix C.
The SDM elements are directly related to the observables

defined by Eq. (6). For example, from Eqs. (24) and (B10d),
we have

dσ

d�
= 2ρ0

1
2 , 1

2
,

dσ

d�
Kyy ′ = 2iρ2

1
2 ,− 1

2
, (26a)

dσ

d�
Ty = 2ρ2

1
2 , 1

2
,

dσ

d�
Py ′ = 2iρ0

1
2 ,− 1

2
, (26b)

dσ

d�
Kxx ′ = 2ρ1

1
2 ,− 1

2
,

dσ

d�
Kzz′ = 2ρ3

1
2 , 1

2
, (26c)

dσ

d�
Kxz′ = 2ρ1

1
2 , 1

2
,

dσ

d�
Kzx ′ = 2ρ3

1
2 ,− 1

2
, (26d)

where the primed Cartesian components correspond to the
rotated frame (see Fig. 1; note that y ′ ≡ y).

From Eqs. (10) and (26), we see, in particular, that

Kyy ′ =
iρ2

1
2 ,− 1

2

ρ0
1
2 , 1

2

= π�. (27)

More generally, in terms of the SDM elements, one obtains

(−1)
1
2 −λ′ iρ

2
λ,−λ′

ρ0
λ,λ′

= (−1)
1
2 −λ′ ρ

1
λ,−λ′

ρ3
λ,λ′

= π�. (28)

This result reveals that one needs to measure two SDM
elements to determine the parity of the � baryon: either ρ0

λ,λ′ ,
with an unpolarized target nucleon, and ρ2

λ,−λ′ , with a polarized
target nucleon along the direction n̂2 ≡ n̂′

2 perpendicular to the

reaction plane, or ρ1
λ,λ′ , with a transversally polarized target

along n̂1, and ρ3
λ,−λ′ , with a longitudinally polarized target

along n̂3 ≡ p̂. Note that ρ0
λ,λ′ is directly related to the cross

section dσ/d� when λ = λ′.

B. � of J P = 3
2

±

For J = 3/2, analogously to the J = 1/2 case, inserting
Eq. (20) into Eq. (23), the SDM elements are related to the
four amplitudes Hi (i = 1, . . . ,4) by

2ρ0
3
2 , 3

2
= |H1|2 + |H2|2, (29a)

2ρ1
3
2 ,− 3

2
= π�(|H1|2 − |H2|2), (29b)

−iρ0
3
2 ,− 3

2
= π� Im[H2H∗

1], (29c)

ρ1
3
2 , 3

2
= Re[H2H∗

1], (29d)

2ρ0
1
2 , 1

2
= |H3|2 + |H4|2, (30a)

2ρ1
1
2 ,− 1

2
= π�(|H4|2 − |H3|2), (30b)

−iρ0
1
2 ,− 1

2
= π� Im[H3H∗

4], (30c)

ρ1
1
2 , 1

2
= Re[H3H∗

4], (30d)

2ρ1
3
2 ,− 1

2
= π�(H2H∗

4 − H1H∗
3), (31a)

2ρ0
3
2 , 1

2
= H2H∗

4 + H1H∗
3, (31b)

2ρ0
3
2 ,− 1

2
= π�(H1H∗

4 − H2H∗
3), (32a)

2ρ1
3
2 , 1

2
= H1H∗

4 + H2H∗
3. (32b)

A complete list of SDM elements ρ
�,i
λ,λ′ in terms of the helicity

amplitudes Hi is given in Appendix C.
As mentioned in the previous section, a set of eight inde-

pendent SDM elements (e.g.,ρ0
1
2 , 1

2
, ρ0

3
2 , 3

2
, Re[ρ0

3
2 , 1

2
], Im[ρ0

3
2 , 1

2
],

Re[ρ0
3
2 ,− 1

2
], ρ1

1
2 ,− 1

2
, ρ1

3
2 ,− 3

2
, Re[ρ1

3
2 , 1

2
]) determines all four he-

licity amplitudes Hi , (i = 1, . . . ,4), apart from an irrelevant
overall phase. The analysis here is analogous to the one carried
out in Ref. [39] for pion photoproduction.

Equations (24) and (B13) can be used to calculate Kyy in
terms of SDM elements involving � of spin 3/2. This leads to

Kyy =
i
(
ρ2

3
2 ,− 3

2
− ρ2

1
2 ,− 1

2

)
ρ0

3
2 , 3

2
+ ρ0

1
2 , 1

2

= π� (33)

or, more generally,

(−1)
3
2 −λ′ iρ2

λ,−λ′

ρ0
λ,λ′

= (−1)
3
2 −λ′ ρ1

λ,−λ′

ρ3
λ,λ′

= π�. (34)

Equations (27), (28), (33), and (34) can be extended to an
arbitrary spin J of the � baryon; i.e.,

Kyy = i
∑

λ(−1)J−λρ2
λ,−λ∑

λ ρ0
λ,λ

= π� (35)
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and

(−1)J−λ′ iρ2
λ,−λ′

ρ0
λ,λ′

= (−1)J−λ′ ρ1
λ,−λ′

ρ3
λ,λ′

= π�. (36)

Note here that in the last expression two SDM elements are
sufficient to determine the parity, whereas one needs a whole
sum of SDM elements to achieve the same in terms of Kyy .

C. Extracting SDM elements from experiment

To extract SDM elements from experiment, following
Chung [30] and Biagi et al. [31], one may relate them to
moments, Hi , and weak-decay-asymmetry parameters. Their
definitions and further details are given in Appendix D. Here,
we present only some pertinent results.

For a spin-J � undergoing a single weak-decay process,
one obtains the SDM element

ρ
�,i
λ�,λ′

�
=

∑
L

2L + 1

2J + 1
〈J λ′

� LM|J λ�〉 t
J,i
LM, (37)

where M = λ� − λ′
�. The coefficients t

J,i
LM can be determined

from the ratio of the moments,(
dσ

d�

)
Hi(L,M)

H 0(0,0)
= ζL t

J,i
LM

〈
J 1

2 L 0
∣∣J 1

2

〉
, (38)

where ζL = 1 for even L and ζL = α� for odd L, with α�

denoting the � decay-asymmetry parameter.
Note that since all moments vanish identically for L >

2J , Eq. (38) offers a way of determining the spin of the �
undergoing a single (weak) decay by measuring the moments
as a function of L. In other words, the nonvanishing Hi(L,M)
with the largest L value for some i and M determines J as
J = L/2. Experimentally, of course, this may be challenging
since it is not a priori clear how small the measured values
of the next higher moment Hi(L + 1,M) would need to be in
order to be compatible with 0. And, moreover, one would need
to confirm that the smallness of this moment is not accidental.

Similar results are obtained for excited � resonances,
�∗, undergoing a double-decay process, as discussed in
Appendix D. In this case, we have(

dσ

d�

)
Hi(0,0,L,M)

H 0(0,0,0,0)
= t

J,i
LM

〈
J 1

2 L 0
∣∣J 1

2

〉
(39a)

for even L and(
dσ

d�

)
Hi(1,0,L,M)

H 0(0,0,0,0)
= α�

3
t
J,i
LM

〈
J 1

2 L 0
∣∣J 1

2

〉
(39b)

for odd L. Here, α� denotes the � decay-asymmetry parameter
for the decay chain �∗ → � + K̄ followed by � → N + π .
In the case of �∗ → � + π followed by � → � + π instead,
α� needs to be replaced by α�.

For � resonances decaying along the double-decay chain
specified in Eq. (D3), the result of the corresponding moments
given by Eq. (D22) leads to [31]

H 0(1,±1,L,M)

H 0(1,0,L,M)
= π�(−1)J+ 1

2
2J + 1√

2L(L + 1)
(40)

for an unpolarized target and for odd values of L(�2J ). This
offers a way of determining the spin and parity of the excited
� resonance simultaneously.

IV. SUMMARY

A model-independent analysis of the K̄ + N → K + � re-
action has been performed. Following the method in Ref. [27],
we derived the most general spin structure of the reaction
amplitude, consistent with basic symmetries, for � baryons
of JP = 1

2
±

and 3
2

±
. The coefficients multiplying each spin

structure have been presented in partial-wave-decomposed
form, thus permitting partial-wave analyses, once sufficient
data become available for these reactions. The method in
Ref. [27] is general and can be applied, in principle, to derive
the structure of the reaction amplitude involving higher-spin
� production.

Furthermore, a minimal set of independent observables
required to determine the reaction amplitude completely has
been identified. In addition to the unpolarized cross sections,
one also needs single- and double-spin observables, which
poses a formidable experimental challenge, in particular, since
one needs to measure the polarization of the outgoing �. Note
that, for the � of spin 1/2, there are two complex amplitudes
to be determined, whereas for the � of spin 3/2, there are
four complex amplitudes. We then formulated the problem
using the SDM approach and expressed the spin observables
in terms of the SDM elements. Following Refs. [30] and [31],
it was shown that the latter can be extracted from the moments
associated with the � decay processes in conjunction with
the self-analyzing nature of the hyperon (� or �) resulting
from the subsequent decay of the � produced in the primary
reaction. The moments, in turn, can be extracted from the
measurement of the angular distribution of the decay products.

Since the determination of the spin and parity quantum
numbers is a fundamental part of any spectroscopy study, re-
flection symmetry about the reaction plane has been exploited,
in particular, to show that, apart from the spin-transfer coef-
ficient Kyy , the ratio of the SDM elements given by Eq. (36)
determines the parity of a � resonance with an arbitrary spin.
Furthermore, the moments given by Eq. (40) determine the
spin and parity of the � resonance simultaneously [31].

We also mention that the present analysis applies as given
only to � resonances that are sufficiently narrow to permit their
being treated like on-shell particles. For broad resonances, a
partial-wave analysis would be required to extract them from
experimental data.

In summary, the present analysis provides a model-
independent framework for developing reliable reaction the-
ories of � production to help in the planning of future
experimental efforts in � baryon spectroscopy. This will
also help in analyzing the data to understand the production
mechanisms of � baryons.
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APPENDIX A: PARTIAL-WAVE DECOMPOSITION

In this Appendix, we give the partial-wave decomposition
of the coefficients multiplying each spin structure of the
reaction amplitudes in Eqs. (4) and (14) for � with spin-
parity JP = 1

2
±

and 3
2

±
. The partial-wave expansion of the

(plane-wave) matrix element M̂ in Eqs. (4) and (14) is

〈S ′MS ′ |M̂( p′, p)|SMS〉
=

∑
iL−L′ 〈S MS LML|J MJ 〉 〈S ′ MS ′ L′ ML′ |J MJ 〉

×MT J
L′L(p′,p)YL′ML′ ( p̂′)Y ∗

LML
( p̂) P̂T , (A1)

where S, L, J , and T stand for the total spin, orbital angu-
lar momentum, total angular momentum, and total isospin,
respectively, of the initial K̄N state. The corresponding
projection quantum numbers are denoted by MS , ML, and MJ .
The primed quantities represent the corresponding quantum
numbers of the final K� state. The summation runs over
all quantum numbers not specified on the left-hand side of
Eq. (A1). The relative momenta of the initial K̄N and final
K� states are denoted p and p′, respectively, and p = | p|,
p′ = | p′|. In the following, without loss of generality, we
choose n̂3 along the momentum p of the nucleon in the CM
system, i.e., n̂3 ≡ p̂ as specified in Fig. 1. In Eq. (A1), P̂T

stands for the total isospin projection operator onto the isospin
singlet (T = 0) and isospin triplet (T = 1) states,

P̂0 = 1
4 (1 − τ 1 · τ 2) and P̂1 = 1

4 (3 + τ 1 · τ 2), (A2)

where the τ i (i = 1,2) are the usual vectors made out of isospin
Pauli matrices.

For a � of JP = 1
2

±
, following Ref. [27], the coefficients

Mi in Eq. (4) are given by

M0 = 1

4π

∑
L′,T

[
(L′ + 1) M

T J+
L′L′ (p′,p) + L′ MT J−

L′L′ (p′,p)
]
PL′ ( p̂ · p̂′) P̂T , (A3a)

M2 = i

4π

∑
L′,T

[
M

T J−
L′L′ (p′,p) − M

T J+
L′L′ (p′,p)

]
P 1

L′( p̂ · p̂′) P̂T , (A3b)

M1 = i

4π

∑
L′,T

[
M

T J−
L′ L′−1(p′,p) + M

T J+
L′ L′+1(p′,p)

]
P 1

L′( p̂ · p̂′) P̂T , (A3c)

M3 = i

4π

∑
L′,T

[
(L′ + 1) M

T J+
L′ L′+1(p′,p) − L′ MT J−

L′ L′−1(p′,p)
]
PL′( p̂ · p̂′) P̂T , (A3d)

where J± ≡ L′ ± 1
2 , and PL′ (x) and P 1

L′ (x) denote the Legendre and associated Legendre functions, respectively.2 The amplitudes
Mi here are operators in isospin space whose actions are specified by the projectors P̂T defined in Eq. (A2).

Likewise, for a � of JP = 3
2

±
, following Ref. [27], the coefficients Fi and Gi in Eq. (14) are given by

F1 = i
3

8π

∑
J,L′,T

(−1)L
′+J+ 3

2 [J ]2 [L′]√
L′(L′ + 1)

{
1
2 L′ J

L′ 3
2 1

}
MJT

L′L′(p′,p)P 1
L′( p̂′ · p̂) P̂T , (A4a)

F2 = 1√
2

∑
J,L′,L,T

iL−L′
(−1)J+ 1

2 [J ]2

{
1
2 L J

L′ 3
2 2

}
MJT

L′L(p′,p) aL′L P̂T , (A4b)

F3 = 1

2
√

2

∑
J,L′,L,T

iL−L′
(−1)J+ 1

2 [J ]2

{
1
2 L J

L′ 3
2 2

}
MJT

L′L(p′,p) bL′L P̂T , (A4c)

F4 = 1√
2

∑
J,L′,L,T

iL−L′
(−1)J+ 1

2 [J ]2

{
1
2 L J

L′ 3
2 2

}
MJT

L′L(p′,p) cL′L P̂T (A4d)

and

G1 = 1

2
√

2

∑
J,L′,L,T

iL−L′
(−1)J+ 1

2 [J ]2

{
1
2 L J

L′ 3
2 2

}
MJT

L′L(p′,p) a′
L′L P̂T , (A5a)

2Here, the phase convention for the associated Legendre function is such that P 1
1 (x) = + sin(x).
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G2 = 1

2
√

2

∑
J,L′,L,T

iL−L′
(−1)J+ 1

2 [J ]2

{
1
2 L J

L′ 3
2 2

}
MJT

L′L(p′,p) b′
L′L P̂T , (A5b)

G3 =
√

3

2

1

4π

∑
J,L′,L,T

iL−L′
(−1)J+ 1

2 [J ]2 [LL′]√
L′(L′ + 1)

〈L 0 L′1 |1 1〉
{

1
2 L J

L′ 3
2 1

}
MJT

L′L(p′,p)P 1
L′( p̂′ · p̂) P̂T , (A5c)

G4 =
√

3

8π

∑
J,L′,L,T

iL−L′
(−1)J+ 3

2 [J ]2[LL′] 〈L 0 L′ 0|1 0〉
{

1
2 L J

L′ 3
2 1

}
MJT

L′L(p′,p)PL′( p̂′ · p̂) P̂T , (A5d)

where we have introduced the notation [J ] ≡ √
2J + 1

and [j1j2] ≡ [j1] [j2]. The summations extend over all the
quantum numbers, J, L′, L, and T . Note that total parity
conservation imposes the condition (−1)L

′+L = ±1, as the
parity of the � baryon is π� = ±1. The coefficients aL′L,
bL′L, etc., are given by

aL′,L = 2
[LL′]

4π
〈L 0 L′ 2 | 2 2〉

√
(L′ − 2)!

(L′ + 2)!
P 2

L′( p̂′ · p̂),

(A6a)

bL′,L = 2
[LL′]

4π
〈L 0 L′ 1 | 2 1〉

√
(L′ − 1)!

(L′ + 1)!
P 1

L′( p̂′ · p̂),

(A6b)

cL′,L = [LL′]
4π

[
〈L 0 L′ 2 | 2 2〉

√
(L′ − 2)!

(L′ + 2)!
P 2

L′( p̂′ · p̂)

+
√

3

2
〈L 0 L′ 0 | 2 0〉PL′ ( p̂′ · p̂)

]
, (A6c)

a′
L′,L = ibL′,L, (A6d)

b′
L′,L = −iaL′,L. (A6e)

APPENDIX B: SDM FORMALISM

A density operator can be used to describe an ensemble of
quantum states. It is defined as

ρ̂ ≡
∑
ψ

Iψ |ψ〉 〈ψ | , (B1)

where Iψ denotes the probability of finding an element of the
ensemble in state ψ , subject to the condition

∑
ψ Iψ = 1. For

the present application, the states |ψ〉 are the spin states of the
initial state, N , or the final state, �. For the initial nucleon
state, the spin-density operator reads

ρ̂ → ρ̂N ≡
∑
ψN

IψN
|ψN 〉 〈ψN |

= 1

2

(
1 + P̄ · σ

)
, (B2)

where σ = (σ1,σ2,σ3) denotes the vector formed of Pauli spin
matrices and P̄ is the polarization vector of the nucleon, which
is the difference between the probability of finding the nucleon
in the mN = + 1

2 spin state and the probability of finding the
nucleon in the mN = − 1

2 state (mN is the spin projection

quantum number along the P̄ direction) or, symbolically,
|Iψ+ − Iψ−| = | P̄ |.

An unpolarized ensemble has P̄ = 0. The trace of this spin-
1
2 density matrix is normalized to 1. By introducing the notation
σ0 ≡ 1 and P0 ≡ 1, the nucleon SDM in Eq. (B2) can be
rewritten as

ρ̂N = 1 + P̄ · σ

2
=

3∑
i=0

P̄i ρ̂
N,i , (B3)

with

ρ̂N,i ≡ 1
2σi (B4)

for i = 0, . . . ,3.
The spin-density operator for a produced � particle, ρ̂�, can

be expressed in terms of the production amplitude M̂ , which
is an operator that maps the initial nucleon spin state ψN into
a spin state of the �. In the helicity basis for the produced �,
the corresponding SDM elements read

ρ�
λλ′(ψN ) ≡ 〈λ| M̂ |ψN 〉 〈ψN | M̂† |λ′〉 , (B5)

where λ and λ′ enumerate the �’s helicities.
When the beam of antikaons scatters off an ensemble of

nucleons, one needs to average over all nucleon spin states
with their appropriate probability weights; i.e.,

ρ�
λ,λ′ ≡

∑
ψN

IψN
ρ�

λλ′ (ψN )

=
∑
ψN

IψN
〈λ| M̂ |ψN 〉 〈ψN | M̂† |λ′〉

= 〈λ| M̂ρ̂NM̂† |λ′〉
= 〈λ| ρ̂� |λ′〉 , (B6)

where Eq. (B1) was used to show that the � spin-density
operator is given by [40]

ρ̂� = M̂ρ̂NM̂†. (B7)

Using Eq. (B3), we may write

ρ̂� =
3∑

i=0

P̄i ρ̂
�,i , (B8)

where

ρ̂�,i ≡ 1
2M̂σiM̂

† (B9)

for i = 0, . . . ,3. Here, ρ̂�,0 and ρ̂�,j (j = 1,2,3) provide the
respective contributions for unpolarized and polarized initial
nucleons.
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For a � baryon of spin 1/2, comparing Eqs. (7) and (B9)
gives

dσ

d�
= 1

2
Tr[M̂M̂†] = Tr[ρ̂�,0], (B10a)

dσ

d�
Ti = 1

2
Tr[M̂σiM̂

†] = Tr[ρ̂�,i], (B10b)

dσ

d�
Pi = 1

2
Tr[M̂M̂†σi] = Tr[ρ̂�,0σi], (B10c)

dσ

d�
Kij = 1

2
Tr[M̂σiM̂

†σj ] = Tr[ρ̂�,iσj ]. (B10d)

When a � baryon of spin 3/2 (or higher-spin) is involved,
there will be many more possible degrees of polarization than
in the spin-1/2 case. For the particular case of the spin-transfer
coefficient, Kij , discussed in connection to the parity of �,
its definition given in Eq. (6d) has to be generalized. For this
purpose, we first introduce the operator �( J · n̂) as

�( J · n̂) ≡
+J∑

M=−J

(−1)
1
2 −M PJ,M

n̂ , (B11)

where PJ,M
n̂ denotes the spin-projection operator onto an

arbitrary direction n̂ for an arbitrary half-integer spin J . It
can be explicitly calculated as

PJ,M
n̂ =

+J∏
m=−J

′ m − J · n̂
m − M

, (B12)

where the prime indicates that the factor with m = M is
omitted. Here, J ≡ (J1,J2,J3) stands for the generator of spin-
J rotation. This expression provides a rotationally invariant
polynomial of order 2J in J · n̂ that is a generalization to
arbitrary spin of the usual (1 ± σ · n̂)/2 projectors for spin 1/2.

With the spin-projection operator defined above, the spin-
transfer coefficient involving a � baryon with an arbitrary spin
J is now generalized to

dσ

d�
Kba = 1

2
Tr[M̂ σ · b̂ M̂† �( J · â)], (B13)

where b̂ and â are the spin directions. For J = 1/2, in view
of �( J · â) → σ · â, this reduces to the familiar expression
(6d), of course. For Cartesian directions b̂ = n̂i and â = n̂′

j ,
in particular, Eq. (B13) may be written as

dσ

d�
Kij ′ = Tr

[
ρ̂�,i�J

j ′
]
, (B14)

where �J
j ′ ≡ �( J · n̂′

j ).
For the Cartesian frame {n̂′

1,n̂
′
2 ≡ n̂2,n̂

′
3 ≡ p̂′} aligned with

the momentum p′ of the outgoing � (see Fig. 1), explicit
expressions for �J

j ′ are found as

�
3
2
x ′ =

⎛
⎜⎝

0 0 0 −1
0 0 −1 0
0 −1 0 0

−1 0 0 0

⎞
⎟⎠, (B15a)

�
3
2
y ′ =

⎛
⎜⎝

0 0 0 −i
0 0 i 0
0 −i 0 0
i 0 0 0

⎞
⎟⎠, (B15b)

�
3
2
z′ =

⎛
⎜⎝

−1 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 1

⎞
⎟⎠, (B15c)

which were derived with the help of the spin-3/2 generators in
their spinor representation,

J1 =
√

3

2

⎛
⎜⎜⎜⎝

0 1 0 0

1 0 2√
3

0

0 2√
3

0 1
0 0 1 0

⎞
⎟⎟⎟⎠, (B16a)

J2 = i

√
3

2

⎛
⎜⎜⎜⎝

0 −1 0 0

1 0 −2√
3

0

0 2√
3

0 −1
0 0 1 0

⎞
⎟⎟⎟⎠, (B16b)

J3 = 1

2

⎛
⎜⎜⎝

3 0 0 0
0 1 0 0
0 0 −1 0
0 0 0 −3

⎞
⎟⎟⎠. (B16c)

For arbitrary spin of �, Kba of Eq. (B13) becomes

Kba = �even
ba − �odd

ba

�even
ba + �odd

ba

, (B17)

where

�even/odd
ba =

∑
ma,mb

dσmb,ma

d�
, ma − mb = even/odd, (B18)

denotes the sum of all polarized differential cross sections such
that the differences of all possible combinations of initial and
final spin projections ma and mb along â and b̂, respectively,
are an even or an odd number.

APPENDIX C: EXPLICIT FORM OF THE SDMs

In this section, we list the SDM elements of each ρi (i =
0, . . . ,3) in terms of the helicity amplitudes,Hi . The Hermitian
ρi matrices are arranged according to

ρ̂i =

⎛
⎜⎜⎜⎜⎝

ρi
J,J ρi

J,J−1 . . . ρi
J,−J

ρi
J−1,J ρi

J−1,J−1 . . . ρi
J−1,−J

...
...

. . .
...

ρi
−J,J ρi

−J,J−1 . . . ρi
−J,−J

⎞
⎟⎟⎟⎟⎠. (C1)

For J = 1
2 , the matrices read explicitly

ρ̂0 = 1

2

( |H1|2 + |H2|2 2iπ� Im[H2H∗
1]

−2iπ� Im[H2H∗
1] |H1|2 + |H2|2

)
, (C2a)

ρ̂1 = 1

2

(
2 Re[H2H∗

1] π�(|H1|2 − |H2|2)

π�(|H1|2 − |H2|2) −2 Re[H2H∗
1]

)
, (C2b)
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ρ̂2 = 1

2

(
−2 Im[H2H∗

1] −iπ�(|H1|2 + |H2|2)

iπ�(|H1|2 + |H2|2) −2 Im[H2H∗
1]

)
,

(C2c)

ρ̂3 = 1

2

(
|H1|2 − |H2|2 −2π� Re[H2H∗

1]

−2π� Re[H2H∗
1] −|H1|2 + |H2|2

)
, (C2d)

where π� is the parity of the �.

For a J = 3
2 resonance,

ρ̂0 = 1

2

⎛
⎜⎜⎜⎝

|H2|2 + |H1|2 H2H∗
4 + H1H∗

3 π�(H1H∗
4 − H2H∗

3) 2iπ� Im[H2H∗
1]

H4H∗
2 + H3H∗

1 |H4|2 + |H3|2 2iπ� Im[H3H∗
4] π�(−H3H∗

2 + H4H∗
1)

π�(H4H∗
1 − H3H∗

2) −2iπ� Im[H3H∗
4] |H4|2 + |H3|2 −H4H∗

2 − H3H∗
1

−2iπ� Im[H2H∗
1] π�(−H2H∗

3 + H1H∗
4) −H2H∗

4 − H1H∗
3 |H2|2 + |H1|2

⎞
⎟⎟⎟⎠, (C3a)

ρ̂1 = 1

2

⎛
⎜⎜⎜⎝

2 Re[H2H∗
1] H1H∗

4 + H2H∗
3 π�(H2H∗

4 − H1H∗
3) π�(−|H2|2 + |H1|2)

H4H∗
1 + H3H∗

2 2 Re[H4H∗
3] π�(|H4|2 − |H3|2) π�(−H4H∗

2 + H3H∗
1)

π�(H4H∗
2 − H3H∗

1) π�(|H4|2 − |H3|2) −2 Re[H4H∗
3] H3H∗

2 + H4H∗
1

π�(−|H2|2 + |H1|2) π�(−H2H∗
4 + H1H∗

3) H2H∗
3 + H1H∗

4 −2 Re[H2H∗
1]

⎞
⎟⎟⎟⎠, (C3b)

ρ̂2 = 1

2

⎛
⎜⎜⎜⎝

2 Im[H1H∗
2] i(−H1H∗

4 + H2H∗
3) iπ�(H2H∗

4 + H1H∗
3) −iπ�(|H2|2 + |H1|2)

i(H4H∗
1 − H3H∗

2) 2 Im[H3H∗
4] iπ�(|H4|2 + |H3|2) −iπ�(H4H∗

2 + H3H∗
1)

−iπ�(H4H∗
2 + H3H∗

1) −iπ�(|H4|2 + |H3|2) 2 Im[H3H∗
4] i(H3H∗

2 − H4H∗
1)

iπ�(|H2|2 + |H1|2) iπ�(H2H∗
4 + H1H∗

3) i(−H2H∗
3 + H1H∗

4) 2 Im[H1H∗
2]

⎞
⎟⎟⎟⎠, (C3c)

ρ̂3 = 1

2

⎛
⎜⎜⎜⎝

−|H2|2 + |H1|2 −H2H∗
4 + H1H∗

3 π�(H1H∗
4 + H2H∗

3) −2π� Re[H2H∗
1]

−H4H∗
2 + H3H∗

1 −|H4|2 + |H3|2 2π� Re[H4H∗
3] π�(−H3H∗

2 − H4H∗
1)

[π�(H4H∗
1 + H3H∗

2) 2π� Re[H4H∗
3] |H4|2 − |H3|2 −H4H∗

2 + H3H∗
1

−2π� Re[H2H∗
1] π�(−H2H∗

3 − H1H∗
4) −H2H∗

4 + H1H∗
3 |H2|2 − |H1|2

⎞
⎟⎟⎟⎠. (C3d)

APPENDIX D: MEASURING THE SDM ELEMENTS

In Sec. III, we have identified a set of SDM elements that
determines the reaction amplitude completely. A standard way
of measuring the SDM elements is via the subsequent decay
of the produced particle in a primary reaction by exploiting
the self-analyzing property of the decay-product particle.

In the present work, the reaction in Eq. (1) is the primary
(or production) reaction, where the � baryon is produced. If
the produced � is a ground state �, then it decays via a single
weak-decay process into

� → � + π, (D1)

whose associated � decay-asymmetry parameters, α�, are
known to be [2]

α�0 = −0.406 ± 0.013, (D2a)

α�− = −0.458 ± 0.012. (D2b)

An excited � resonance, �∗, on the other hand, may
undergo a double-decay process,

�∗ → � + π

� + π (D3a)

or

�∗ → � + K̄

N + π. (D3b)

The associated � decay-asymmetry parameter for the second-
step process � → N + π is [2]

α�− = +0.642 ± 0.013 (�0 → p + π−),
(D4)

α�0 = +0.650 ± 0.015 (�0 → n + π0).

The � production process of Eq. (1), is described in the CM
frame of the reaction. The � decay processes of Eqs. (D1) and
(D3), on the other hand, are described in the rest frame of the
produced �, whose right-handed Cartesian coordinate system
{n̂′

1,n̂
′
2 ≡ n̂2,n̂

′
3 ≡ p̂′} is fully specified in Fig. 1.

In the double-decay processes, (D3), the subsequent �
decay process is described in the rest frame of the decaying �
denoted by {n̂′′

1,n̂
′′
2,n̂

′′
3}, with n̂′′

3 ≡ p̂�, where p̂� describes the
direction of the �’s momentum in the {n̂′

1,n̂
′
2,n̂

′
3} frame (see

Fig. 1); the other two axes are given by n̂′′
2 = (n̂′

3 × p̂�)/|n̂′
3 ×

p̂�| and n̂′′
1 = n̂′′

2 × n̂′′
3.

1. Single-decay process: Ground-state �

The ground-state � decays weakly almost entirely into
� + π . We define the amplitude describing the � production
process K̄ + N → K + �, followed by the subsequent weak
decay of the produced �, � → � + π , as [30,31]

A ≡ A(��,��,λ�,λ�,λN )

= 〈��,λ�| M̂D |λ�〉 〈��,λ�| M̂ |λN 〉 , (D5)

025206-11



JACKSON, OH, HABERZETTL, AND NAKAYAMA PHYSICAL REVIEW C 89, 025206 (2014)

with 〈��,λ�| M̂ |λN 〉 denoting the production reaction ampli-
tude (in the corresponding CM frame) and

〈��,λ�| M̂D |λ�〉 ≡
√

2J + 1

4π
F�

λ�
DJ∗

λ�,λ�
(��) (D6)

denoting the subsequent � decay amplitude (in the rest frame
of �). Here, �� and �� are short-hand notations, respectively,
for the polar and azimuthal angles of the produced � in the
CM frame of the production, �� = (θ,φ = 0), and for the
polar and azimuthal angles of the � in the rest frame of
the produced �, �� = (θ�,φ�). λ�(λ�) is the helicity of the
�(�) in the respective frame, while J denotes the spin of the

decaying �. F�
λ�

stands for the helicity � decay amplitude
and DJ

λ�,λ�
(��) is the usual Wigner rotation matrix. Here, the

argument �� in DJ
λ�,λ�

(��) is to be understood as the set
of Euler angles {α,β,γ }, such that DJ

λ�,λ�
(��) ≡ DJ

λ�,λ�
(α =

φ�,β = θ�,γ = 0) in the conventions defined in Ref. [41].
The angular distribution of the � hyperon, I (��), in the

� → � + π decay (for a fixed � angle ��) is given by

I (��) =
3∑

i=0

P̄i I i(��), (D7)

where

I i(��) ≡
∑

all λ′s

A(��,��,λ�,λ�,λN ) ρ
N,i
λN ,λ′

N
A∗(��,��,λ′

�,λ�,λ′
N )

= (2J + 1)

4π

∑
all λ′s

F�
λ�

F�∗
λ�

Mλ�,λN
ρ

N,i
λN ,λ′

N
M∗

λ′
�,λ′

N
DJ∗

λ�,λ�
(��)DJ

λ′
�,λ′

�
(��)

= (2J + 1)

4π

∑
all λ′s

F�
λ�

F�∗
λ�

ρ
�,i
λ�,λ′

�
DJ∗

λ�,λ�
(��)DJ

λ′
�,λ′

�
(��). (D8)

Here, ρN,i
λN ,λ′

N
= 〈λN |ρ̂N,i |λ′

N 〉 denotes the target nucleon SDM

element with ρ̂N,i given by Eq. (B3), and Eq. (B7) was used
in the last step. Also, we note that the explicit reference to the
�� dependence of the angular distribution I i in Eqs. (D7) and
(D8) has been suppressed for the sake of simplicity of notation.
The same holds for the angular distribution in Eqs. (D19) and
(D20) in the next subsection.

We now define the moments, Hi(L,M), of this distribution
as

Hi(L,M) ≡
∫

d�� I i(��)DL
M,0(��)

= t
J,i
LM

∑
λ�

F�
λ�

F�∗
λ�

〈J λ� L 0|J λ�〉 , (D9)

where d�� ≡ sin θ� dθ� dφ�. The quantity t
J,i
LM here is related

to the SDM elements of the � by [30]

t
J,i
LM ≡

∑
λ�,λ′

�

ρ
�,i
λ�,λ′

�
〈J λ′

� LM|J λ�〉 , (D10)

whose inversion produces

ρ
�,i
λ�,λ′

�
=

∑
L

2L + 1

2J + 1
〈J λ′

� LM|J λ�〉 t
J,i
LM, (D11)

where M = λ� − λ′
�.

Introducing, further, the quantities

g�
± ≡ F�

± 1
2
F�∗

± 1
2
, (D12)

we can re-express the moments in Eq. (D9) as

Hi(L,M) = t
J,i
LM

〈
J 1

2 L 0
∣∣J 1

2

〉
[g�

+ + (−1)Lg�
−]. (D13)

We note that the g�
± introduced in Eq. (D12) are related to

the � decay-asymmetry parameter, α�, given in Eq. (D2) by

[42,43]

g�
+ − g�

−
g�+ + g�−

= α�. (D14)

Then, taking the ratio of the moments Hi(L,M) (i = 1,2,3)
and H 0(0,0), we obtain

Hi(L,M)

H 0(0,0)
= ζL

t
J,i
LM

t
J,0
00

〈
J 1

2 L 0
∣∣J 1

2

〉
, (D15)

where ζL = 1 for even L and ζL = α� for odd L.
Now, from Eq. (D10) and the definition of ρ̂�,0 in Eq. (B9),

we get

t
J,0
00 = Tr[ρ̂�,0] = dσ

d�
. (D16)

One can now use Eq. (D15) to extract t
J,i
LM . Once t

J,i
LM is

known, the SDM elements ρ
�,i
λ�,λ′

�
are obtained by making use

of Eq. (D11). Note that the nonvanishing moments Hi(LM)
are restricted to L � 2J and |M| � L.

2. Double-decay process: Excited � resonance

The double-decay processes shown in Eq. (D3) are treated
analogously to the single-decay process in the previous sub-
section. Here, we discuss the decay chain with the subsequent
decay of the � hyperon, � → p + π−, but the results apply
to any decay chain that is a strong decay followed by a weak
decay and containing a single pseudoscalar meson at each step
of the decay.

As for the single-decay process case discussed in the
previous subsection, we begin by defining the amplitude
describing the �∗ production process, K̄ + N → K + �∗,
followed by the strong decay of the produced �∗, �∗ →
� + K , and the subsequent weak decay of �, � → N + π ,
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as [30,31]

A ≡ A(��,��,�p,λN,λ�,λ�,λp)

= 〈�p,λp|M̂ ′
D|λ�〉 〈��,λ�|M̂D|λ�〉 〈��,λ�|M̂|λN 〉 ,

(D17)

where 〈��,λ�| M̂ |λN 〉 stands for the �∗ production amplitude
and

〈��,λ�| M̂D |λ�〉 ≡
√

2J + 1

4π
F�

λ�
DJ∗

λ�,λ�
(��), (D18a)

〈�p,λp| M̂ ′
D |λ�〉 ≡

√
2

4π
F�

λp
D

1
2 ∗
λ�,λp

(�p) (D18b)

denote the subsequent �∗ strong-decay and � weak-decay
amplitudes, respectively. We note that the � production and

decay amplitudes are calculated in the CM frame of the
production reaction and the rest frame of the produced �,
respectively, in exactly the same way as for the single-decay
case discussed in the previous subsection. The subsequent
� decay amplitude, 〈�p,λp| M̂ ′

D |λ�〉, is calculated in the
rest frame of the decaying � denoted {n̂′′

1,n̂
′′
2,n̂

′′
3} [cf. the

second paragraph following Eq. (D4)], where �p = (θp,φp) is
short-hand notation for the polar and azimuthal angles θp and
φp, respectively, of the decay-product proton measured in the
� rest frame.

The angular distribution of the entire double-decay process
(for a fixed � production angle ��) is given as

I (��,�p) =
3∑

i=0

P̄iI
i(��,�p), (D19)

where

I i(��,�p) ≡
∑

all λ′s

A(��,��,�p,λN,��,λ�,λp) ρ
N,i
λN ,λ′

N
A∗(��,��,�p,λ′

N,λ′
�,λ′

�,λp)

= 2(2J + 1)

16π2

∑
all λ′s

ρ
�,i
λ�,λ′

�
g�

λp
g�

λ�,λ′
�
D

1
2 ∗
λ�,λp

(�p)D
1
2

λ′
�,λp

(�p)DJ∗
λ�,λ�

(��)DJ
λ′

�,λ′
�
(��), (D20)

with

g�
λp

≡ F�
λp

F�∗
λp

and g�
λ�,λ′

�
≡ F�

λ�
F�∗

λ′
�

. (D21)

To arrive at the last equality in Eq. (D20), we have made use of Eq. (B7).
We now define the moments Hi(l,m,L,M) as

Hi(l,m,L,M) ≡
∫

d��d�pI i(��,�p) DL
M,m(��)Dl

m,0(�p)

= t
J,i
LM

∑
λ�,λ′

�

g�
λ�,λ′

�
〈J λ′

� Lm|J λ�〉 〈
1
2 λ′

� l m
∣∣ 1

2 λ�

〉 ∑
λp

g�
λp

〈
1
2 λp l 0

∣∣ 1
2 λp

〉
, (D22)

with t
J,i
LM given by Eq. (D10).

The different g�
λ�,λ′

�
are related to each other by

g�
−− = g�

++, (D23a)

g�
+− = g�

−+ = π� (−1)J+ 1
2 g�

++. (D23b)

The g�
λp

terms can be related to the � decay-asymmetry
parameter, α�, by [42,43]

g�
+ − g�

−
g�+ + g�−

= α�. (D24)

Note that the nonvanishing moments Hi(l,m,L,M) are
restricted to |m| � l, l � 1, |M| � L, and L � 2J , as can
be read off from Eq. (D22). The moments Hi(0,0,L,M)

and Hi(1,m,L,M) vanish identically for odd and even L,
respectively, due to Eqs. (D22) and (D23). Analogously to the
single-decay case, the ratios of the moments

Hi(0,0,L,M)

H 0(0,0,0,0)
= t

J,i
LM

t
J,0
00

〈
J 1

2 L 0
∣∣J 1

2

〉
(D25a)

for even L and

Hi(1,0,L,M)

H 0(0,0,0,0)
= α�

3

t
J,i
LM

t
J,0
00

〈
J 1

2 L 0
∣∣J 1

2

〉
(D25b)

for odd L allow us to determine t
J,i
LM . Since t

J,0
00 = dσ/d�,

once t
J,i
LM is extracted, the SDM elements ρ

�,i
λ�,λ′

�
can be

determined via Eq. (D11).
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