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Accounting for backflow in hydrodynamic-Boltzmann interfaces
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Methods for building a consistent interface between hydrodynamic and Boltzmann modules is presented.
These methods account for the backflow across the hydrodynamic-Boltzmann hypersurface. The algorithms are
efficient, relatively straight-forward to implement, and exactly satisfy conservation laws across the hypersurface.
The methods also account for the interactions between particles in the backflow and other particles by following
the subsequent impact of such particles. Since the number of altered trajectories grows exponentially in time,
a cutoff is built into the procedure so that the effects of the backflow are ignored beyond a certain number of
collisions.
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I. INTRODUCTION AND MOTIVATION

Relativistic viscous hydrodynamics is a popular choice for
modeling high-energy heavy-ion collisions. Hydrodynamics
is appropriate when collisions are sufficiently rapid to keep
the various species moving with a single collective velocity
and local kinetic temperature, and to keep the stress-energy
tensor sufficiently isotropic to warrant a viscous treatment.
However, these conditions are lost near the end of the reaction,
when the various hadrons begin to cool separately and move
with different collective velocities [1,2]. The final stage of
the reaction and the decoupling are then best modeled with a
microscopic simulation, which in the limit of many particles, or
with a high oversampling, becomes equivalent to a Boltzmann
description. Often these simulations are referred to as hadronic
cascades.

Particles are emitted into the hadronic cascade through a
hypersurface separating the hydrodynamic region from the
cascade. If the phase-space density at the boundary is

f (p,r,t) = 1

(2π )3

dN

d3pd3r
, (1)

the number of particles emitted into the simulation side of
the boundary through a hypersurface element is given by the
Cooper–Frye formula [3],

dN = d3p

(2π )3

p · �

Ep

f (p). (2)

Here, �μ is a small hypersurface element located at position r
and time t . Variations of the Cooper–Frye formula have been
applied to numerous hybrid models [4–7]. In each of these
approaches the Boltzmann equation is solved by sampling
techniques, i.e., rather than storing information for each
phase-space element d3pd3r/(2π )3, one follows the evolution
of sample particles chosen consistently with the phase-space
density. For sampling ratios of unity, this becomes a one-to-one
simulation of the hadronic stage, and the simulations are often
labeled as a cascade. For higher sampling ratios, the models
approach the limit of a Boltzmann equation. Since hadronic
cascades are modeling the low-density stage at the end of the
collision where velocity gradients are reduced, sampling ratios

of unity are nearly indistinguishable from the Boltzmann limit.
This is in contrast to the case of simulating the early partonic
stage, where sampling ratios need to be of order 10 or more
to approach the Boltzmann limit [8,9]. Whether the sampling
ratios are unity or not, one needs to generate particles into the
cascade code consistently with the hydrodynamic description
at the hypersurface.

For a timelike element, �2 > 0, one can consider the
emission from a frame where the emission is simultaneous
across the element and �0 represents a volume element
undergoing sudden emission. For a spacelike element, one
can choose a frame where the surface is stationary. In this
frame, �i represents the area of the element multiplied by
the time of the emission. Depending on the hypersurface
element, �μ, and the particle’s momentum pμ, the number dN
can be either positive or negative. The positive contribution
describes particles being fed into the cascade, whereas the
negative contribution represents the backflow, i.e., those
particles which leave the cascade region, cross the interface,
and enter the hydrodynamic domain. Both the positive and
negative contributions are necessary if energy, momentum,
and charge are to be conserved across the interface. Similar
issues to those being discussed here in the context of a
hydrodynamics-cascade interface have also been studied with
regards to coupling hydrodynamics directly to the vacuum.
This involves ignoring the subsequent interactions of those
particles as they decouple from the hydrodynamic medium;
see, for example, Ref. [10]. When coupling directly to the
vacuum the stress-energy tensor is discontinuous, while with
coupling to a Boltzmann code, one can aim for a continuous
description if the interface occurs at a sufficiently high density
that collision rates justify the hydrodynamic description.

Most hadronic cascades ignore backflow. Such codes apply
a step function, �(p · �), to Eq. (2), and do not erase particles
from the simulation that flow backward across the boundary.
For modeling of particles at midrapidity, it has been shown that
the backflow is on the order of one half of one percent [11,12].
However, it has been reported that the error grows to the level
of several percent away from midrapidity [11]. The purpose
of this short paper is to introduce a method for correcting for
backflow. The approach accounts for the backflow through
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the production and propagation of negative-weight particles.
Local conservation laws are exactly conserved in the limit of
high sampling. The theoretical underpinnings of this approach
are described in the next two sections. A hadronic cascade was
altered to incorporate these changes, and a brief evaluation
of the behavior is presented in the subsequent section. The
Appendix provides a description of the algorithm used to
numerically sample the particle flow across the hydrodynamic-
cascade interface.

II. COOPER–FRYE FORMALISM

In order to apply the Cooper–Frye formalism of Eq. (2)
one needs to first generate a list of hypersurface elements �I

μ,
where the index I denotes each small element. Formally, �I

μ

can be described as the portion of the hypersurface that falls
within a small four-volume element

∫
I
d4x. The surface is

described by a criteria based on local properties, such as the
temperature or density, and can be written parametrically as

C(x) = C(T (x),ρ(x)) = 0, (3)

where the function ρ could be any quantity propagated
through the hydrodynamic evolution, such as the particle
or energy density that depends on the spacetime coordinate
x. For instance, if the interface is chosen to occur at fixed
temperature T0, the location of the surface would be described
by C(x) = T (x) − T0 = 0. The function should be defined
such that one is inside the hydrodynamic region if C(x) > 0
and outside if C(x) < 0. The hypersurface element is then

�I
μ = −

∫
I

d4x∂μ�(C(x)) = −
∫

I

d4xδ(C(x))∂μC(x), (4)

where � is a step function. For example, if C is defined by a
surface of constant temperature, �I

μ is parallel to −∂μT .
For timelike elements, �2 > 0, one can always consider

the element in a frame where � points purely in the time
direction. In this frame the emission is simultaneous across
the hypersurface, and �0 represents a small volume element. If
�0 > 0 the criteria C is falling with time, e.g., the temperature
is falling, and particles are being emitted into the cascade
region. The majority of the emission in heavy-ion collisions
comes from such elements. For �0 < 0, the criteria is rising,
and the hydrodynamic region is absorbing the volume element.
This can be understood by considering the sign of the p · �
term in the Cooper–Frye formula. Having �0 < 0 is unusual in
a timelike element, because it is difficult to find an area where
the density or temperatures are rising. Even with lumpy initial
conditions, the longitudinal expansion is driving the densities
downward in regions where two lumps are expanding into one
another.

For spacelike elements, �2 < 0, one can always find a boost
and rotation which point �μ along the positive x axis. In this
frame the emission surface is temporarily stationary, and the
emission dN is positive for particles with px > 0 and negative
for px < 0. If the flow velocity in this frame, ux , is greater
than zero, there will more positive contributions than negative
contributions. For explosive collisions this is usually the case.
The negative contributions represent those particles flowing
into the hydrodynamic region, i.e., the backflow.

Both the positive and negative contributions are required to
conserve charge. For instance, the charge that travels through
an element, from the hydrodynamic to the cascade region
between times t1 and t2, is

�Q =
∑

I

�I
μjμ =

∫
t1<x0<t2

d4xjμ∂μ�(C(x))

= −
∫

t1<x0<t2

d4x�(C(x))∂ ·j +
∫

x0=t1

d3xj0(x)�(C(x))

−
∫

x0=t2

d3xj0(x)�(C(x)). (5)

The first term vanishes from current conservation and the last
two terms describe the difference between the net charges in
the C(x) > 0 region at the two times. The net current density
for all the hadron species a can be written in terms of the
phase-space density as

jμ(x) =
∑

a

Qa

∫
d3p

(2π )3

pμ

Ep

fa(p,x). (6)

Since the contributions from all momenta are required to
construct the conserved current density at a position x, one
cannot throw away the contributions to the Cooper–Frye
formula from those momenta with p · � < 0 without violating
current conservation. Similar expressions can be derived for
the energy and momentum, thus showing that the negative
contributions to the Coope—Frye expressions are essential if
one wishes to satisfy any of the conservation laws.

There exist numerous algorithms for finding the hypersur-
face, depending on whether the initial conditions are lumpy
or smooth, whether the calculation is one dimensional, two
dimensional, or three dimensional, and depending on what
sort of mesh is used to model the hydrodynamic expansion. A
particularly robust algorithm that works for three-dimensional
systems of arbitrary topology is described in Ref. [11].

III. METHODS FOR ACCOUNTING FOR BACKFLOW

The output of hydrodynamic codes is a list of the hyper-
surface elements �I , their spacetime coordinates, and any
additional information required to reconstruct the phase-space
density, e.g., the collective flow, temperature, densities, and
anisotropies of the stress-energy tensor. For each d3p within
each �I , one can calculate the probability of creating a particle,
dN . One then decides to create a particle with probability
dN . An efficient algorithm for doing this is presented in the
Appendix. The issue of backflow occurs when dN is negative.
In the field of relativistic heavy ions, two approaches have been
applied thus far. The first approach is simply to neglect the
negative contribution. As mentioned in the introduction, this
violates energy, momentum and charge conservation below
the one percent level at midrapidity, and higher away from
midrapidity.

A second method for handling the backflow has been to
erase those particles from the cascade that cross back into the
hydrodynamic region. This requires storing the location of the
hypersurface from the hydrodynamic module for consideration
by the cascade. This method would satisfy the conservation
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laws as long as the phase-space density is continuous across
the boundary. A strong discontinuity would suggest that the
hydrodynamic treatment was not justified for the densities or
temperatures that determined the interface, or that the viscous
corrections to the stress-energy tensor in the hydrodynamic
treatment is not consistent with the dynamics of a hadron gas.
Choosing a higher interface density or temperature, or better
accounting for viscous effects, might solve the problem. For
the purpose of this paper, we will assume that the phase-space
density is continuous, although with the recommendation that
the continuity be better studied in the future. A more daunting
problem with this approach comes from the book keeping
required to decide whether particles crossed the boundary.
Hydrodynamic approaches tend to use very small cells, on the
order of 0.1 fm. Particles would typically cross hundreds of
such cell boundaries, with a very small fraction of such cell
boundaries representing an interface with the hydrodynamic
treatment. Although there are a variety of algorithms used in
cascades, it would seem that the majority of the numerical cost
in performing the cascades might then be applied to tracking
the backflow. Given the field’s interest in fluctuating (lumpy)
initial conditions, the topology of the breakup surface could be
complex and could vary event-to-event. This makes it difficult
to find a robust algorithm that avoids constantly checking for
interface crossings. This approach was applied in Ref. [12] but
that was for a smooth, azimuthally symmetric, boost-invariant
hydrodynamic treatment, where the hypersurface could be
represented by giving the radius of the transition hypersurface
as a function of time.

A third scheme is presented here. Instead of tracking
particles relative to the interface, this scheme simulates the
evolution of particles emitted with the negative weights,
p · � < 0, from Eq. (2). A weight of negative unity is
originally assigned to such particles, whereas a weight of
positive unity is assigned to particles emitted with p · � > 0.
Since the negative-weight particles are a small fraction of the
overall particles, the additional numerical cost should be on
the order of a few percent. The particles are then evolved
through the cascade, but with the products of each collision
being assigned weights as described below. When analyzing
the final products for their impact on specific observables,
each particle would contribute proportional to its weight. For
instance, when incrementing a bin used to calculate spectra, a
particle with weight of −1 would reduce the bin count by one.

If the phase-space density is continuous across the interface,
the particles being scattered from the cascade region back into
the hydrodynamic region should exactly cancel the negatively
weighted particles emitted according to the Cooper–Frye
formula. Even if the phase-space density turns out to be
discontinuous, this method will still satisfy all the conservation
laws.

It is propagating the weights through the subsequent
collisions where the weighting becomes complicated. If a
pair of incoming particles each has a weight of positive
unity, both incoming particles are removed from the particle
list after the collision (a weight of zero is assigned to the
incoming particles) and a weight of positive unity is assigned
to each of the collision products. However, if the N incoming
particles have arbitrary weights, wi,1, . . . ,wi,N , both the new

outgoing particles and incoming particles need to be assigned
nonzero postcollision weights if the conservation laws are to be
satisfied. If the new weights assigned to the incoming particles
are nonzero, those particles cannot be deleted from the particle
list after the collision.

The weights for the M outgoing particles (those that are
newly created or are scattered into new momentum states) are
labeled wf,b, and are all set to the product of the weights of
the incoming particles,

wf,b = W, b = 1,M, (7)

W ≡
N∏

a=1

wi,a. (8)

The weights for the scattered or newly created particles are all
equal to the product of the incoming weights. This ensures that
if any of the incoming weights are changed by a factor F , that
the weight of each of the outgoing products is changed by the
same factor. Instead of being erased, the incoming particles
are assigned postcollision weights w′

f,a ,

w′
f,a = wi,a − W, a = 1,N. (9)

If all the incoming weights are unity, w′
f,a = 0 for all a,

and the incoming particles can be erased. Assigning nonzero
postcollision weights to the incoming particles as prescribed
in Eq. (9) ensures that conservation laws are enforced in each
collision,

∑
a=1,N

wi,aQa =
∑

b=1,M

wf,bQb +
∑

a=1,N

w′
f,aQa, (10)

given that charge is conserved in the reaction,
∑

a=1,N

Qa =
∑

b=1,M

Qb. (11)

The conserved charge Q could just as easily refer to a
continuous variable like momentum or energy.

For the several simple processes involving 2 → M scatter-
ings or 1 → M decays, the weights of the outgoing particles
are shown in Eqs. (12). Each incoming particle is labeled
(p,w), where p refers to all information about the particle and
its trajectory, while w is its weight. The outgoing particles are
similarly referenced, with q referring to the particle’s infor-
mation. If all weights were unity, the weights could be ignored
and the reactions would be described as p1,p2 → q1, . . . ,qM .
One can understand the weightings for each line of Eq. (12)
from Eq. (7). For example, one can consider a case where
a positive-weight particle collides with a negative-weight
particle, wi,1 = 1,wi,2 = −1. The positive-weight particle
should not have scattered since the negative-weight particle
should not be there, plus the negative-weight particle is in
principle canceling the effect of a spurious positive-weight
particle that should have been erased from cascade for having
re-entered the hydrodynamic region. Thus, not only should
particle 1 not scatter, but one needs to correct for the fact
that such particles sometimes scatter spuriously, which means
the forward-going track weight needs to go from 1 to 2. The
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scattered tracks are given negative weight to cancel the effect
of particle 1 scattering off a spurious track. Similar arguments
follow for each row in the list. If the phase-space density
is continuous across the border, the original negative-weight

tracks should exactly cancel the positive-weight tracks that
would have been erased when re-entering the hydrodynamic
region if one were applying the second method described
earlier:

W ≡
N∏

a=1

wa,

(p1,w1), . . . ,(pN,wN ) → (p1,w1 − W ), . . . ,(pN,wN − W ),(q1,W ), . . . ,(qM,W ),

(p1,+1) → (q1,+1), . . . ,(qM,+1),

(p1,−1) → (q1,−1), . . . ,(qM,−1), (12)

(p1,+1),(p2,+1) → (q1,+1), . . . ,(qM,+1),

(p1,+1),(p2,−1) → (p1,+2),(q1,−1), . . . ,(qM,−1),

(p1,−1),(p2,−1) → (p1,−2),(p2,−2),(q1,+1), . . . ,(qM,+1).

Implementing the procedure described in Eq. (12) turns
out to be nontenable due to the growth in the weights of the
outgoing products. For example, if two particles with weight
2 collide, the scattered particles would have weights of 4.
In practice, this leads to exponentially growing weights as a
function of the number of collisions. In addition to the growing
weights, the number of trajectories being considered increases
since the incoming particles are often reweighted, rather than
deleted. For a central Au + Au collision at the highest energy
of the Relativistic Heavy Ion Collider (RHIC), final-state
weights would often exceed the numerical range of the
computer, and the number of tracks would exceed the available
memory. Even if the cascade were allowed to finish, the
high-weighted tracks would overwhelm the answer with noise.
Thus, the procedure needs to be modified so that the effects of
scattering with nonunity-weighted particles is regulated.

To limit the growth and associated noise of heavily
weighted tracks, the procedure described above was modified.
Particles were first divided into two sets: base particles
and backflow tracer particles. The base particles all have
weights of positive unity. They are created and evolve
exactly as if the backflow particles had never been in-
cluded in the cascade. The set of tracer particles begins
as those negative-weighted particles representing the back-
flow. They also include all the trajectories required to

trace the influence of the backflow. These trajectories can have
weights of either positive or negative unity. Tracer particles
are allowed to interact with base particles, but are not allowed
to collide with one another. For this reason the effect of the
backflow is handled correctly to linear order in the backflow.
Since the fraction of backflow particles is unlikely to exceed
a few percent, the error associated with this approximation
should be on the order of a tenth of a percent or less. Charge,
energy and momentum is conserved in each collision as well
as in the generation of the particles through the hydrodynamic-
cascade boundary.

All of the base particles are assigned weights of positive
unity, whereas the tracer particles are allowed to have weights
of ±1. The weights for scattering processes need to be assigned
consistently with those given in Eq. (12). However, because
collisions between two tracer particles are neglected, the list of
interactions is abbreviated and given in Eq. (13). For a collision
between incoming particles whose momenta, position, and
charges are labeled by p1 and p2 while the outgoing particles
are denoted by q1, . . . qM , the cascade must consider three
cases. In the first case both particles are base particles and have
weights of positive unity. Such particles are described by the
notation (pi,+1,base). In the second case, one of the particles
is a tracer particle with positive weight, (pi,+1,tracer), and in
the third case one has a tracer particle of negative weight:

(p1,+1,base),(p2,+1,base) → (q1,+1,base), . . . ,(qm,+1,base),

(p1,+1,base),(p2,+1,tracer) → (p1,+1,base),(p1,−1,tracer),(q1,+1,tracer), . . . ,(qm,+1,tracer), (13)

(p1,+1,base),(p2,−1,tracer) → (p1,+1,base),(p1,+1,tracer),(q1,−1,tracer), . . . ,(qm,−1,tracer).

For decays, p → q1, . . . ,qM , the outgoing decay products all
have the same weights as the incoming particle, and are all
either base or all tracer particles depending on whether p is a
base or tracer particle. For decays, the original track is deleted.

From inspecting the three reactions in Eq. (13) one can see
that the evolution of the base particles is exactly the same as

it would be without the tracer particles, because there is no
change to the base particles when a base particle collides with
a tracer particles. The tracer particles for the final states are
all added into the equations on the right-hand sides of the last
two expressions in Eq. (13) to make the reactions consistent
with the weights in Eq. (12). For the two reactions involving
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tracer particles there are two outgoing particles that differ only
by their weights or by whether they are tracer particles. Since
having two particles with the same trajectory would cause
numerical problems, the second particle is translated randomly
in relative rapidity in the case of Bjorken boost invariance or, if
boost invariance is not implemented, moved by a small random
step in coordinate space.

This procedure correctly reproduces the evolution de-
scribed by the algorithm described in Eq. (12) to first order in
the backflow. However, for the 2 → 2 processes described in
Eq. (13) that involve an incoming tracer particle, the number
of tracer particles triples from one to three. Thus, if a large
number of collisions occur the number or tracer particles
quickly grows and the method can become noisy. For that
reason, the scattering of tracer particles is curtailed once a
tracer particle and its ancestors have suffered a number of
collisions Nmax. This is accomplished by storing a number
ncoll for each tracer particle. Then, when a incoming tracer
particle scatters according to the list in Eq. (13), the number is
incremented by one and assigned to all the tracer products of
the final state. If ncoll > Nmax, the tracer particle is no longer
allowed to collide.

IV. TESTING THE APPROACH

The method was incorporated into the hadronic cascade
B3D [7] and applied to the modeling of a longitudinally boost-
invariant system. The cascade evolved hadrons with spatial
rapidities between 1 and −1 that emitted from a hydrodynamic
code, also described in Ref. [7]. B3D incorporates boost
invariance by applying cyclic boundary conditions in longi-
tudinal rapidity. The collisions being modeled were 100A+
100A GeV Au + Au collisions with centralities of 0%–5%.

The parameters for this particular run are not important for the
considerations of this study, but were chosen so that the model
output was consistent with data from RHIC according to the
analysis in Ref. [7]. The hydrodynamic code produced a list
of hypersurface elements. Each element was listed along with
a description of the element’s collective velocity, position,
temperature, and the viscous correction to its stress-energy
tensor. Using the method described in the Appendix, particles
were generated from the elements to be considered in the
cascade. Less than one half of one percent of these particles
had negative weights. For each proper time τ , the radial
location of the hypersurface, r(τ,φ), was estimated for each of
several azimuthal angles φ. This produced a smoothly evolving
hypersurface. Some approaches constrain the hypersurface to
cell boundaries. The surfaces might then hold steady for a few
time steps before suddenly absorbing a cell. These varying
approaches should yield the same spectra if the backflow is
accounted for correctly, even though the number of additional
tracer particles could vary depending on the algorithm used to
find the hypersurface.

Figure 1 shows the initial positions and radial velocities
of the negative-weight particles being fed into the cascade
from 1000 events. Each event typically had ≈4.5 particles
with negative weight being fed into the cascade. The positions
of the emitted particles were confined to those times for
which the surface moved with subluminar velocities, i.e.,
the hypersurface elements were spacelike. At later times, the
surface collapsed so quickly that its position moved faster
than the speed of light. The resulting elements were then time
like and no negative-weight particles were emitted. The radial
positions of the negative-weight emissions are shown in the
left-side panel of Fig. 1, where one can see that such emissions

FIG. 1. (Color online) The position of negative-weight tracer particles at their time of emission from the hydro module for consideration
by the cascade module is shown in the left-side panel. Results for 1000 events are displayed. Emission occurs along the breakup hypersurface
during early times, but once the collapsing hypersurface falls in faster than the speed of light, emission ceases. The radial velocities of the same
particles are displayed in the right-hand panel. Since the surface moves inward, the negative-weight particles all have negative velocities. As
the surface falls more quickly, the velocities of those particles crossing the surface with p · � < 0 are confined to smaller values.
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FIG. 2. (Color online) The net weight of tracer pions in the final
state binned by transverse momentum. Since the majority of tracer
particles have negative weight, the correction is negative. Results are
displayed for several cutoffs on the maximum numbers of tracer scat-
terings, Nmax = 0 (solid black line), Nmax = 2 (red circles), Nmax = 4
(green squares), Nmax = 6 (blue downward-pointing triangles) and
Nmax = 8 (cyan upward-pointing triangles). The correction mainly
occurs at low relative momentum, and there is little observable
difference once Nmax > 2. Calculations for larger Nmax are plagued
by increasing noise.

cease by 5 fm/c, even though many of the positive-weight
particles were yet to be emitted. The right-hand side of the
panel shows the radial velocities of those same particles.
Since the surface always moves inward, only particles with
negative radial velocities cross from the cascade-side to the
hydrodynamic side of the interface. For any given τ the only
emissions were for particles with velocities below the velocity
of the hypersurface. Once that velocity exceeds −c, emissions
of negative-weight particles ceased.

Accounting for the negative-weight particles lowers the
spectra, mainly at low transverse momentum, or pt . Since
the number of particles is so low, the change to the spectra is
too small to easily visualize, so instead we show the change to
the spectra in Fig. 2 by evaluating

�N ≡
∑

tracersi

wi. (14)

Since the tracer particles have mostly negative weight, the
change to the spectral distributions are negative. From 10 000
cascade events, �N was calculated for pt bins of width
50 MeV/c and is displayed in Fig. 2 for several cutoffs on
the maximum number of collisions a tracer particle is allowed
to have, Nmax. For Nmax = 0, the negative-weight particles do
not scatter. For Nmax = 2, there is a modest change to the pt

distribution compared to that for Nmax = 0. Distributions are
shown for Nmax = 4 and 7, but they vary little compared with
that for Nmax = 2. Although the distributions change little, it
is easy to see the increase in the noise, even though a large
number of events were being simulated.

FIG. 3. (Color online) From a simulation of the central two units
of rapidity in a 100A GeV on 100A GeV Au + Au collision, the
number of tracer particles, the additional particles required to model
the effects of the backflow, is shown in panel (b) as a function of
Nmax, which limits the amount of scattering the tracer particles can
undergo. For Nmax = 0 backflow particles never scatter and only 4.5
particles are required. However, the effect of a scattering spreads over
more and more tracer particles as Nmax is increased, and by the time
Nmax = 7, the number of tracer particles is greater than the number
of base particles. Panel (a) shows the net transverse energy carried by
tracer particles in the final state. The effect rapidly saturates for large
Nmax. Large Nmax is numerically more expensive and can introduce
more statistical noise into the analysis.

To better analyze the effect of changing Nmax, we consider
the change in the transverse energy of the tracer particles. This
is denoted by �Et ,

�Et ≡
∑

tracersi

wi

√
m2

i + p2
i,t , (15)

and is shown in the upper panel of Fig. 3 as a function of Nmax.
For Nmax = 0, the reduction to the total transverse energy in
the rapidity window is near 2.1 GeV. This is only a few tenths
of a percent of the total transverse energy. By increasing Nmax,
that number is increased to near −1.6 GeV. The changes for
Nmax > 4 are too small to overcome the statistical noise, and
the change for Nmax > 2 are also on the order of 150 MeV and
are far smaller than errors associated with the approximations
with the calculation and are also far smaller than experimental
uncertainties in the measurement of transverse energy. Even
if the number of original negative-weight particles were
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increased by an order of magnitude, a setting of Nmax = 2
would be sufficient.

For higher values of Nmax, the number of tracer particles
increases exponentially. Even though the net weight of tracer
particles, those with negative weight minus those with positive
weights, is only a half dozen, the total number exceeds the
number of regular particles by the time Nmax = 7, as shown
in the lower panel of Fig. 3. This increase is accompanied by
a noticeable increase in computational cost. Considering the
results from the upper panel of Fig. 3, it would make sense to
cut off Nmax at lower values. Given that most particles collide
approximately 3 times, it is surprising that the number of
tracer particles continues to rise for Nmax > 3. The explanation
comes from the fact that the negative-weight particles are those
with negative radial velocities and are emitted directly into the
outgoing blast wave. Many of them would collide 10 times or
more.

The method was implemented into the Cooper–Frye gener-
ator and hadronic cascade used in the code B3D [7]. This code
incorporates the list of resonances and decays described in the
particle data book [13]. For every decay, the inverse process is
included through a Breit–Wigner cross section. Additionally, a
10 mb s-wave cross section is included for all channels. B3D can
generate particles from the hypersurface using the algorithms
described in the Appendix, and perform the hadronic cascade
in approximately 0.25 seconds on a single core in a typical
laptop. Adding backflow corrections with Nmax = 3 slowed
the code down by 3% and increased the size of the final-state
data files by 5%. The results of Fig. 3 show that using Nmax = 3
allows one to calculate the effects of the backflow to better than
10%. Given that backflow is a small effect, this should be more
than sufficient for most purposes.

V. SUMMARY

The backflow contribution from a Cooper–Frye interface
between hydrodynamic and Boltzmann-cascade models can
indeed be accounted for with the methods described here.
The method correctly accounts for the backflow in the limit
that the backflow is sufficiently small so that the effects are
linear in the backflow. Additionally, a second approximation
was applied that limits the simulation of backflow to a finite
number of scatterings. Most of the secondary scattering effects
occur in the first few scatterings, which allows one to impose
the cutoff for small Nmax. This prevents the method from
consuming significant additional numerical resources or from
adding significant statistical noise to the output. Even with
Nmax = 0, charge, energy, and momentum conservation was
enforced by the algorithm.

This work was mainly motivated by the desire to find
a method to account for backflow without requiring dis-
proportionate resources to describe an effect whose impact
is modest at best. At midrapidity in high-energy heavy-ion
collisions, the number of particles traveling back into the
hydrodynamic region is only a fraction of a percent of the total
number of particles. For slightly lower energies, or away from
midrapidity, that fraction might increase, although is unlikely
to exceed a few percent. The method described here seems
ideal for such cases.
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APPENDIX: ALGORITHM FOR GENERATING
PARTICLES

For a small hypersurface element �μ, the number of
particles emitted is

dN = p · �

(2π )3

d3p

Ep

f (p) = |w(p)|�opt
d3p′

(2π )3
f ′(p′),

(A1)

w(p) = � · p

�opt(u · p)
, �opt = � · u +

√
(� · u)2 − �2.

Aside from the factor of w(p), the second line looks like
the usual thermal emission. The primed quantities refer to
momenta and phase-space densities measured in the reference
frame of the fluid, i.e., the frame where u · p = E′. This
formula works for any �opt, but for a Monte Carlo procedure it
must be chosen large enough that |w(p)| never exceeds unity
for any p. Efficiency is lost if it becomes larger than necessary.
The choice above is the optimum value as it corresponds to
the smallest acceptable value that keeps |w(p)| � 1.

The strategy is as follows:

(i) Choose particles according to a static thermal dis-
tribution with volume �opt. The quantity f should
incorporate any viscous corrections.

(ii) Boost the particles by the four-velocity u.
(iii) Keep or reject the particle with probability |w(p)|.

If a particle is created, a weight of ±1 is assigned
depending on whether w(p) is greater or less than
zero. If rejected, continue to the next species.

This procedure should be repeated for each species.
However, volume elements tend to be small and there might be
many species with small probabilities. Rather than throwing
random numbers for each species it is more efficient to
implement the following algorithm:

(i) Generate a series of thresholds separated by random
amounts, − ln (ran()), where ran() generates a random
number between zero and unity. This produces thresh-
olds separated by lengths with probabilities e−x . If one
is at a position x and one increments by dx → 0, the
chance of hitting a threshold is dx, independent of any
previous threshold.

(ii) Thus one can make a cumulative sum for each species
i,

Si =
∑
j�i

�optnj , (A2)

where nj is the density in the rest frame of species j . If
Si crosses a threshold, one considers creating a particle
as described above. If Si crosses two thresholds, one
attempts to create two particles.

For each differential probability the chance of crossing
a threshold will be independent of any other differential
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probability, so the emissions are independent, and thus Poisso-
nian. With this approach, the number of random numbers one
generates in deciding whether to attempt creating a particle
is the number of particles one would make if the weights,
w(p) in Eq. (A1), were unity. This can be a significant
improvement compared to throwing random numbers for each
species (perhaps over 300) in each volume element (perhaps
many millions). Since one knows the total density of hadrons,
nhad, one can check to see whether nhad�opt crosses a threshold.
If not, one can increment the running total in one swipe and
avoid considering each species independently.

This procedure assumes that you already know nj . For
calculations where the interfaces is defined by a fixed temper-
ature, and with μ = 0, one can calculate these densities once,
and store them. For calculations with a variety of breakup
densities, one might store an array of values.

Generating a particle according to a thermal
phase-space density

In the absence of viscous corrections one can generate a
particle in the fluid rest frame with the following algorithm.
For a probability distribution ∼xn−1e−x , one can sample
the distribution by taking the natural log of the product of
three random numbers, i.e., x = − ln(r1r2 · · · rn), where ri are
random numbers chosen uniformly between zero and unity.
For a three-dimensional distribution of massless particles, the
choice of coordinates is

p = −T ln(r1r2r3), cos θ = ln(r1) − ln(r2)

ln(r1) + ln(r2)
,

φ = 2π [ln(r1r2)]2

[ln(r1r2r3)]2
.

To check that this works one can calculate the Jacobian,

dN = dr1dr2dr3 = dpd cos θdφ|J |,
(A3)

J = p2

8πT 3
e−p/T .

For massive particles one can throw a fourth random number
r4, and if r4 > e−(E−p)/T , one repeats the procedure until one
satisfies the additional condition.

Unfortunately, this becomes inefficient for large masses m
because the probability of successfully satisfying the condition
for r4 becomes small for small T/m. In that case one applies
an alternative algorithm. For T/m < 0.6, it was empirically
found that a more efficient method is based on the expression

dN ∼ p2dpe−Ep/T ∼ p

Ep

(K + m)2dKe−K/T , (A4)

where K = E − m is the kinetic energy. The strategy is to
generate K ignoring the factor p/Ep, then do a keep-or-repeat
based on the weight p/Ep. To generate a value of K consistent
with (K + m)2e−K/t , one breaks up the factor (K + m)2 into
three terms,

dN ∼ (K2 + 2mK + m2)e−K/T . (A5)

One first throws a random number r0 and chooses which
of the three terms to use as a distribution based on the
integrated weights for each term, 2T 3,2mT 2, and m2T . Once
one has picked a given term, one can pick K as −T ln(r1r2r3),
− T ln(r1r2) and −T ln(r1), respectively. With this value of K ,
one can now do a keep-or-repeat decision based on the weight
p/Ep. After K is chosen, cos θ and φ can be picked with new
random numbers, r4and r5.

Viscous corrections can be applied according to Ref. [14].
This involves transforming the momentum according to (in the
rest frame)

pi = (δij + γ τij )pj , (A6)

where τij is the shear tensor in the frame of the fluid, and
γ is a constant chosen so that the generated distribution will
indeed have the stress-energy tensor one wishes assuming that
the viscous correction τ is much smaller than the pressure.
This coefficient γ can be found analytically given the list of
masses and spins of the hadrons [14]. For τ/P < 1/2, the
linear approximation is good to the one percent level or better
in that it consistently reproduces the viscous correction τij

according to

τij = 1

�

∑
i

∫
d3p

dN

d3p

pipj

Ep

. (A7)

For modeling collisions at RHIC or at the Large Hadron
Collider, the algorithm described here can generate the
thousands of particles needed for a few units of rapidity in
a few hundredths of a second.
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