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Two-photon-exchange amplitude with π N intermediate states: P33 channel
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We consider two-photon exchange (TPE) in elastic electron-proton scattering and evaluate the effect of πN

(pion + nucleon) intermediate hadronic states. Among different πN states, we concentrate on the P33 channel;
thus we effectively include �(1232) resonance with realistic width and shape and corresponding background
as well. In agreement with the previous result, obtained for the zero-width resonance, we observe that the TPE
correction to the electric form factor is the largest one; it grows with Q2 and at Q2 � 2.5 GeV2 exceeds the
corresponding elastic contribution.
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I. INTRODUCTION

Elastic electron scattering is the primary tool for measuring
the nucleon electromagnetic form factors which, in turn,
reflect the internal structure of the nucleon and dynamics of
the strong interaction inside it. There are two main methods
for measuring the form factors: the standard Rosenbluth
separation method and the modern polarization transfer
method (used since 1998 [1]). It was realized about ten
years ago that these two methods are in serious disagreement
with respect to the proton form factor ratio GE/GM at
high Q2 [2]. While the Rosenbluth method indicated that
GE/GM ∼ const, the polarization data suggested that the
ratio decreases almost linearly with Q2. This disagreement
was further confirmed with increased precision experiments,
using both Rosenbluth [3] and polarization [4] techniques. It
was suggested that the discrepancy may be due to data analysis
done in the Born approximation, thus leaving out nontrivial
higher-order terms, such as two-photon exchange (TPE).
Indeed, first calculations had shown [5] that the discrepancy
is, at least partially, resolved by including TPE corrections.

Besides that, there is now much experimental activity aimed
at the direct observation of TPE effects in the ep scattering.
This includes experiments which are already completed [6],
in progress [7], approved, or proposed [8]. A comprehensive
review of experimental and theoretical studies of TPE in
ep → ep and other processes, along with a bibliography, can
be found in Ref. [9].

There are two mainstream approaches to the theoretical
evaluation of the TPE amplitude: “quark” and “hadronic”
ones. In the quark approach, as its name suggests, the nucleon
is viewed as an ensemble of quarks (partons), interacting
according to QCD [10–13]. Naturally, the applicability of
this approach is limited to the high-Q2 region. Despite all
its advantages, the serious drawback is that it is hard to
calculate the TPE correction to the electric form factor GE

in this approach, while this is surely needed for the correct
interpretation of GE/GM measurements.

In the hadronic approach TPE is mediated by the production
of virtual hadrons and/or hadronic resonances. The TPE
amplitudes are broken into different contributions according to
the intermediate state involved. The most important and well
established one is the elastic contribution, which corresponds

to pure nucleon intermediate state. In turn, all other contri-
butions are called inelastic. Among them, the contributions
of some prominent resonances [�(1232) and others] were
studied in Refs. [14–16]. In Refs. [14,15] it was shown that
their overall effect on the cross section is smaller than that of
the elastic contribution, with �(1232) yielding its main part
and the contributions of other resonances partially canceling
each other.

Later, it was found [16] that �(1232) yields relatively
large correction to the GE/GM form factor ratio at high Q2

(far exceeding that of the elastic intermediate state), and that
the correction grows with Q2. This result suggests that the
contributions of other inelastic states may also be important
and at least should be estimated carefully. Unfortunately, all the
above-mentioned papers use “zero-width” approximation; i.e.,
widths of resonances are assumed to be negligibly small. This
approximation seems rather crude, especially for �(1232),
since its width (�� ∼ 110 MeV) is comparable to the distance
from the threshold (M� − M − mπ ∼ 160 MeV).

To overcome this issue, in the present paper we estimate the
inelastic contribution to the TPE amplitude, arising from the
πN (pion+nucleon) intermediate states. This may be viewed
as a significant improvement of the previous “resonance” cal-
culations, since most resonances have dominant πN content.
Consequently, the advantages of our approach are

(i) automatically having correct resonance width,
(ii) automatically having correct resonance shape,
(iii) including not only resonances but background as

well.

The πN contribution may further be split into the
contributions of different partial waves of the πN system.
Though, in principle, all partial waves may be taken into
account in our method, it is particularly useful for the P33

channel, where � resides. The � resonance has almost 100%
πN content, thus we will get pure improvement with respect
to previous works. The situation is not so simple for other
resonances, such as S11 and D13, since they have significant
ππN branching ratios; the corresponding contribution will
be missing in the present approach.

Only P33 channel will be considered in full detail further.
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II. BACKGROUND

The idea of the present calculation is the following. The
πN system is fully described by its isospin, spin-parity, and
invariant mass. No other internal quantum numbers exist. Thus,
with respect to the calculation of the TPE amplitudes, the
πN system in the intermediate state is fully equivalent to the
single particle with the same isospin, spin-parity, and mass
(and properly defined transition amplitudes). If we are able
to calculate the TPE contribution of the resonance with given
quantum numbers, we can do precisely the same thing for the
πN system of fixed invariant mass and then integrate over
invariant masses.

Specifically, if, for the zero-width particle R (resonance)
with mass MR and R → γ ∗N transition form factor AR(q2)
we have

δGR = δG[MR,AR(q2)]

≡
∫

AR
(
q2

1

)
AR

(
q2

2

)K(
MR,q2

1 ,q2
2

)
dq2

1dq2
2 (1)

(where δG stands for any TPE amplitude, and K is some
kernel, irrelevant for the following discussion), then the full
contribution of the πN partial wave with the same quantum
numbers will be

δGπN =
∫

δG[W,AπN (q2,W )]dW 2, (2)

where the integration variable W is the invariant mass of
the πN system and AπN is appropriately defined transition
form factor. Note that q2 stands for the square of virtual
photon momentum and should not be confused with the total
momentum transfer in the elastic process, Q2.

For the P33 channel, all needed formulas [Eq. (1)] are
already derived [16]. All we have to do is to establish a
correspondence between the transition form factors, used in
Ref. [16], and the multipole amplitudes for the production of
the πN system.

The pion electroproduction is commonly described by the
multipole amplitudes El±, Ml±, and Sl±, which are functions
of q2 and W ; the subscript l is pion orbital quantum number and
± indicates the total angular momentum j = l ± 1/2. One can
also define helicity amplitudes as follows (see, e.g., [17,18]):

A1/2 = −1

2
[(j + 1/2 ± 1)El± ± (j + 1/2 ∓ 1)Ml±] ,

A3/2 = 1

2

√
(j − 1/2)(j + 3/2) [±El± − Ml±] , (3)

S1/2 = − 1√
2

(j + 1/2)Sl±.

Thus we have three “flavors” of the transition amplitude: AR

for the single narrow resonance, A for the πN system, and
AπN for the “effective resonances” describing πN continuum.
As one can guess, the amplitudes AπN , which are to be put
into Eq. (2), can differ from A [Eq. (3)] only in overall q2-
independent factor, which arises from different normalizations
of resonance and πN states. Thus, the factor can easily be
determined by considering forward kinematics, where the
imaginary part of the TPE amplitudes is related to the cross

section via the optical theorem. Nevertheless, a straightforward
calculation (in arbitrary kinematics) is certainly possible, and
to be rigorous, we perform such calculation in the Appendix.

The sought relation is

AπN
H (q2,W ) = AH (q2,W )

√
2Wr(2j + 1)

M(W 2 − M2)
, (4)

where M is the nucleon mass, r is the pion momentum in
the πN center-of-mass system, and we use the shorthand
AH for any of A1/2, A3/2, S1/2. Now the argument from the
beginning of this section applies, and the TPE amplitudes
will be given by Eq. (2). The apparent dimension mismatch
between AπN

H and AH is not an error; recall that the dimension
of AH is GeV−1, the dimension of AR

H , meant in Eq. (1),
is GeV−1/2, and Eq. (2) contains additional integration
over dW 2.

For actual calculation of the TPE amplitudes we wish to
employ the TPECALC program [19]. However, both TPECALC

and Ref. [16] use not AH , but covariant form factors F1,2,3 to
describe nucleon-resonance transition. The latter are related to
the transition current matrix element for R → γ ∗N as1

〈N |Jμ|R〉 = 1

4M2
√

MW
(gμαqν − gμνqα)

× Ū [(p̂γν − pν)F1 − pνF2 + qνF3] γ5Vα, (5)

where p and q are resonance and photon momenta, U and Vα

are nucleon and resonance spinors, the states |N〉 and |R〉 are
normalized to unity, and the resonance mass is taken to be W .

The relationship between AH and Fi can be obtained using
the definitions of AH (Ref. [17], Eqs. (31)–(33)) and reads

KF1 = [(W − M)2 − q2](A3/2 +
√

3A1/2),

KF2 = [W 2 − M2 + q2](A3/2 −
√

3A1/2) + 2q2 W
√

6

|
q| S1/2,

KF3 = 2W 2(A3/2 −
√

3A1/2) + [W 2 − M2 + q2]
W

√
6

|
q| S1/2,

(6)

where |
q| is photon momentum in the resonance rest frame,
and

K = 1

2M2
[(W + M)2 − q2][(W − M)2 − q2]

×
√

πα
(W − M)2 − q2

M(W 2 − M2)
. (7)

In full analogy to AH , the form factors Fi should be then
“renormalized” according to Eq. (4),

FπN
i (q2,W ) = Fi(q

2,W )

√
2Wr(2j + 1)

M(W 2 − M2)
. (8)

Note that, though for a single narrow resonance Fi are purely
real, the calculation of the TPE amplitudes is well possible

1In arXiv:1209.2746v1, the sign of the pνF2 term is incorrect.
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when they are complex; the latter is obviously the case here,
since the amplitudes AH are complex.

III. TECHNICAL DETAILS

The multipole amplitudes El±, Ml±, and Sl± were taken
from the unitary isobar model MAID2007 [18]; the numerical
values were downloaded from the dedicated website [20] for
q2 from 0 to 3 GeV2 in steps of 0.05 GeV2 and W from 1082
to 1550 MeV in steps of 15 MeV. Note that the site gives the
amplitudes for the isospin channels, named A

(1/2)
p , A

(1/2)
n , and

A(3/2). The amplitudes for γ ∗p → πN (I = 3/2), which we
need here, are

√
2/3A(3/2). Then, for each discrete W value

Wi , the multipole amplitudes were converted into the helicity
amplitudes AH [Eq. (3)], and then into the transition form
factors FπN

1,2,3 [Eqs. (6) and (8)]. Much like it was described in
Refs. [16,19], the resulting form factors were fitted with the
sum of poles:

F (q2,Wi) =
7∑

j=1

cij q
2

q2 − m2
ij

, (9)

where cij are complex and mij are real parameters, with the
restrictions mi1 = 0, mi2 = M + Wi . The TPE contributions
were then calculated: at first for each individual W value,
following procedures described in Ref. [16]; and finally they
were integrated over W (with the rectangle method), yielding
the total πN (P33) contribution.

To get an impression of the numerical integration errors,
we choose several representative kinematical points, and for
that points, tried to

(i) vary sampling step in W (between 5, 10 and 15 MeV),
(ii) use Simpson’s rule instead of the rectangle method.

In all cases the TPE amplitudes changed by no more than
2%–3%, which is small enough (note that since we are anyway
using an expansion in α, no more than ∼ 1% accuracy is
needed).

Another source of uncertainty is the choice of the upper
integration limit in W . In principle, we should integrate up to
infinity, but for a numerical calculation we have to choose some
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FIG. 1. (Color online) The πN contribution to the TPE ampli-
tudes at ε = 0.25 and low Q2.
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FIG. 2. (Color online) The TPE amplitudes near the � reso-
nance, θc.m. = 90◦; πN contribution from this work (solid) and
zero-width � [16] (dashed).

finite value, and 1550 MeV was used in most calculations. To
probe the error resulting from cutting the integral off, we try
to extend the integration limit from 1550 MeV to 1750 MeV
or 2 GeV (note that the MAID multipoles only exist up to
W = 2 GeV). Again, the change in the TPE amplitudes was
no more than 3%, except in high-Q2 region. If Q2 is high
(∼ 5 GeV2), then increasing upper integration limit changes
the TPE amplitudes by about 5%–7%. Though such precision
is still quite acceptable, this implies that the role of the
intermediate states with higher masses increases with Q2.

IV. RESULTS

As usual, we describe TPE by three invariant amplitudes
(generalized form factors) δGE , δGM , and δG3. The corrections
to the cross-section or polarization observables can be ex-
pressed in terms of these amplitudes; for all relevant formulas
see Refs. [16,19].

There are three kinematical regions, where it is interesting
to look at newly calculated πN (P33) contribution:

(i) the low-Q2 region, which might affect proton radius
extraction,
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FIG. 3. (Color online) Q2 dependence of the πN contribution to
the TPE amplitudes, at fixed ε = 0.25. This work (solid) and Ref. [16]
(dashed). Note the different y-axis scales in the left and right subplots.
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FIG. 4. (Color online) The TPE amplitude δGM/GM , at fixed
ε = 0.25, calculated in different approximations.

(ii) the vicinity of the resonance, where the zero-width
approximation fails,

(iii) the high-Q2 region, where previous works have
revealed the substantial growth of the TPE corrections
to the Pt/Pl polarization ratio.

At low Q2 the πN contributions are small (with respect
to the elastic contribution) and change moderately with Q2

(Fig. 1), thus the proton radius extraction is not affected by the
πN intermediate states.

The TPE amplitudes in the resonance region are shown in
Fig. 2. Just as it was expected, there are smooth bumps at the
resonance position, instead of the sharp peaks, which are seen
in the zero-width approximation [16] (dashed lines).

Figure 3 shows Q2 dependence of the calculated TPE
amplitudes at fixed ε = 0.25 for Q2 up to 5 GeV2. The
calculation of Ref. [16] is shown with dashed lines for
comparison. We see that for Q2 below ∼ 2.5 GeV2 the two
approaches give very similar results. For higher Q2, again in
the agreement with Ref. [16], the amplitude δGE dominates
and grows with Q2 (though its numerical value is somewhat
smaller); in contrast, the amplitudes δGM and δG3 have quite
different values here and in Ref. [16]. When comparing these
numerical values, one must keep in mind that present approach
differs from that of Ref. [16] in several aspects:

(i) now we include E1+, M1+, and S1+ multipole am-
plitudes, whereas Ref. [16] effectively includes only
M1+ amplitude (magnetic transition);

(ii) the resonance shape differs from pure Breit-Wigner;
(iii) the background contribution is included.

This is illustrated in Fig. 4, which shows the amplitude
δGM , calculated in three ways:

(i) in the present approach,
(ii) in the present approach with magnetic transition only

(F2 and F3 transition form factors set to zero),
(iii) in the approach of Ref. [16].

We see that the difference mainly results from neglecting
electric transition in Ref. [16]. In a similar way we have found
that the difference of the amplitude δGE in the two approaches
is mainly due to neglecting � resonance width. (Theoretically,
the difference also could result from the contribution of states
with higher W ’s, which are missing in “narrow �” calculation.
However, actually this contribution is small; see the end of
Sec. III).

Finally, in Fig. 5 we plot the TPE correction to the
polarization ratio. At high Q2 we see the same behavior which
was found in Ref. [16], namely the correction grows rapidly
with Q2. Numerically the correction is ∼ 30% smaller than
that obtained in Ref. [16] (for the reasons discussed above).

V. CONCLUSIONS

We have considered the inelastic TPE contribution, origi-
nating from πN intermediate states, and, specifically, the P33

partial wave. Thus we effectively include �(1232) resonance
and take into account its finite width. Numerically we obtain
the following results:

(i) At small Q2 this contribution is small (negligible w.r.t.
the elastic one).

(ii) The TPE amplitudes have smooth maxima at the
resonance position (Ec.m. ≈ M�).

(iii) At high Q2 we confirm the findings of Ref. [16],
obtained with the zero-width �. The main correction
comes to the generalized electric form factor. This
correction (and, consequently, the correction to the
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FIG. 5. (Color online) The TPE correction to the proton form factor ratio R = μGE/GM , as measured in polarization experiments; various
contributions at fixed ε = 0.5 (a) and total at different values of ε (b).
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polarization ratio) is relatively large and grows with
Q2. Its numerical value is somewhat smaller than in
Ref. [16].

In summary, we see that (contrary to the common belief)
the TPE corrections to the polarization ratio are not negligible
at high Q2. The questions which remains open are whether or
not the contributions of partial waves other than P33 are small,
how many of them should be taken into account, and how
large is the error resulting from leaving out partial waves with
higher spins. Surely, it is desirable to answer these questions
before the TPE corrections are applied to experimental data.
However, this is a separate task, and we plan to do it in further
papers.
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APPENDIX: STRAIGHTFORWARD CALCULATION
OF THE π N CONTRIBUTION VIA MULTIPOLES

Let the process kinematics be

e(k) + p(p) → e(k′′) + π (r) + p(p′′) → e(k′) + p(p′),

(A1)

and virtual photon momenta q1 = k − k′′ and q2 = k′ − k′′.
The imaginary part of the TPE amplitude is given by

ImMf i = 1

8π2

∫
(4πα)2

q2
1q2

2

LαβWαβd4k′′δ(k′′2 − m2), (A2)

where Lαβ = ū′γα(k̂′′ + m)γβu is leptonic tensor and

Wαβ =
∑

h

〈p′|Jα|h〉〈h|Jβ |p〉(2π )3δ(ph − p − q1) (A3)

is hadronic tensor. Here Jα is electromagnetic current operator,
|p〉 and |p′〉 are initial and final protons, |h〉 is intermediate
hadronic state (consisting of one or more particles), and ph is
its total momentum. The summation over h actually consists
of

(i) the summation over different particle types,
(ii) the integration over their momenta (the integration

element is 1
(2π)3

d 
p
2p0

),
(iii) the summation over their spins.

This allows us to distinguish between elastic and inelas-
tic contributions, contributions of various resonances, etc.,
depending of the nature of the intermediate state h. The
contribution of the πN intermediate states, which is under
consideration now, has the form

Wαβ =
∫

d 
p′′

2p′′
0

d
r
2r0

1

(2π )3

∑
spin

〈p′|Jα|πN〉〈πN |Jβ |p〉

× δ(p′′ + r − p − q1), (A4)

where p′′ and r are the momenta of the nucleon and pion,
respectively. The tensor Wαβ is convenient to evaluate in

the πN center-of-mass system, where 
p + 
q1 = 0. Assuming
initial and final particles have definite helicities, we may write

Wλ′μ′;λμ ≡ ∗
ε(λ′)

α ε
(λ)
β Wαβ = (8πW )2

4πα

|
r|
(2π )3W

∫
d


×
∑
μ′′

〈
q2λ
′μ′|f +|
rμ′′〉〈
rμ′′|f |
q1λμ〉, (A5)

where ε(λ)
α is the polarization vector of virtual photon with

helicity λ, d
 is pion solid angle, μ, μ′, and μ′′ are helicities
of the initial, final, and intermediate protons, and

〈
rμ′′|f |
q1λμ〉 =
√

4πα

8πW
ε(λ)
α 〈πN |Jα|p〉 (A6)

are the helicity amplitudes for the process γ ∗p → πN , defined
according to [21]. The angular dependence of these amplitudes
is determined by the general properties of space rotations;
regardless of the interaction details, they have the following
structure [21]:

〈
rμ′′|f |
q1λμ〉 =
∑

j

2j + 1

4π
Dj

−μ′′,λ−μ(
r)〈μ′′|f j |λμ〉. (A7)

Following [21], we use the notation

Dj
−μ′′,λ−μ(
r) ≡ Dj

−μ′′,λ−μ(φ,θ,0) (A8)

for Wigner D-functions (where φ, θ are spherical angles of the
vector 
r), and

〈μ′′|f j |λμ〉 ≡ 〈jmμ′′|f |jmλμ〉, (A9)

where |jmλμ〉 are states with definite angular momentum j
and its projection m, and (here and below) 
q1 is directed along
the z axis. For φ = 0, these amplitudes are commonly denoted
H1..6 [17]:

H1 = H 1
2 ;−1 1

2
= H− 1

2 ;1− 1
2
,

H2 = H− 1
2 ;1 1

2
= −H 1

2 ;−1− 1
2
,

H3 = H 1
2 ;1− 1

2
= −H− 1

2 ;−1 1
2
,

(A10)
H4 = H 1

2 ;1 1
2

= H− 1
2 ;−1− 1

2
,

H5 = −H 1
2 ;0 1

2
= H− 1

2 ;0− 1
2
,

H6 = H 1
2 ;0− 1

2
= H− 1

2 ;0 1
2
,

where

Hμ′′;λμ ≡ 〈
rμ′′|f |
q1λμ〉. (A11)

Comparing with Eqs. (7)–(12) of Ref. [17], we find

〈μ′′|f j |λμ〉 = 4π√
2

[
2μA(2μλ)

l+ + 2μ′′A(2μλ)
l+1,−

]
, (A12)

where l = j − 1/2 and

A(1)
l± = −Al±,

(A(−1)
l+ ,A(−1)

l+1,−
) = 1

2

√
l(l + 2)(−Bl+,Bl+1,−), (A13)

(A(0)
l+,A(0)

l+1,−
) =

√
−q2

|
q|
l + 1√

2
(Sl+,Sl+1,−)

(where Al±, Bl±, and Sl± are usual multipole amplitudes [17]).
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Now let us proceed with the calculation of Wλ′μ′;λμ. Switching again to the angular momentum eigenstates according to

〈
qλμ|jmλμ〉 =
√

2j + 1

4π
Dj

λ−μ,m(
q), (A14)

we have∫
d


∑
μ′′

〈
q2λ
′μ′|f +|
rμ′′〉〈
rμ′′|f |
q1λμ〉 =

∑
j

2j + 1

4π
Dj

λ′−μ′,λ−μ(
q2)
∑
μ′′

〈λ′μ′|f j+|μ′′〉〈μ′′|f j |λμ〉

= 4π
∑

j

(2j + 1)Dj
λ′−μ′,λ−μ(
q2)

[
(2μ)(2μ′)

∗
A(2μ′λ′)

l+ A(2μλ)
l+ +

∗
A(2μ′λ′)

l+1,− A(2μλ)
l+1,−

]
, (A15)

and finally

Wλ′μ′;λμ = (8πW )2

4πα

|
r|
2πW

∑
j

2j + 1

4π
Dj

λ′−μ′,λ−μ(
q2)
[
(2μ)(2μ′)

∗
A(2μ′λ′)

l+ A(2μλ)
l+ +

∗
A(2μ′λ′)

l+1,− A(2μλ)
l+1,−

]
. (A16)

On the other hand, for the contribution of the infinitely narrow resonance with mass MR , we will have instead of (A5), in full
analogy with the above,

WR
λ′μ′;λμ = (8πW )2

4πα

δ(W − MR)

2W

∑
m

〈
q2λ
′μ′|f +|Rjm〉〈Rjm|f |
q1λμ〉

= (8πW )2

4πα
δ
(
W 2 − M2

R

) 2j + 1

4π
Dj

λ′−μ′,λ−μ(
q2)〈λ′μ′|f j+|R〉〈R|f j |λμ〉, (A17)

where the photoproduction helicity amplitude is

〈Rjm|f |
q1λμ〉 = δm,λ−μ

√
2j + 1

4π
〈R|f j |λμ〉 =

√
4πα

8πW
ε(λ)
α 〈R|Jα|p〉 (A18)

(remember 
q1 ‖ 
ez) and has the symmetry property

〈R|f j |λμ〉 = ηR(−1)j−1/2〈R|f j | −λ −μ〉, (A19)

where ηR is resonance parity. Carefully comparing (A18) with the definition of the standard resonance electroproduction
amplitudes AR

1/2, AR
3/2, and SR

1/2 [17], we find

〈R|f j |λμ〉 = i

8πW

√
4π

2j + 1

√
4M(W 2 − M2)

(
2μ

1

)
A(2μλ)

R , (A20)

where

A(1)
R = AR

1/2, A(−1)
R = ∓AR

3/2, A(0)
R = ∓

√
−q2

|
q| SR
1/2. (A21)

Upper signs and symbols in the notation like ( 2μ
1 ) are taken for the resonance parity ηR = (−1)j+1/2, and lower ones for

ηR = (−1)j−1/2. Note that overall phase factor is irrelevant. The corresponding hadronic tensor will be

WR
λ′μ′;λμ = (8πW )2

4πα
δ
(
W 2 − M2

R

) 2j + 1

4π
Dj

λ′−μ′,λ−μ(
q2)
M(W 2 − M2)

4πW 2(2j + 1)

(
4μμ′

1

) ∗
A(2μ′λ′)

R A(2μλ)
R . (A22)

Comparing this with Eq. (A16), we easily deduce the relation (4). Indeed, putting in the last equation

AR = Aj∓1/2,±

√
2W |
r|(2j + 1)

M(W 2 − M2)
, (A23)

and integrating it over dM2
R , we obtain the term for corresponding spin and parity from Eq. (A16).
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