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Determination of compositeness of the �(1405) resonance from its radiative decay
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The radiative decay of �(1405) is investigated from the viewpoint of compositeness, which corresponds to the
amount of two-body states composing resonances as well as bound states. For a K̄N (I = 0) bound state without
couplings to other channels, we establish a relation between the radiative decay width and the compositeness.
Especially the radiative decay width of the bound state is proportional to the compositeness. Applying the
formulation to �(1405), we observe that the decay to �γ is dominated by the K−p component inside �(1405),
because in this decay π+�− and π−�+ strongly cancel each other and the π� component can contribute to the
�γ decay only through the slight isospin breaking. This means that the decay �(1405) → �γ is suitable for
the study of the K̄N component in �(1405). Fixing the �(1405)-π� coupling constant from the usual decay of
�(1405) → π�, we show a relation between the absolute value of the K̄N compositeness for �(1405) and the
radiative decay width of �(1405) → �γ and �0γ , and we find that large decay width to �γ implies large K̄N

compositeness for �(1405). By using the “experimental” data on the radiative decay widths, which is based on
an isobar model fitting of the K−p atom data, we estimate the K̄N compositeness for �(1405). We also discuss
the pole position dependence of our relation on the �(1405) radiative decay width and the effects of the two-pole
structure for �(1405).
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I. INTRODUCTION

Determination of the internal structure of hadrons is
one of the most important issues in the physics of strong
interaction. Especially exotic hadrons, which have different
configurations from qq̄ for mesons or qqq for baryons, are
of interest because there is no clear experimental evidence of
the existence of exotic hadrons while the fundamental theory
of strong interaction, quantum chromodynamics (QCD), does
not forbid such exotic hadrons [1]. Among others, �(1405)
is a “classical” example of the exotic hadron candidates. One
of the remarkable properties for �(1405) is its anomalously
light mass. Actually in the 1/2− state the lowest � excited
state, �(1405), is lighter than that of the nucleon excitation,
N (1535), although �(1405) has a strange quark, which is
heavier than up and down quarks.

As an interpretation of the �(1405) properties, it has been
considered that �(1405) should be a K̄N quasi-bound state
rather than a uds three-quark state [2,3]. This is reasonable,
because �(1405) exists just below the K̄N threshold and
the interaction between K̄N is strongly attractive in the
isospin I = 0 channel. The idea that �(1405) should be a
K̄N quasibound state is recently reconfirmed by the so-called
chiral unitary approach [4–8], which is based on the coupled-
channels scattering unitarity with the interaction between
hadrons restricted by the spontaneous chiral symmetry break-
ing in QCD, i.e., chiral perturbation theory. The chiral unitary
approach reproduces the low-energy K̄N dynamics fairly
well and dynamically generates �(1405) without introducing
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explicit poles. In the experimental side, precise measurements
have been recently performed so as to reveal the structure of
�(1405). For example, in Refs. [9,10] the �(1405) line shape
has been measured in the photoproduction, which is closely
related to the underlying dynamics and the internal structure
of �(1405) [11]. In addition, there are discussions that the
internal structure of �(1405) can be extracted from, e.g., the
coalescence of �(1405) in heavy-ion collisions [12,13] and
the exclusive production with high momentum π− beam [14].

For the determination of the internal structures of exotic
hadron candidates, one needs to pin down quantities which
can be evidence of the exotic structure. The hadron yields in
heavy-ion collisions [12,13] and the constituent-counting rule
in high-energy exclusive production [14] are the examples. In
addition to them, compositeness has been recently discussed as
a quantity to determine the amount of two-body components in
hadron resonances [15–19]. Here the compositeness is defined
as a fraction of the two-body components in a resonance as
well as a bound state and can be evaluated from the squared
coupling constant of the resonance to the two-body states and a
kinematical factor. Originally, whether a particle is elementary
or composite was intensively discussed in the 1960s in terms of
the field renormalization constant Z [20–22], which measures
the bare state contribution rather than the composite state. A
striking result is that a deuteron is indeed a proton-neutron
bound state as shown in Ref. [23], in which a relation between
the field renormalization constant of a deuteron and the
scattering length and effective range in the proton-neutron
scattering is established in the small binding energy limit
in a model-independent way. Then attempts to investigate
the structures of hadrons from the field renormalization
constant Z were made in, e.g., Refs. [24–26]. Recently the
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FIG. 1. Couplings of �(1405) to the π� (left) and K̄N (right)
states. The �(1405)-π� coupling constant gπ� can be extracted
from the decay width of �(1405) → π�, but one cannot extract
the �(1405)-K̄N coupling constant gK̄N in a similar manner because
�(1405) exists below the K̄N threshold.

concept of the compositeness has been discussed in the
context of the chiral unitary approach to determine internal
structures of dynamically generated states [15]. Although the
compositeness could be a complex value for resonances, it
would be evidence of dominance of a two-body composite
state or an elementary state, such as a non-ππ state for the ρ
meson [16] or a non-Kπ state for the K∗ meson [17].

From these observations, we would like to determine the
K̄N compositeness of �(1405) from experimental informa-
tion. Since the compositeness of �(1405) can be evaluated
from the coupling constant of �(1405) (see Fig. 1) and a
kinematic factor, i.e., derivation of the meson-baryon loop
integral on the �(1405) pole position, in order to determine the
K̄N compositeness for �(1405) we need to know the coupling
constant of �(1405) to K̄N as well as its pole position.
However, while we can easily extract the �(1405)-π�
coupling constant from the �(1405) → π� decay, the
�(1405)-K̄N coupling constant cannot be determined directly
in experiments because �(1405) exists below the K̄N thresh-
old. Therefore, in order to determine the K̄N compositeness
for �(1405) we have to consider reactions which are sensitive
to the �(1405)-K̄N coupling constant.

For such a reaction, we here treat the radiative decay of
�(1405): �(1405) → �γ and �0γ [27]. Since the �(1405)
radiative decay is closely related to the structure of �(1405)
as an E1 transition, up to now the radiative decay widths
of �(1405) have been evaluated in several models [28–38].
However, the decay widths have not been interpreted from
the viewpoint of the K̄N composite contribution in detail.
Therefore, in this study we give a relation between the
K̄N compositeness for �(1405) and the �(1405) radiative
decay width. Actually, as studied in Ref. [36], the �(1405)
radiative decay takes place mainly through the K̄N loop
accompanied with the �(1405)-K̄N coupling. We will see
that this fact is important to establish a relation between the
K̄N compositeness for �(1405) and the radiative decay width
of �(1405) → �γ .

This paper is organized as follows. In Sec. II we develop our
formulation of the compositeness in the context of the chiral
unitary approach. Then the radiative decay of the �(1405)
resonance is formulated in Sec. III. In Sec. IV we investigate
possibilities to observe compositeness both for a K̄N bound
state without strong decay and for the �(1405) resonance.
Section V is devoted to the conclusion of our study.

II. CHIRAL UNITARY APPROACH AND COMPOSITENESS

Recently the concept of compositeness has been intensively
discussed in the context of the so-called chiral unitary approach
[4–8] for dynamically generated states [15–19]. Therefore, we
first review the formulation of the chiral unitary approach and
the relation to the compositeness.

In the chiral unitary approach we construct an s-wave
meson-baryon scattering amplitude Tij (s) by using the scatter-
ing unitarity, which is expressed as

ImTij
−1(s) = δij

ρi(s)

2
θ
(
s − s th

i

)
, (1)

where i and j denote channels, s is the Mandelstam variable,
θ (x) is the Heaviside step function, and s th

i = (mi + Mi)2 is
the threshold in the i channel with mi and Mi being meson
and baryon masses in channel i, respectively. The i-channel
meson-baryon phase space ρi(s) is defined as

ρi(s) ≡ Miλ
1/2

(
s,m2

i ,M
2
i

)
4πs

, (2)

with the Källen function λ(x, y, z) = x2 + y2 + z2 − 2xy −
2yz − 2zx. Then, with neglect of the left-hand cut, one can
construct a scattering equation in the Bethe-Salpeter type from
the expression of the scattering unitarity (1) by using the N/D
method [6]:

Tij (s) = Vij (s) +
∑

k

Vik(s)Gk(s)Tkj (s), (3)

with an interaction kernel Vij which coincides with the
interactions taken from the chiral perturbation theory in the
order matching scheme, and the dispersion integral Gi :

Gi(s) = −ãi(s0) − (s − s0)
∫ ∞

sth
i

ds ′

2π

ρi(s ′)
(s ′ − s − iε)(s ′ − s0)

.

(4)

Here ãi is a subtraction constant at certain energy s0, ε is
an infinitesimal positive value, and Gi(s) is known to equal,
except for an infinite constant, the two-body loop integral.
At the leading order of the chiral interaction for Vij , which
corresponds to the Weinberg-Tomozawa interaction plus s-
and u-channel Born terms, only the subtraction constant in
each channel is the model parameter. On the other hand, if
one takes into account the next-to-leading order for Vij , the
low-energy constants in the interaction kernel also become
model parameters.

By fitting the branching ratios of K−p at its thresh-
old, the chiral unitary approach can fairly well reproduce
the existing experimental cross sections of the low-energy
K−p to various meson-baryon channels even only with
the Weinberg-Tomozawa interaction [4–6]. Furthermore, the
chiral unitary approach dynamically generates the �(1405)
resonance without introducing explicit resonance poles [8]
and reproduces the �(1405) spectrum in experiments. This
approach supports the meson-baryon bound state picture
for the �(1405) resonance by revealing, e.g., a predom-
inance of the meson-baryon component [39], its large-Nc

scaling behavior [40,41], and its spatial size [42–44]. Re-
cent studies within the chiral unitary approach as well as
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experimental conditions on �(1405) are summarized in the
review article [45].

In addition, it is a prediction of the chiral unitary approach
that �(1405) is a superposition of two resonance poles in
the energy region between π� and K̄N thresholds [8].
One pole sitting in higher energy around 1420 MeV shows
dominant coupling to K̄N and is expected to originate from
the K̄N bound state while the other lower pole with large
imaginary part strongly couples to π� [46]. The higher
pole around 1420 MeV is of interest because it means that
one will observe �(1405) spectrum which has a peak at
1420 MeV instead of the nominal 1405 MeV in the K̄N →
π� amplitude [8]. Indeed, an experiment of the K−d → π�n
reaction [47] gives support of the �(1405) peak at 1420 MeV
rather than 1405 MeV, which has been confirmed also by
the theoretical calculations in the chiral unitary approach
[48–51]. Also we note that a very recent experiment of the
�(1405) electroproduction [52] gives the �(1405) line shape
corresponding approximately to the predictions of a two-pole
picture for �(1405).

In general, the resonances as well as the bound states appear
as poles of the scattering amplitude in the complex s plane.
Actually poles of the dynamically generated states in the chiral
unitary approach are expressed as

Tij (s) = gigj√
s − Zpole

+ T BG
ij . (5)

where gi is the coupling constant of the dynamically generated
state to the channel i, Zpole = MR − i�R/2 is the pole position
with MR and �R being interpreted as the mass and width
of the state, respectively, and T BG

ij is a background term
which is regular at

√
s → Zpole. Here we have defined the

coupling constant gi as the residue of the resonance pole
with respect to

√
s rather than s so that the �(1405) field

has dimension of mass to the power 3/2 in our notation. Now,
according to the discussions on the scattering equations and
field renormalizations, it was implied in Ref. [15] that the
compositeness of the dynamically generated resonances with
respect to the i channel, Xi , is related to the coupling constant
gi as

Xi = −g2
i

dGi

d
√

s
(
√

s = Zpole). (6)

The compositeness Xi approaches unity if the system is domi-
nated by the i-channel two-body component, while it becomes
zero if the system does not contain the i-channel two-body
component. On the other hand, we can define the elementarity
Z, which corresponds to the field renormalization constant and
measures the fraction of the bare state contribution rather than
the two-body state, as the residual part of the decomposition
of unity:

Z = 1 −
∑

i

Xi. (7)

Then using the generalized Ward identity for the dynamically
generated states proved in Ref. [43],

−
∑
i,j

[
g2

i

dGi

d
√

s
δij + giGi

dVij

d
√

s
Gjgj

]
√

s=Zpole

= 1, (8)

we can express the elementarity as

Z = −
∑
i,j

giGi

dVij

d
√

s
Gjgj

∣∣∣∣√
s=Zpole

. (9)

An important point to be noted is that the compositeness Xi is
expressed as the squared coupling constant g2

i , which contains
information on the dynamics, times the derivative of the
dispersion integral Gi , which depends only on the kinematics.
We also note that each Xi as well as the elementarity Z,
which take real values for bound states without decay width,
become complex for resonance states. However, the sum of
the compositeness and the elementarity is exactly unity as in
Eq. (7). In this sense we can extract the amount of the i channel
component for the resonance states from the compositeness Xi .

To conclude this section we demonstrate the π� com-
positeness of �(1405) from the usual decay of �(1405),
�(1405) → π�, assuming the isospin symmetry both for the
coupling constant and the hadron masses. The decay width
��(1405) is related to the π� coupling in the particle basis,
gπ� = gπ+�− = gπ−�+ = gπ0�0 , in the following form:

��(1405) = 3 × pcmM�

2πM�(1405)
|gπ�|2, (10)

where pcm is the center-of-mass three-momentum of the
final-state π , M� is the averaged � baryon mass, and the factor
3 corresponds to the three possible final states: π+�−, π−�+,
and π0�0. From the experimental data M�(1405) = 1405 MeV
and ��(1405) = 50 MeV of the Particle Data Group [1], we
have |gπ�| = 0.91. Then, the absolute value of the π�
compositeness can be evaluated as

|Xπ�| = 3 ×
∣∣∣∣g2

π�

dGπ�

d
√

s
(
√

s = Zpole)

∣∣∣∣ = 0.19, (11)

where Zpole = M�(1405) − i��(1405)/2.1 This means that the
π� component in the �(1405) resonance is not dominant and
hence the �(1405) should originate some dynamics rather than
the π� interaction. In a similar manner we could evaluate the
K̄N compositeness of �(1405), but it is impossible because
�(1405) exists below the K̄N threshold and the decay to K̄N
is invisible. Furthermore, there are no direct relations between
the K̄N compositeness and observables such as the K−p
scattering length in contrast to the deuteron case. Therefore,
in order to obtain information on the K̄N component inside
�(1405), we have to observe other decay modes which are
sensitive to the �(1405)-K̄N coupling constant, such as the
radiative decay.

1We note that the pole position of �(1405), which is necessary
to evaluate the compositeness (6), is not well determined from
experiments. Actually the interference between �(1405) and the
I = 1 background could shift the �(1405) peak position in the
spectrum as in Refs. [9–11] and moreover the chiral unitary approach
predicts the two-pole structure for �(1405) [8]. Here we simply
assume that the pole position is obtained from the mass and width in
the Particle Data Group. In this study we will discuss the pole position
dependence of the �(1405) radiative decay width and the effects of
the two-pole structure for �(1405).

025202-3



T. SEKIHARA AND S. KUMANO PHYSICAL REVIEW C 89, 025202 (2014)

Λ(1405)

M

B

γ

Y 0

T(a)

P P – q

q
q – k

k

T(b)

P

P – q

q q – k

kT(c)

FIG. 2. Feynman diagrams for the �(1405) radiative decay. Here M and B in the left diagram denote mesons and baryons, respectively, and
P , q, P − q, k, and q − k in the middle and right diagrams indicate the momenta carried by the corresponding mesons, baryons, and photons.

III. FORMULATION OF RADIATIVE DECAY

Now let us formulate the radiative decay of �(1405):
�(1405) → Y 0γ with Y 0 = �, �0. Our formulation is based
on that developed in Ref. [36]. Here the radiative decay
widths are perturbatively calculated and hence we use the same
coupling constants in the formulation as those obtained in the
strong interaction without the electromagnetic interaction; i.e.,
those in Eq. (5). The relevant diagrams for the radiative decay
are shown in Fig. 2, and from the Feynman rules summarized
in Appendix A each diagram gives the decay amplitude as

− iT(a) = −eσμε∗
ν

∑
i

giQMi
ṼiY 0gμνGi(P ), (12)

−iT(b) = +eσμε∗
ν

∑
i

giQMi
ṼiY 0D

μν

iY 0(1)(P, k), (13)

−iT(c) = +eσμε∗
ν

∑
i

giQBi
ṼiY 0D

μν

iY 0(2)(P, k), (14)

where e is the elementary charge, σμ is defined as σμ = (0, σ )
with the Pauli matrices σ i (i = 1, 2, 3) for baryon spinors, and
ε∗μ is the polarization of the final-state photon. Inside the
summations with respect to the channel i, gi is the coupling
constant of �(1405) to the channel i, QMi

and QBi
are charges

of the meson and baryon in channel i, respectively, and ṼiY 0

is the meson-baryon-baryon (MBB) coupling strength:

ṼiY 0 = αiY 0
D + F

2f
+ βiY 0

D − F

2f
, (15)

with SU(3) coefficients α and β, parameters D and F , and the
meson decay constant f . The loop integrals Gi , D

μν

iY 0(1), and
D

μν

iY 0(2) are defined as

Gi(P )

≡ i

∫
d4q

(2π )4

1

q2 − m2
i

2Mi

(P − q)2 − M2
i

, (16)

D
μν

iY 0(1)(P, k)

≡ i

∫
d4q

(2π )4

(q − k)μ(2q − k)ν[
(q − k)2 − m2

i

](
q2 − m2

i

) 2Mi

(P − q)2 − M2
i

,

(17)

D
μν

iY 0(2)(P, k)

≡ i

∫
d4q

(2π )4

2Mi(P − q)μ(2q − k)ν[
(q − k)2 − M2

i

](
q2 − M2

i

) 1

(P − q)2 − m2
i

,

(18)

with P μ and kμ being the momenta of the initial-state �(1405)
and final-state photon, respectively. Here the squared masses
in the denominators are implicitly assumed to be added by
−iε, where ε is an infinitesimal positive value: m2 → m2 − iε
and M2 → M2 − iε. In this study the relevant channels with
nonzero charge are K−p, π+�−, π−�+, and K+�−, and
the values of αiY 0 and βiY 0 relevant to this study are listed in
Table I. Since we have a relation QBi

= −QMi
for the meson-

baryon states coupled to the zero-charge �(1405), the decay
amplitudes are collected to give the total decay amplitude,

T�(1405)→Y 0γ = −ieσμε∗
ν

∑
i

giQMi
ṼiY 0H

μν

iY 0 (P, k), (19)

with the summation of the loop integrals,

H
μν

iY 0 (P, k) ≡ gμνGi(P ) − D
μν

iY 0(1)(P, k) + D
μν

iY 0(2)(P, k).

(20)

For the evaluation of the loop integrals H
μν
i , we take

the strategy developed in Refs. [36,53–57] based on the
symmetries. Namely, since we have only P μ and kμ to describe
the Lorentz indices μ and ν with respect to H

μν
i , the general

form of H
μν
i should be expressed as

H
μν

iY 0 = aiY 0gμν + biY 0P μP ν + ciY 0P μkν

+ diY 0kμP ν + eiY 0kμkν. (21)

Then, since we consider an on-shell photon in the final state,
we have the transverse polarization, ε∗

ν k
ν = 0. This means

that the terms proportional to ciY 0 and eiY 0 vanish and do not
contribute to the radiative decay, hence we do not consider
them in the following. Furthermore, since the Ward identity
constrains kνH

μν

iY 0 = 0 in each channel i (see Appendix B), we
have

aiY 0kμ + biY 0P μ(P · k) + diY 0kμ(P · k) = 0. (22)

TABLE I. SU(3) coupling strengths for the MBB vertex.

i K−p π+�− π−�+ K+�−

αi� −2/
√

3 1/
√

3 1/
√

3 1/
√

3
βi� 1/

√
3 1/

√
3 1/

√
3 −2/

√
3

αi�0 0 1 −1 1
βi�0 1 −1 1 0
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Here we can take values of P μ and kμ independently, so the
equation implies biY 0 = 0 and

aiY 0 + diY 0 (P · k) = 0. (23)

This relation has a special meaning. Suppose that we would
like to calculate the term aiY 0 . Then Eq. (23) tells us that
evaluating aiY 0 is equivalent to evaluating diY 0 . Furthermore,
although each loop integral contributing to aiY 0 such as Gi(P )
diverges, Eq. (23) indicates that all divergences cancel each
other to be a finite value, because diY 0 is obviously finite as
one can see from the dimension counting. At last we consider
�(1405) at rest, P μ = (M�(1405), 0), and the Coulomb gauge
ε0 = 0, so the term diY 0 does not contribute to the total
amplitude due to ε∗

νP
ν = 0 and hence we only need aiY 0 .

From the above discussion, what we have to calculate is the
term proportional to kμP ν in gμνGi(P ), D

μν

iY 0(1), and D
μν

iY 0(2)
to translate diY 0 into aiY 0 via Eq. (23). Since the first one does
not have a factor of kμP ν but gμν , we may not evaluate the
first one. Thus we concentrate on the second and third ones.
Using the Feynman parametrization

1

ABC
=

∫ 1

0
dx

∫ 1

0
dy

2x

[Axy + Bx(1 − y) + C(1 − x)]3
,

(24)

and the four-dimensional integration∫
d4q

(2π )4

i

(q2 − S)3
= 1

32π2S
, (25)

we evaluate the term proportional to kμP ν in D
μν

iY 0(1) as

D
μν

iY 0(1)|kμP ν = −Mik
μP ν

4π2

∫ 1

0
dx

∫ 1

0
dy

x(1 − x)(1 − xy)

S(x, y)
,

(26)

where S(x, y) is defined as

S(x, y) ≡ xm2 + (1 − x)M2 − x(1 − x)P 2

+ 2x(1 − x)yP · k. (27)

In a similar manner, the term proportional to kμP ν in D
μν

iY 0(2)
is evaluated as

D
μν

iY 0(2)

∣∣
kμP ν = −Mik

μP ν

4π2

∫ 1

0
dx

∫ 1

0
dy

x(1 − x)2y

S(x, y)
. (28)

As a result, we have

diY 0 (
√

s) = Mi

4π2

∫ 1

0
dx

∫ 1

0
dy

x(1 − x)(1 − y)

S(x, y)

= Mi

4π2

1

2P · k

∫ 1

0
dx

[
−1 + (1 − y0) ln

(
1 − y0

−y0

)]
,

(29)

where
√

s is the total energy, P μ = (
√

s, 0), to be fixed as
the �(1405) mass

√
s = M�(1405) and the y integration is

performed in the last line of the equation and y0 is defined
as

y0(
√

s) ≡ −xm2 + (1 − x)M2 − x(1 − x)s

2x(1 − x)P · k
. (30)

We note that the logarithmic term in Eq. (29) generates an
imaginary part for 0 < y0 < 1. Then, by using Eq. (23) aiY 0 is
evaluated as

aiY 0 (
√

s) = − Mi

8π2

∫ 1

0
dx

[
− 1 + (1 − y0) ln

(
1 − y0

−y0

)]
.

(31)

As a consequence, the total decay amplitude at the �(1405)
rest frame in the Coulomb gauge becomes

T�(1405)→Y 0γ = iσ · ε∗WY 0γ (
√

s), (32)

with

WY 0γ (
√

s) ≡ e
∑

i

giQMi
ṼiY 0aiY 0 (

√
s). (33)

Finally the radiative decay width is expressed as

�Y 0γ = p′
cmMY 0

πM�(1405)

∣∣WY 0γ (
√

s = M�(1405))
∣∣2

, (34)

where p′
cm is the center-of-mass three-momentum of the final-

state photon. We note again that each loop integral, G(P ),
D

μν
i(1), or D

μν
i(2), diverges, but the sum of them gives a finite value

as seen in Eq. (31). Throughout this study we take D + F =
1.26, D − F = 0.33, and f = 1.15fπ with the pion decay
constant fπ = 93 MeV.

IV. RESULTS

In this section we calculate the radiative decay width of
�(1405) as a function of the K̄N compositeness XK̄N . Here
we use the physical hadron masses, which breaks slightly
the isospin symmetry, but assume the isospin symmetry for
the coupling constants of �(1405) to each channel except
for the coupling constants evaluated in the chiral unitary
approach. In order to understand the behavior of the decay
width, we first consider a K̄N bound state in the I = 0 channel
without couplings to other channels in Sec. IV A, and then the
radiative decay width of �(1405) is evaluated in Sec. IV B.
We also discuss the pole position dependence of the �(1405)
radiative decay width and the effects of the two-pole structure
for �(1405) in Sec. IV C.

A. Radiative decay of a bound state

We firstly consider a K̄N (I = 0) bound state by taking into
account only the K−p and K̄0n channels while switching off
the couplings to other channels such as π�. Hence, the state is
described only by K−p and K̄0n, and the radiative decay takes
place only through the K−p loop. Here we assume isospin
symmetry for the coupling constant: gK̄N = gK−p = gK̄0n. We
take MB as the mass of the K̄N bound state, which is real and
positive, and measure the binding energy BE from the mean
value of the K−p and K̄0n thresholds:

BE = MK− + Mp + MK̄0 + Mn

2
− MB. (35)
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FIG. 3. Radiative decay width of a K̄N bound state as a function
of the K̄N compositeness.

In this condition the K̄N compositeness for the bound state,
which takes a real value, can be evaluated as

XK̄N = −g2
K̄N

[
dGK−p

d
√

s
+ dGK̄0n

d
√

s

]
√

s=MB

. (36)

This indicates that for a given binding energy the coupling
constant gK̄N and the compositeness XK̄N have one-to-one
correspondence. In addition, since the model parameter of
the radiative decay width is only the coupling constant
gK̄N , we have one-to-one correspondence between the K̄N
compositeness and the radiative decay width as well as the K̄N
coupling constant and the radiative decay width. Therefore,
one can evaluate the radiative decay width as a function of the
K̄N compositeness XK̄N through the relation (36). Since the
mass of �(1405) is 1405 MeV from the Particle Data Group
[1] while the chiral unitary approach suggests a real part of
the �(1405) pole position around 1420 MeV [8], we choose
two binding energies BE = 10 MeV (MB = 1425 MeV) and
BE = 30 MeV (MB = 1405 MeV).

In Fig. 3 we show the radiative decay width of the K̄N (I =
0) bound state as a function of the K̄N compositeness with
two binding energies BE = 10 and 30 MeV. As on can see, the
radiative decay width both to �γ and �0γ is proportional to
the K̄N compositeness XK̄N since both the decay width and
the compositeness are proportional to the squared coupling
constant g2

K̄N
. Furthermore, it is interesting that the decay

to �γ is dominant while the decay to �0γ is quite small.
This behavior can be understood by the coupling strengths
of K−p� and K−p�0. Namely, the flavor SU(3) symmetry
gives the coupling strengths

ṼK−p� = −D + 3F

2
√

3f
≈ −0.63

f
, (37)

ṼK−p�0 = D − F

2f
≈ 0.17

f
, (38)

This difference gives a very large ratio ∼14 for the radia-
tive decay width ��γ /��0γ . Figure 3 means that we have

established a relation between the K̄N compositeness inside
the K̄N (I = 0) bound state and the radiative decay width.

On the other hand, the binding energy dependence of the
radiative decay width is very small and almost invisible.
This indicates that the behavior of the squared loop integral
a2

K−pY 0 with respect to the energy
√

s is very similar to

that of −dGK−p/d
√

s and −dGK̄0n/d
√

s in the energy
region 1400 <

√
s < 1430 MeV, and hence for a given XK̄N

[see Eq. (36)] at
√

s = MB the radiative decay width � ∝
g2

K̄N
a2

K−pY 0 (
√

s = MB) takes almost similar values indepen-
dently of the bound state mass MB. In other words, since both
G and dG/d

√
s(<0) monotonically decrease as functions of√

s below the threshold, for a fixed XK̄N a larger binding
energy leads to smaller −dG/d

√
s and hence larger g2

K̄N
.

Then, since the energy dependence of a2
K−pY 0 is very similar

to that of −dGK−p/d
√

s − dGK̄0n/d
√

s, a larger binding
energy leads to the smaller a2

K−pY 0 , and hence for a fixed

XK̄N the binding energy dependence of g2
K̄N

a2
K−pY 0 is almost

canceled. This fact will be more important when we consider
the �(1405) resonance. Namely, we expect that the radiative
decay width of �(1405) can be evaluated as a function of
the K̄N compositeness almost independently of the �(1405)
pole position, which is not well determined experimentally at
present.

B. Radiative decay of �(1405)

In the previous subsection we have studied the radiative
decay of a K̄N (I = 0) bound state by taking into account only
the K−p and K̄0n channels while switching off the couplings
to other channels. As a result we have established a relation
between the K̄N compositeness for the K̄N bound state and
the radiative decay width. In this subsection we extend our
discussion to the �(1405) resonance in multiple channels and
investigate whether or not we can establish a relation between
the K̄N compositeness for �(1405) and the �(1405) radiative
decay width.

Before evaluating the radiative decay width as a function
of the K̄N compositeness for �(1405), we first evaluate the
�(1405) radiative decay width in the chiral unitary approach
with the recently updated parameters [58,59]. In Refs. [58,59]
two poles corresponding to �(1405) are reconfirmed, and
the pole positions of �(1405), the coupling constants to
meson-baryon channels on the pole positions, and the resulting
radiative decay widths, which correspond to the updated values
with respect to the previous study [36], are listed in Table II.
As one can see, the radiative decay width to �γ is larger than
that to �0γ for the higher �(1405) pole whereas decay to �0γ
is dominant for the lower pole. This behavior comes from the
structure of the meson-baryon-baryon coupling Ṽ as discussed
in Ref. [36]. Namely, the K−p� coupling strength ṼK−p� is
large compared to the K−p�0 one ṼK−p�0 , as we have already
shown in Eqs. (37) and (38) in the previous subsection. On the
other hand, the π±�∓� couplings are found to be

Ṽπ+�−� = Ṽπ−�+� = D√
3f

≈ 0.46

f
, (39)
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TABLE II. Radiative decay width of �(1405) in the chiral unitary
approach with the recently updated parameters [58,59].

�(1405), higher pole �(1405), lower pole

Zpole (MeV) 1424 − 26i 1381 − 81i

gK−p 2.25 + 0.87i 0.91 − 1.89i

gπ+�− 0.57 + 1.00i 1.37 − 1.28i

gπ−�+ 0.62 + 1.06i 1.48 − 1.28i

gK+�− 0.23 + 0.08i 0.02 − 0.26i

��γ (keV) 96 31
��0γ (keV) 60 94

and hence, due to the opposite sign of the charge Qπ+ =
−Qπ− = 1, for the π� component tiny isospin breakings in
the loop integral aπ±�∓ and in the coupling constant gπ� can
contribute to the decay to �γ . Therefore, the decay to �γ is
dominated by the K̄N component. Similarly, for the decay to
�0γ we have

Ṽπ+�−�0 = −Ṽπ−�+�0 = F

f
≈ 0.47

f
, (40)

which are larger than the K−p�0 coupling strength (38), and
the constructive interference between π±�∓ does take place.
As a result, the �0γ decay is dominated by the π� component.
Then, as listed in Table II, the higher pole dominantly couples
to the K̄N channel while the lower pole strongly couples to
the π� channel. These coupling strengths lead to the large
��γ /��0γ in the higher pole and to the small ��γ /��0γ in
the lower pole. We note that the interference between K−p and
π±�∓ in ��γ is constructive both for the higher and lower
�(1405) poles, while the interference in ��0γ is constructive
(destructive) for the higher (lower) pole. In addition, we also
note that for both poles the couplings to the K� channel
are small and hence the K� component can only scarcely
contribute to the radiative decay.

Bearing these discussions in mind, we calculate the ra-
diative decay width of �(1405) as a function of the K̄N
compositeness for �(1405). Here we first fix the �(1405)
pole position by using the mass and width taken from the
Particle Data Group [1]: Zpole = M�(1405) − i��(1405)/2 with
M�(1405) = 1405 MeV and ��(1405) = 50 MeV. Then we will
discuss later the pole position dependence of the relation
between the radiative decay width and the K̄N compositeness.
The K̄N compositeness XK̄N is related to the K̄N coupling
constant in the particle basis, gK̄N = gK−p = gK̄0n, as

XK̄N = −g2
K̄N

[
dGK−p

d
√

s
+ dGK̄0n

d
√

s

]
√

s=Zpole

. (41)

However, since �(1405) is a resonance state, the composite-
ness XK̄N as well as the coupling constant gK̄N are in general
complex. Therefore, in this study, in order to evaluate the
radiative decay width as a function of a real variable, we use
Eq. (41) to relate the absolute value of the compositeness
|XK̄N | and that of the coupling constant |gK̄N |. We note that,
although the absolute value of the compositeness |XK̄N | as
well as the complex compositeness for the �(1405) resonance
cannot be interpreted as a probability of finding the K̄N
component, it will be helpful information and a guide to
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FIG. 4. Radiative decay width of �(1405) as a function of the
absolute value of the K̄N compositeness. The �(1405) mass is fixed
as M�(1405) = 1405 MeV.

elucidating the structure of �(1405). For instance, the large
absolute value of the K̄N compositeness |XK̄N | is a necessary
condition for the K̄N bound state picture for �(1405). In this
strategy, for a given |XK̄N | we can uniquely determine |gK̄N |.
On the other hand, the π� coupling constant can be fixed
from the usual �(1405) → π� decay, and from Eq. (10) we
take |gπ�| = 0.91. Finally, since the K� component inside
�(1405) should be small, we neglect the K� coupling:
gK+�− = gK0�0 = 0.

Although we have fixed the absolute values of the coupling
constants |gK̄N | and |gπ�|, the relative phase between gK̄N

and gπ� is not known and hence one cannot calculate
the interference term.2 Therefore, in order to evaluate the
radiative decay width, we use a procedure to calculate both
the maximally constructive and maximally destructive terms.
Namely, we calculate decay amplitudes of

W±
Y 0γ

= e
(|gK̄N | × ∣∣ṼK−pY 0aK−pY 0

∣∣
± |gπ�| × ∣∣Ṽπ+�−Y 0aπ+�−Y 0 − Ṽπ−�+Y 0aπ−�+Y 0

∣∣)
(42)

and evaluate the decay width (34) so as to show the allowed
range for the radiative decay width for each absolute value of
the K̄N compositeness |XK̄N |.

The results of the allowed range of the �(1405) radiative
decay widths are shown in Fig. 4 as functions of the absolute
value of the K̄N compositeness |XK̄N |. As one can see
from the figure, the range of the radiative decay width to
�γ increases almost linearly with a small band as |XK̄N |
increases. This is because the π+�− and π−�+ components
largely cancel each other and only a tiny isospin breaking
part can contribute to the �γ decay. This fact indicates that
the radiative decay �(1405) → �γ is suited to study the

2Since we assume the isospin symmetry for the coupling constants,
gπ� = gπ+�− = gπ−�+ = gπ0�0 and so on, the relative phase be-
tween π+�− and π−�+ is already determined.
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K̄N component inside �(1405). Especially a large decay
width ��γ directly indicates a large absolute value of the
K̄N compositeness |XK̄N |, and hence implies a large K̄N
component inside �(1405). On the other hand, �0γ decay is
dominated by the π� component and hence the decay width
becomes ��0γ ∼ 23 keV even for |XK̄N | = 0. Then, as |XK̄N |
grows the values of W± are more separated from each other
and the allowed range for the �0γ decay width is expanded.
Here we note that the maximal and minimal values of ��0γ

become ∼40 and 10 keV, respectively, for |XK̄N | = 1, so we
could conclude that |XK̄N | should be large if the decay width
for �0γ would be considerably large or considerably small.

By using the relation in Fig. 4 we can estimate the K̄N com-
positeness from the �(1405) radiative decay width. Actually,
there are “experimental” data on the �(1405) radiative decay
width evaluated from an isobar model fitting of the decays of
the K−p atom [27]: ��γ = 27 ± 8 keV and ��0γ = 10 ± 4
or 23 ± 7 keV. From these “experimental” values we can
estimate the K̄N compositeness by using the relation in
Fig. 4. As a result, we extract |XK̄N | = 0.5 ± 0.2 from ��γ =
27 ± 8 keV, |XK̄N | > 0.5 from ��0γ = 10 ± 4 keV, while
|XK̄N | can have an arbitrary value within ��0γ = 23 ± 7 keV.
These results suggest that the absolute value of the K̄N
compositeness is |XK̄N | � 0.5, which implies that K̄N seems
to be the largest component inside �(1405).

Finally we make several comments. In this study we use
the Particle Data Group value to determine the pole position
of �(1405) as Zpole = M�(1405) − i��(1405)/2. However, the
�(1405) pole position is not well determined, although the
compositeness (41) should be evaluated on the �(1405) pole
position. This may lead to an ambiguity of the relation between
the K̄N compositeness and the radiative decay width shown in
Fig. 4. This point is discussed in the next subsection together
with the effects of the two-pole structure for �(1405).

In addition, we have neglected the bare state contribution of
�(1405) to the radiative decay. Actually, even if the �(1405)
would be dominated by a quark bound state such as uds rather
than the meson-baryon component, �(1405) would have finite
spatial size coming from the quark dynamics. This would lead
to the additional contribution to the decay width, and hence the
decay width in Fig. 4 would be shifted upward. Nevertheless, in
this study we do not take into account such a contribution since
a usual constituent quark model cannot describe �(1405),
which indicates that the ordinary quark configuration inside
�(1405) is small.

We also note that our relation would be model dependent
mainly from the formulation of the radiative decay widths.
Actually we might include form factors for the meson-
baryon-baryon couplings, or we might use a usual Dirac-field
propagators for baryons. These effects altogether would lead
to ∼10% errors. Nevertheless, the scenario that the larger
radiative decay width to �γ directly leads to the larger absolute
value of the K̄N compositeness would not be changed.

C. Analysis from the �(1405) pole position

In the previous subsection we have obtained the relation
between the �(1405) radiative decay width and the absolute
value of the K̄N compositeness with the �(1405) pole
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FIG. 5. Radiative decay width of �(1405) as a function of the
absolute value of the K̄N compositeness. The �(1405) mass is fixed
as M�(1405) = 1424 MeV.

position determined from the value by the Particle Data
Group. However, as we have already mentioned, the �(1405)
pole position is not well determined in experiments, and
moreover �(1405) has two poles according to the chiral
unitary approach. Therefore, in this subsection we analyze
how our relation between the radiative decay width and the
absolute value of the K̄N compositeness |XK̄N | depends on
the �(1405) pole position.

First we show how the relation shown in Fig. 4 is changed
when the �(1405) mass, i.e., the real part of the pole
position, shifts upward to M�(1405) = 1424 MeV, as the higher
�(1405) pole in the chiral unitary approach. In this condition,
nevertheless, we expect that the relation shown in Fig. 4
will be not largely changed because we have shown that for
the K̄N bound state the binding energy dependence of the
relation between the K̄N compositeness and the radiative
decay width is very small (see Fig. 3). Indeed, by using
M�(1405) = 1424 MeV instead of M�(1405) = 1405 MeV, we
obtain the relation between the absolute value of the K̄N
compositeness and the radiative decay width shown in Fig. 5.
The result with M�(1405) = 1424 MeV is similar to that with
M�(1405) = 1405 MeV shown in Fig. 4 but the decay widths
are slightly larger according to the larger �(1405) mass. Then,
by using the relation in Fig. 5 we could estimate the absolute
value of the K̄N compositeness from the “experimental” value
[27]: |XK̄N | = 0.4+0.1

−0.2 from ��γ = 27 ± 8 keV, |XK̄N | > 0.6
from ��0γ = 10 ± 4 keV, while |XK̄N | can have an arbitrary
value witnin ��0γ = 23 ± 7 keV. These results, especially
from ��γ , would indicate that the absolute value of the K̄N
compositeness inside �(1405) would decrease slightly when
a larger �(1405) mass is used.

However, we should emphasize that the “experimental”
value in Ref. [27] is extracted from an isobar model fitting of
the decays of the K−p atom with the assumption M�(1405) =
1405 MeV. Besides, in the chiral unitary approach the K−p →
meson-baryon scatterings around and below the K−p thresh-
old contains more weight on the higher �(1405) pole of the
mass ∼1420 MeV, which is indeed supported by the K−d →
π�n reaction [47–51] and also by the absorption branching
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ratios of K− from an atomic orbit [60]. Therefore, it is better
to make a simple reanalysis of the data on the branching ratios
�K−p→�γ /�K−p→anything and �K−p→�0γ /�K−p→anything used
in Ref. [27] with the mass and the coupling constant gK−p

for the higher �(1405) pole listed in Table II. Actually, by
replacing the parameters M�(1405) = 1405 MeV and gK−p =
3.2 used in Ref. [27] with M�(1405) = 1424 MeV and gK−p =
2.25 + 0.87i, we have obtained the larger radiative decay
widths ��γ = 38 ± 8 keV and ��0γ = 17 ± 5 or 42 ± 7 keV
mainly due to the larger �(1405) mass. Then, combined
with the relation in Fig. 5, these values produce the absolute
value of the K̄N compositeness as |XK̄N | = 0.5 ± 0.1 from
��γ = 38 ± 8 keV, |XK̄N | > 0.1 from ��0γ = 17 ± 5 keV,
and |XK̄N | > 0.2 from ��0γ = 42 ± 7 keV. From this esti-
mation, we can see that the result of the absolute value of
the K̄N compositeness from the �γ decay is consistent with
that in the previous subsection using M�(1405) = 1405 MeV
throughout the analysis. This means that our main conclusion
of the absolute value of the K̄N compositeness from the K−p
atom data will not be changed even if the �(1405) pole position
is not well determined. We note that in order to reduce the
ambiguity coming from analysis of the experimental data, it is
necessary to determine the �(1405) radiative decay width in
a model-independent way.

Next, in the two-pole scenario for �(1405), the reaction
process controls which resonance pole has more weight.
Actually the K̄N → π� reaction process gives more weight to
the higher resonance pole around 1420 MeV while π� → π�
gives more weight to the lower pole [8]. For instance, in
Ref. [36] the authors observe different shapes for the �γ and
�0γ invariant mass distributions in the K−p → π0Y 0γ and
π−p → K0Y 0γ reactions, according to the different weights
to the two �(1405) poles. Namely, the former (latter) reaction
is dominated by the higher (lower) �(1405) pole. In the above
discussion on the radiative decay we have considered the
higher pole contribution. Then, it is useful to discuss how
the K̄N compositeness can be observed with the dominance
of the lower pole contribution such as in the π−p → K0�γ
reaction. Here we show in Fig. 6 the relation between the
absolute value of the K̄N compositeness inside the lower
�(1405) and its radiative decay width with the �(1405)
mass M�(1405) = 1381 MeV and the π±�∓ coupling constants
listed in Table II. As one can see, the branching ratios of the
�γ and �0γ decay modes are different from the previous
cases; as a reflection of the lower pole structure, the �0γ is
dominant in the radiative decay even when |XK̄N | is close
to unity. We also observe a wider band both for the �γ
and �0γ decay modes, which originates from the larger
π� coupling constant gπ� . Nevertheless, the mean value of
the allowed range for the �γ decay shows behavior very
similar to that in Fig. 4, which means that we can extract
similar absolute value of the K̄N compositeness with a certain
value of ��γ from both allowed regions of the �γ mode in
Figs. 4 and 6. From this analysis, it is interesting to observe
the �(1405) radiative decay in different �(1405) production
reactions, in which we might observe the different branching
ratios of the radiative decay as evidence of the two-pole
structure for �(1405) and also the different K̄N compositeness
for �(1405).
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Table II are used.

V. CONCLUSION

In this study we have investigated the radiative decay of
�(1405), �(1405) → �γ and �0γ , from the viewpoint of the
K̄N compositeness, which measures the amount of the K̄N
component inside �(1405). Since we can evaluate the K̄N
compositeness by using the �(1405)-K̄N coupling constant
and the �(1405) pole position, we can establish a relation
between the radiative decay width and the K̄N compositeness
by expressing the radiative decay width with the K̄N coupling
constant.

In order to grasp the behavior of the radiative decay
width as a function of the K̄N compositeness, we first
consider a K̄N (I = 0) bound state without couplings to other
channels. Since there are one-to-one correspondences between
the coupling constant of the bound state to K̄N and the
K̄N compositeness as well as the bound state–K̄N coupling
constant and the radiative decay width, we have established
a relation between the K̄N compositeness and the radiative
decay width. Especially the radiative decay width of the bound
state is proportional to the compositeness, since both the
radiative decay width and the compositeness are proportional
to the squared bound state–K̄N coupling constant. We have
obtained that the decay to �0γ is suppressed compared to the
decay to �γ due to the strengths of the K−p� and K−p�0

couplings. Furthermore, we have found that the binding energy
dependence of the relation between the K̄N compositeness and
the radiative decay width is very small.

Bearing in mind the discussions on the radiative decay
width of the bound state, we have investigated the radiative
decay of �(1405). Here the absolute value of the �(1405)-K̄N
coupling constant is determined from the absolute value of the
K̄N compositeness, while the �(1405)-π� coupling constant
is estimated from the strong decay of �(1405) → π�. In order
to take into account the interference between K̄N and π� in
the decay amplitude, we calculate the maximally constructive
and destructive interference, and we have shown the allowed
region of the radiative decay width of �(1405) as a function of
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the absolute value of the K̄N compositeness. We note that the
absolute value of the K̄N compositeness cannot be interpreted
as a probability of finding the K̄N component but it will be an
important piece of information on the structure of �(1405).
From the result of the radiative decay width we have found
that the allowed region for the decay to �γ is very narrow
while that for the decay to �0γ is broad, since the decay to
�γ (�0γ ) is dominated by the K̄N (π�) component inside
�(1405). This means that the decay to �γ is suited to study
the K̄N component in �(1405). Furthermore, by using the
“experimental” data on the radiative decay width the absolute
value of the K̄N compositeness is estimated as |XK̄N | � 0.5,
which implies that K̄N seems to be the largest component
inside �(1405). We have also discussed the pole position
dependence of the radiative decay width, and have found
that our main conclusion of the absolute value of the K̄N
compositeness from the K−p atom data will not be changed
even when the �(1405) pole position is not well determined.
On the other hand, in the two-pole scenario for �(1405), we
would observe the different branching ratios of the radiative
decay and the different K̄N compositeness for �(1405)
in different �(1405) production reactions, which could be
evidence of the two-pole structure for �(1405). Finally we
emphasize that, in order to evaluate more precisely the K̄N
compositeness of �(1405) from experiments, it is necessary
to determine precisely the radiative decay width of �(1405)
in various production reactions in a model-independent way.
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APPENDIX A: FEYNMAN RULES

In this Appendix we summarize the Feynman rules used in
this study.

In this study we use the propagators

Pm(p2) = i

p2 − m2 + iε
, PM (p2) = 2iM

p2 − M2 + iε
, (A1)

for mesons and baryons, respectively, where p is the momen-
tum, m and M are the masses of the propagating meson and
baryon, respectively, and ε is an infinitesimal positive value.
The Dirac matrices in PM are suppressed by an assumption
that baryons go almost on-shell.

Due to the requirement of gauge invariance, the elementary
couplings of the photon to the mesons and baryons should be
given by the minimal coupling. As a result, the γMM and
γBB vertices are given as

− iVγMM = −ieQMεμ(p + p′)μ,
(A2)

−iVγBB = −ieQBεμ

(p + p′)μ

2M
,

with the elementary charge e, the charges of meson and baryon,
QM and QB , respectively, the photon polarization εμ, and the
incoming and outgoing momenta for the hadrons pμ and p′μ,
respectively. Although the magnetic moments of the baryons

could contribute to the γBB vertex, they are small and the
contribution vanishes in the heavy baryon limit in this study
as discussed in Ref. [36].

The MBB coupling can be obtained from the lowest-order
SU(3) chiral Lagrangian,

L = −D + F√
2f

tr[B̄γ μγ5∂μ�B] − D − F√
2f

tr[B̄γ μγ5B∂μ�],

(A3)

with the meson decay constant f , parameters D and F , and the
flavor SU(3) matrices for the baryons B and Nambu-Goldstone
bosons �. This Lagrangian generates the MBB vertex as

− iVMBB = −ṼMBBγ μγ5qμ, (A4)

ṼMBB ≡ αMBB

D + F

2f
+ βMBB

D − F

2f
, (A5)

with the incoming meson momentum qμ. Then the nonrela-
tivistic reduction γ μγ5qμ → −σ · q leads the vertex to

− iVMBB = ṼMBBσ · q = −ṼMBBσμqμ, (A6)

with σμ = (0, σ ).
Finally the γMBB vertex is obtained by applying the

minimal coupling with respect to the MBB coupling as

− iVγMBB = −eQMε · σ ṼMBB = eQMεμσμṼMBB (A7)

where the nonrelativistic reduction has been used.

APPENDIX B: WARD IDENTITY FOR THE RADIATIVE
DECAY AMPLITUDE

In this Appendix we prove the Ward identity for the
radiative decay amplitude used in this study. Here we consider
a general case with nonzero total charge QT = QM + QB �=
0, which is not the case of the �(1405) radiative decay, but
consider only the single channel. Due to the nonzero total
charge, we have diagrams for the radiative decay shown in
Fig. 7 in addition to those in Fig. 2. By using the Feynman
rules and the condition k2 = 0, their decay amplitudes can be
expressed as

− iT(d) = +egQT Ṽ σμε∗
ν

(2P − k)ν

2P · k
Lμ(P ), (B1)

−iT(e) = −egQT Ṽ σμε∗
ν

(2P − k)ν

2P · k
Lμ(P − k), (B2)

where the loop integral Lμ(P ) is defined as

Lμ(P ) ≡ i

∫
d4q

(2π )4

qμ

q2 − m2

1

(P − q)2 − M2
. (B3)

The other three amplitudes are given in Eqs. (12), (13),
and (14).

T(d) T(e)

FIG. 7. Supplemental Feynman diagrams for the radiative decay
with nonzero total charge.
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The Ward identity states that sum of the five amplitudes
becomes zero if one takes ε∗

ν → kν for on-shell photon, k2 = 0.
In order to prove this, we first show the relations for kνD

μν
1

and kνD
μν
2 ,

kνD
μν
1 = Lμ(P − k) − Lμ(q) + kμG(P ), (B4)

kνD
μν
2 = Lμ(P − k) − Lμ(q), (B5)

which can be obtained by using the identity

kν(2q − k)ν

[(q − k)2 − m2][q2 − m2]
= 1

(q − k)2 − m2
− 1

q2 − m2
,

(B6)

with k2 = 0. Then, with the replacement of ε∗
ν → kν , the decay

amplitudes become

T(a) → −iegQMṼ σμkμG(P ), (B7)

T(b) → +iegQMṼ σμ[Lμ(P − k) − Lμ(P ) + kμG(P )],

(B8)

T(c) → +iegQBṼ σμ[Lμ(P − k) − Lμ(P )], (B9)

T(d) → +iegQT Ṽ σμLμ(P ), (B10)

T(e) → −iegQT Ṽ σμLμ(P − k), (B11)

As a result, we obtain

T(a) + T(b) + T(c) + T(d) + T(e) → 0. (B12)

for ε∗
ν → kν . This means that the Ward identity is indeed

satisfied for the five amplitudes. Here we have assumed
the decay in the single channel, but Eq. (B12) indicates
that the Ward identity is satisfied in each channel. This is
reasonable, because in the multichannel approach we may take
the coupling constant gi independently for each channel i, and
hence the Ward identity should be satisfied independently in
each channel. Finally we emphasize that if QT = 0, as is the
case of the �(1405) radiative decay, we do not have T(d) and
T(e) and hence the Ward identity is satisfied even for the three
amplitudes T(a), T(b), and T(c).
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