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Origin of long-range azimuthal correlations in hadronic collisions
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I review the models suggested to date as an explanation for the so-called “ridge” phenomenon: an elongation
in rapidity of two-particle correlations seen at energies of the BNL Relativistic Heavy Ion Collider and the CERN
Large Hadron Collider. I argue that these models can be divided into two phenomenologically distinct classes:
“Hotspot + flow”-driven correlations, where initial-state correlations created by structures local in configuration
space are collimated by transverse flow, and models where the azimuthal correlation is created through local
partonic interactions in a high-gluon-density initial state. I argue that the measurement of a strong double ridge
in pA and dA collisions allows a good opportunity to understand the ridge’s origin because it allows us to see
if a common Knudsen number scaling, which is expected if the ridge has a hydrodynamic origin, can be used
to understand all data. I show that current data present evidence that this scaling is lacking, which presents
a challenge to the hydrodynamic models. On the other hand, particle-identified correlations are a particularly
promising way of testing the assumption that distinguishes the two models; namely, of whether the correlation is
formed initially in the partonic phase, or as a final-state effect. Assuming fragmentation occurs “as in vacuum”
can be used to predict scaling trends which are generally broken by models, such as hydrodynamics, where the
ridge is created as a final-state effect. While evidence is again not fully conclusive, data do seem to follow a
scaling compatible with hydrodynamics [Phys. Rev. Lett. 111, 172303 (2013)]. I close by discussing experimental
observables capable of clarifying the situation.
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I. INTRODUCTION

The so-called “ridge,” which is found in hadronic collisions
at energies of the BNL Relativistic Heavy Ion Collider (RHIC)
and the CERN Large Hadron Collider (LHC) [1–13], has
been subject to years of intense theoretical and experimental
investigation and can be regarded as a crucial observable in the
study of dense QCD. The ridge is a two-particle correlation
focused in the azimuthal difference �φ and elongated in
pseudorapidity η. This correlation seems to be specific to
high-multiplicity hadronic processes (more central high

√
s

heavy ion, pA, dA [2–7], and very high multiplicity pp
collisions [8–12]), suggesting it is related to the appearance of
a “medium.”

It is further possible to relate ridge physics to bulk
anisotropies particle production [14–16]: The two-particle
correlation function, including the ridge, can be successfully
decomposed in Fourier components (commonly known as vn)
with respect to the reaction plane �n:

dN

d3p
= dN

dp2
T dη

(
1 + 2

∞∑
n=1

vn(pT ,η) cos [n(φ − �n)]

)
. (1)

It is trivial to see that a single ridge is mostly generated by v1,
v3, and v5 components. A “double ridge,” observed in AA, dA,
and pA collisions, is dominated by “elliptic flow” v2 and higher
even components. Since elliptic flow was key to the widely
publicized announcement that matter in heavy-ion collisions
behaves as a low viscosity liquid [17], a proper understanding
of ridge phenomenology is crucial to our understanding of the
properties of the matter created in heavy-ion collisions.

The quantities vn are thought to reflect the structure of
Fourier components of the initial transverse energy density
e(r,φ,η).1 Thus, e(r,φ,η),

e(�x) = e(r,η)

(
1 + 2

∞∑
n=1

εn(r,η) cos [n (φ − �n)]

)
, (2)

gets somehow converted into momentum anisotropies vn.
Further use of the ridge as a medium probe, however, is

somewhat impeded by uncertainty of the mechanism which
converts initial-state shape anisotropy into a momentum
correlation: It is far from clear if the ridges in pp, pA, dA, AA
have the same origin, or a single origin, and how exactly the
ridge in each system is generated.

Many models have appeared that explain the ridge. While
experimental data [18] seem to suggest that the ridge is
generated by “soft” phenomena rather than “jetty physics,”
two broad classes of models remain. They are distinguished
by the ridge’s relationship to collective flow.

In the first class of models it is hydrodynamic flow itself
that creates the correlation in azimuthal angle [19–22]. The
local structures (be they hotspots, QCD strings, or glasma flux
tubes) generate a “long” correlation in rapidity which is then
azimuthally collimated by transverse flow “pushing out” the
hotspot. Thus, the ridge is made by an interplay of transverse
flow (the zeroth Fourier component of the flow expansion) and
local hotspots, which can be represented by higher harmonics

1I assume boost-invariant longitudinal expansion so the spacetime
rapidity and momentum rapidity are the same
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in Eq. (2). The deviation from isotropy, i.e., the width of the
�φ correlation, should therefore depend directly on the global
collective flow of the event and its anisotropies (be they average
features, which are there for even coefficients, or event-by-
event fluctuations, which can generate odd coefficients).

In the second class of models, the ridge is generated by
local partonic dynamics. As shown in Ref. [23], a system
extended in both transverse space and rapidity, approximately
boost invariant, and of high enough partonic density that
more than one parton-parton interaction per unit of trans-
verse space per unit of rapidity will naturally yield ridges:
In a spatially extended system, partonic interactions at fi-
nite impact parameter will naturally generate an angular
correlation, centered around the impact parameter vector
as well as color-coherence regions [24]. Because of boost
invariance, this angular correlation will be wide in rapidity,
since a parton-parton interaction at one rapidity is more
likely at a hotspot and, given that hotspots are elongated in
rapidity, a second parton-parton interaction is more likely.
The model used in Ref. [23] has been calculated in a generic
pQCD model, but qualitatively similar dynamics emerges in
color-glass-condensate-based (CGC-based) calculations such
as in Refs. [25–28] as well as string dynamics [29]. The
scaling behind e(. . . ) is then the local gluon density given,
in Refs. [25–28], by powers of the saturation scale Qs and the
QCD coupling constant αs(Qs).

II. WHY PA RIDGE IS SO INTERESTING

The recent appearance of a “strong” p-A and d-A double
ridge [9–12], comparable to that of heavy-ion collisions, has
provided us with further puzzles: Hydrodynamics is generally
thought to be a good description of the system when the
Knudsen number

K = O (1)
η

sT R
� 1, (3)

i.e., the mean-free path is much less than the system size. Given
the empirical multiplicity scaling with

√
s [30], the ideal-gas

equation of state and the Bjorken model [31] with initial time
τ0, entropy density s = 4(dN/dy), and overlap area S ∼ N

2/3
part ,

dN

dy
= Npart

√
s

0.1pp,pA,0.15AA = 4τ0Ss = 47.5
8π2

45
Sτ0T

3,

(4)

in terms of the unknown κ = η/(τ0s), and assuming the initial
radius of a pp collision is set by the strong-coupling scale
�QCD:

Kpp ∝ κ(�QCD)−1s0.1 � 0.6, (5)

assuming η/s = 1/(4π ) and τ0 = 1 fm for larger systems the
scaling will be

KpA ∼ N
−1/3
part K ∼

(
dN

dy

)−1/3

,

(6)

KAA ∼ N
−1/9−1/3
part Kpps−0.02 ∼

(
dN

dy

)−4/9

,

where the extra energy power in AA is due to the faster depen-
dence of multiplicity per participant in AA collisions [30].

As can be seen, by comparing ridges at the same Ntrack

for different systems, one expects about the same Knudsen
number for pp vs pA collisions, but AA will have a lower
Knudsen number than an equal-multiplicity pA bin: While
the former will be denser but smaller than the other, the
greater transverse size of the AA system beats the smaller
density in determining K , and the extra energy dependence
will suppress the Knudsen number in AA further. Therefore,
unless one assumes a breakdown in Npart scaling [32], binning
by multiplicity is not the same as binning in Knudsen number.

Harmonics should follow a scaling of the type [33–35]

vn = O (1)
〈cs〉
τ0

εnτlife

(
s0

sf

,R

)
[1 − O (1) K] , (7)

where τ0 is the hydrodynamic initialization time, sf is the
freeze-out entropy density, s0 � (1/Sτ0)(dN/dy) the initial
entropy density, cs is the speed of sound, and τlife is the lifetime.

τlife needs to be determined via a hydrodynamic code but
is a nontrivial function of both s0 and the size R even in
the ideal limit. It is driven by rarefaction wave dynamics for
small (R � T −1) systems (such as pA, pp) and by expansion
dynamics for large ones (AA):

τlife(T ,R � T −1) ∼ τ0

(
s0

sf

)1/3

,

(8)
τlife(T ,R ∼ T −1) ∼ Rc−1

s .

Hence, τlife should further break the Knudsen-number scaling.
While, as discussed in Refs. [36,37], the initial eccentricity

in small systems is too dominated by initial-state uncertainties
(the “transverse shape of the nucleon”) to allow for a
quantitative comparison, the scaling patterns of the ridge
structure as one goes from pp to pA to AA are puzzling.

If hydrodynamics is to work, Eq. (7) would imply η/(sT ) �
1 fm, putting the likely value of η/s below the “universal”
η/s = 1/(4π ) limit. In this case, however, it is remarkable
that pp vs AA systems are so different: From pA to pp,
the Knudsen number should be different by no more than
30%–50%, since the transverse size is comparable and the
temperatures scale as TpA ∼ N

1/3
partTpp.

These considerations arise just from the Knudsen number
and hold independently of the initial geometry. The latter,
for large nuclei, is thought to be dominated by the number of
participants. For smaller systems such as pA and pp, however,
the largely unexplored subnucleon fluctuations are crucial in
determining the initial εn. One cannot quantitatively compare
ε2 for AA and pA,pp using Eq. (7) since the average geometry
in these systems is very different. Over all events, however,
〈ε3〉 = 0 by symmetry for all systems, so event by event ε3 is
determined only by fluctuations,

〈ε3〉 ∼
√(

�εNN
3 + �εsub-N

3

)2
. (9)

At present nuclear scale �εNN
3 is thought to be well ap-

proximated by a Glauber calculation, while partonic scale
�εsub-N

3 is much more model dependent [25,38]. We know,
however, that in all models |�εNN

3 | � |�εsub-N
3 | for AA and
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|�εNN
3 | � |�εsub-N

3 | for pA, pp. Initial conditions, therefore,
give the same hierarchy as the Knudsen number: a “large” AA
vs a “small” pA, pp.

Experimental data have a diametrically opposite behavior:
The correlation strength of pA with respect to AA collisions
are nearly identical, especially in v3 where data points at
relevant centralities overlap [11]. For v2, where AA and pA
collisions are geometrically different, a v2 ∼ εdN/dy scaling
seems to hold [9]. However, when going from AA to pA
(LHC) and dA (RHIC), the Knudsen number certainly rises
by ∼O (2–4) or so if transverse size is counted as R.

At present, only one experiment [8] reported seeing a ridge
in pp collisions, and only in an experiment-specific sample
of very-high-multiplicity events. This ridge is of markedly
smaller amplitude with respect to AA and might not exhibit
the accompanying double ridge (which for pA was seen in all
centrality bins and can be used to estimate v2 and v3). While
no harmonic decomposition was attempted to date, v2 and v3

in pp collisions could be compatible with zero, albeit with a
large error bar.

This large systematic uncertainty is primarily due to
the large background, in pp collisions, of off–center-of-
mass–energy (different Bjorken x) parton-parton collisions
producing a strong away-side “fake ridge” [39]. Unlike in pA
collisions, the admixture of such events is highly correlated
with multiplicity, making their subtraction difficult.

Hence, to date, a centrality-based quantitative comparison
remains problematic. Even a qualitative comparison between
pp and pA ridges [11], however, shows it is difficult to see
how the Knudsen and density scaling described in the previous
paragraph can be made compatible with experimental data.

I should note that, as pointed out earlier, this is a more
general issue than the pA ridge. It seems (see the references in
Refs. [33,40]) that when different energies, system sizes, and
rapidities are put together, v2 is described by the following
empirical formula:

v2(pT ) � ε2F (pT ),
(10)

〈v2〉 � 1

S

dN

dy
=
∫

dpT F (pT )f

(
pT

〈pT 〉
)

,

where F (pT ) and f (pT / 〈pT 〉) are universal functions (with
very weak to no dependence on

√
s, A, Npart, y, and so on)

and the residual dependence on (1/S)(dN/dy) is through 〈pT 〉
rather than v2(pT ).

While a detailed study of this scaling within hydrodynamics
has yet to be performed, the compatibility of such a system with
a fluid whose speed of sound cs and η/s depend nontrivially
on temperature is not so obvious. Expanding the Cooper–Frye
formula [41] [discussed later in Eq. (13)] in the second Fourier
harmonic of the flow and freeze-out hypersurface,

v2(pT ) �
∫

dφ cos2(2φ)

⎡
⎢⎢⎣e− γ (E−pT vT )

T︸ ︷︷ ︸
vT �csτlife(··· )

⎛
⎜⎜⎝1 − pT �

dt

dr︸ ︷︷ ︸
∼ε2

+ δvT pT

T︸ ︷︷ ︸
∼ε2

+O(ε2,K)

⎞
⎟⎟⎠
⎤
⎥⎥⎦ , (11)

which, when integrated, yields Eq. (7) [τlife, defined after Eq. (7), also determines vT ]. Hence, size, density, and pT dependence
are not expected to factorize as they do in Eq. (10), but maintain a nontrivial dependence in which density and size (and hence
geometry, Npart, system size, and rapidity) mix in a nontrivial way:⎛

⎜⎝v2(pT )
〈pT 〉
1
S

dN
dy

⎞
⎟⎠ = τlife

(
s0

sf

,R

)⎛
⎝O (1) −O (1) 0

O (1) O (1) O (1)
O (1) O (1) O (1)

⎞
⎠
⎛
⎝ ε2

K

O(1)

⎞
⎠ . (12)

If all O (1) parameters are non-negligible and uncorrelated, no
projection of the matrix in Eq. (12) to a lower dimension is
possible. The only way to reduce the dimensions of Eq. (12)
is to assume a negligible Knudsen number. But, as discussed
before, this predicts similar correlations between p-p and pA
and does not eliminate scaling violations associated with τlife.
Hence, the scaling difficulty of the pA ridge is an “in your
face” (due to the pA collisions’s small size) illustration of the
larger difficulty of hydrodynamics to describe the scaling of
harmonic flow with energy, system size, and rapidity [33,40].

In contrast, initial-state effects depend only on the geometry
and only one intensive parameter (such as the “saturation
scale” Qs , or more generally the transverse gluon density [23]).
Thus, such models might be more amenable to simple
scaling [42,43]. The long-established difference between in-
vacuum and in-medium partonic wave functions [44] also
makes the similarity of pA and AA with respect to pp

more natural in such an initial-state model. The systematic
uncertainties over the initial geometry in small systems,
however, make disentangling such initial-state effects from
collectivity remnants just from particle harmonics in a model-
independent way nontrivial.

From a scaling point of view, therefore, hydrodynamics
looks disfavored but the entanglement of geometric and
“intensive” quantities might be too high for a “clean” to be
made by scaling arguments alone. This puts the onus on
exploiting the main difference between the two models of
ridge production outlined in the previous section—in one case
azimuthal collimation is done by “global” collective flow,
in the other by “local” parton-parton interactions—to devise
a qualitative experimental observable which can clarify the
situation. In the next section I will argue that particle-identified
(PID) two-particle correlations is a good candidate for such an
analysis.
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III. WHY PARTICLE IDENTIFIED CORRELATIONS ARE
IMPORTANT

In AA collisions, collective flow has historically been
ascertained by looking at the difference between π, K, p
spectra. When an expanding hydrodynamic fluid emits par-
ticles, energy-momentum and entropy conservation constrain
the particle distribution to be of the Cooper–Frye form

E
dN

d3p
=
∫

S (�x, �p ) d3x, (13)

where the Emission function is a boosted thermal exponen-
tial [41]:

S(x,p) = d�μ

d3x
pμ exp

[
−pμuμ(�x )

T (�x )

]

+O

(
K

[
pT

T

]3/2−2
)

, (14)

the form of the viscous correction is currently controver-
sial [45–47], but it is subleading in Knudsen number and
important at pT � T . The K → 0 limit is the usual boosted
exponential:

S(x,p) ∼
〈
exp

[
− γ

T (r)
[E − pT vT (r,φ)]

]〉
r

, (15)

where T is the temperature and vT is the transverse flow at
freeze-out (the radial component of the flow 4-velocity uμ) and
�μ is the three-dimensional surface specifying the spacetimes
of particle emission. T (x), uμ(x), d�μ have to be calculated
within a hydrodynamic code. In this work, I quote the results in
Ref. [48] (a similar analysis was done in Ref. [49]) calculated
with the code in Ref. [50], which was also used successfully
to describe small systems [51] in the past.

A qualitative signature of Eq. (13) is a mass scaling of
spectra and flow correlations. For a particle of mass m, the
exponent at midrapidity (no longitudinal momentum) becomes

α =
√

p2
T +m2 − vT pT

pT

�
{

(1 − vT ) + m2

p2
T

, pT � m(
pT

2m
− vT

) + m
pT

, pT � m.

(16)

Consequently, each particle still maintains an exponential
shape, but its “effective temperature” T ′ is related to the
true freeze-out temperature T by T ′ � T (γ /α(m)) the m
dependence is steepening in both the massive- and the
massless-particle limit, with the spectrum becoming flatter as
m increases (naturally, since more momentum is transmitted
to the particle by flow and less by thermal motion).

Thus, mass ordering arises naturally if angular correlations
are generated by flow, as assumed in the first class of
scenarios discussed in the introduction. If, however, the second
class is physically correct, and the angular correlations are
generated by initial-state high-density effects, mass ordering
can also arise from final-state fragmentation effects. As noted
in Ref. [52], a non-negligible mass ordering is generated within
PYTHIA with no need for transverse flow, by the fact that more
massive particles are typically produced by more “transverse”

strings. For small (p-p) systems, mass ordering using this
effect is greater than the mass ordering from a hypothetical
hydrodynamic phase.

While Ref. [52] focused on qq strings, and while the
processes considered in Ref. [27] are purely gluonic, such
effects should also be present in fragmentation functions: given
a distribution of gluons, f (p), fragmenting as in elementary
collisions, the final hadron distribution will be given by

dNi

d3p
=
∫

f (pg,φg)Dg→i

(
p

pg

,p2
g

)
d3pg. (17)

Different Dg→i will generate different hadron spectra. It is
therefore not surprising that models such as HIJING reproduce
qualitatively, although not quantitatively [48], the 〈pT 〉 scaling
in pA collisions. Since our understanding of gluon fragmenta-
tion is far from precise, the mass hierarchy by itself cannot be
taken as evidence of hydrodynamic flow, although an extension
of 〈pT 〉 analysis for particles of similar masses but different
partonic wave functions, such as the proton and the φ meson,
might help in clarifying whether the scaling variable in 〈pT 〉
is mass or partonic structure.

Two-particle correlations are, however, qualitatively dif-
ferent from one-particle correlations in this respect. If the
ridge is generated by transverse flow focusing hotspots, its
strength should be correlated and its width anticorrelated with
the mass of the particle because of the greater sensitivity
to flow of higher-mass particles. This leads to higher, slim-
mer correlations for more massive particles. Mathematically,
Ref. [41] accounts for this effect by modeling two-particle
angular correlations through the local flow field. Up to an
emission volume V , and ignoring quantum Hanbury-Brown–
Twiss (HBT) effects

dijN

dp1dp2dφ1dφ2
∝ V

∫
S(�x, �p1)S(�x, �p2)d3x, (18)

with S(· · ·) specified in Eq. (14) and the mixed event
background given by the square of Eq. (13). It is clear from the
form of Eq. (14) that correlations will get an additional boost
for higher-mass particles, since the latter are more sensitive to
flow. This is why hydrodynamics predicts consistently higher
v2 form more massive particles [53].

As an illustration, Ref. [48] calculated the two-particle
distribution function, binned by particle species, with the
model of Ref. [51]. The result is shown in Fig. 1 for

C(�φ) = 1

Ntot

∫ (
d2

ijN

dp1dp2dφ1dφ2
− dNi

dp1dφ1

dNj

dp2dφ2

)

× dp1,2dφ1,2δ(φ1 − φ2 − �φ), (19)

where Ntot is the overall number of events, and indeed follows
expectations. Experimental data seem to behave in a similar
way [13,48].

In contrast, in initial-state-based models [23,27,28] the
effective theory of high-density QCD will give a two-parton
correlation. In the absence of subsequent evolution, however,
fragmentation will happen “as in vacuum,” or independently
for each gluon. Gluon-gluon correlations will be suppressed
by factors of αs , assumed as small in such approaches. The
hadron-hadron (i-j ) correlation function will therefore be of
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FIG. 1. (Color online) Two-particle correlation function, binned
by particle species, calculated in a hydrodynamic model using
Eq. (18). Plot originally published in Ref. [48].

this form

dNij

d3p1d3p2
∝
∫

f2(pg1,pg2,φg1 − φg2)Dg→i

(
p1

pg1
,p2

g1

)

×Dg→j

(
p2

pg2
,p2

g2

)
d3pg1d

3pg2, (20)

where f2(pg1,pg2,φg1 − φg2) is a function incorporating the
predictions from dense parton dynamics for the ridge-like
structure. The mixed event background is given by the square
of the distribution in Eq. (17).

Even qualitatively, Eq. (20) is a very different equation
from Eq. (18), since fragmentation is parton specific and
independent of partonic correlations. Thus, the fragmentation
function Di→j (. . .) is independent of rapidity and angle.
Hence, for the azimuthal correlation function all dependence
on D(. . .) factorizes into a function of p only. Provided
normalization is done by a species- and p-bin-specific factor
so one point on the curve matches for all species, any residual
fragmentation effects should factor out. This should not be
the case if particle production happens via Cooper–Frye
freeze-out, Eq. (18).

To test the phenomenological consequences of this, I
describe f2(pg1,φg1,ηg1,pg2,φg2,ηg2) by an empirical function
in terms of �φ and �η (the narrow peak in �φ, �η due to jet
fragmentation is disregarded):

f2(p1,φ1,η1,p2,φ2,η2)

= {1 + A cos[2(φ1 − φ2)]} tanh
(p1

B

)
tanh

(p2

B

)
, (21)

where A,B are adjustable parameters and proceed to convolute
it with the coordinated theoretical-experimental project on
QCD [54] gluon fragmentation functions according to Eq. (20).
The result is also shown in Fig. 2, for both a normalization of
the type C(�φ) and assuming zero yield at minimum (ZYAM)
separately for all particle species, Cnorm(�φ) (Cnorm = 1 at
minimum by definition). As can be seen, once an overall nor-
malization factor is common for all particles, the correlation
function shape is independent of the particle species. This is
clearly not the case for the plot in Fig. 1.

FIG. 2. (Color online) Two-particle correlation function, binned
by particle species with (a) different normalizations and (b) normal-
ized to a common minimum determined by ZYAM for every particle.
The correlation function was calculated using Eq. (20) and empirical
distribution Eq. (21).

Changing the form of the empirical function Eq. (21)
without the hadronization implied in Eq. (20) will not alter
these basic conclusions, although of course the shape of the
angular correlation and its normalization will vary.

Physically, the species independence of the shape of the
two-particle correlation function is a trivial consequence of
the form of Eq. (20): since fragmentation into a particular
species is determined independently of the correlation, the
fragmentation function factorizes into “the average energy of
the gluon that fragments into a hadron of that momentum,”
which retains no memory of the shape of the angular
distribution.

By how much can this feature be altered by altering
fragmentation dynamics? Collinear fragmentation assumed in
Eq. (20) is usually appropriate for pT � �QCD. For lower
momenta, fragmentation is certainly not collinear. However, if
the typical parton momentum ∼Qs > �QCD, fragmentation
should remain parton specific since correlations between
oppositely moving partons are higher order in αs(Qs).

One way to incorporate this is to introduce species-specific
deviations from collinear fragmentation, i.e., Dg→i(

pi

pg
,p2

g) ⇒
Dg→i(

pi

pg
,p2

g,φg − φi). The φg − φi dependence might intro-
duce the observed species-specific pattern in the two-particle
correlation function if (as is reasonable) fragmentation into
more massive particles gives a larger “side kick” to the
fragmented hadron.

Assuming a normalization such that∫ 2π

0

∫ 1

0
D(z,φi − φg)dzdφi = 1,

and a gluon distribution correlated by v2 only,

C(φ1g − φ2g) ∝ 1 +
∑

n

v2
gn cos[n(φg1 − φg2 − 2�n)],

(22)

one can see that, when one integrates d3pg2 out of Eq. (20)
one gets

dNi

dpidφi

∝
∫

dφgdpTg

(
1 + 2

∑
n

vng(pTg) cos[n(φg − �)]

)

×Dg→i

(
pT i

pTg

,φi − φg

)
. (23)
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Note that no correlation exists between φg − � and φi − φg ,
integrating over one of these angles for a large ensemble of
both events and fragmentations will average the other to zero.
Hence, Fourier decomposing Eq. (23) one can rotate � or φg

away into an irrelevant phase. Using the convolution theorem,
one will get

vhadron
n =

∫
dpTgvng(pTg)

dNg

dpTg

∫
dpT i

〈
D̃

(
pT i

pTg

)〉
� 〈vng〉〈〈D̃g→i〉〉, (24)

where D̃, the Fourier transform of the product of fragmentation
function, and must be independent of geometry and n coeffi-
cient (in the collinear limit 〈D̃g→i〉 → 1, in case fragmentation
smearing dominates 〈D̃g→i〉 → 0). In contrast, v

gluon
n must

depend only on geometry and not on particle species. Ratios of
vn for different system sizes and particle species, à la Ref. [42],
could therefore be used to see if fragmentation of correlated
gluons occurs independently for each gluon or is correlated.
If relation Eq. (24) holds, for two systems A, A′ (be they
pp, pA, dA or a particular centrality of AA) at the same

√
s

and pT ,

vπ
2

vπ
3

∣∣∣∣
A

� v
p
2

v
p
3

∣∣∣∣
A

,
vπ

n |A
vπ

n |A′
� v

p
n |A

v
p
n |A′

,
v

p
3

vπ
3

∣∣∣∣
A

� v
p
3

vπ
3

∣∣∣∣
A′

, (25)

where the last relation is motivated by the nearly identical
v3 in pA and dA vs AA collisions [11]. No such relations
are apparent in the hydrodynamic model. In fact the last two
ratios in Eq. (25) should exhibit a systematic upward trend for
larger systems, as transverse flow is larger in such systems (as
the system size increases, v

p
n grows faster than vπ

n ). This is
something experiment can readily check.

If such scalings are not apparent, initial-state correlations
might still work if the multigluon ladders commonly used
to justify the initial-state kT factorization approach [55,56]
also influence fragmentation, leading to some fragmentation
functions sensitive to multigluon correlations:

Dg1→i

(
p1

pg1
,p2

g1,φi − φg1

)
Dg2→j

(
p2

pg2
,p2

g2,φj − φg2

)

⇒ Dg1,2→ij

(
p1

pg1
,p2

g1,
p2

pg2
,p2

g2,φi − φg1,φj − φg2

)
.

(26)

Such a fragmentation would make the experimental distinction
between an initial-state model and a hydrodynamic model
much more involved.

The good description by the Glasma flux-tube model with
parton-hadron duality, of the negative-binomial multiplicity
distributions [57], places some bounds on the importance of
such effects within an initial-state-based model. Nevertheless,
these ideas have been explored in the literature before [58,59],
although they have not been explored quantitatively in the
context of two-particle correlations. If multigluon correlations
persist until and including fragmentation, however, it is
difficult to see the qualitative difference between this system
and a dense ensemble of sequentially interacting gluons, which
should universally approach hydrodynamic evolution [60].

In this limit, “high-density gluons” and “hydrodynamics”
become indistinguishable.

IV. DISCUSSION AND CONCLUSIONS

Further tests of the observables described here can be
experimentally performed via two-particle correlations of the
φ meson, which has the approximately same mass as the
baryon but a very different partonic structure: A similar
pattern to the proton would point to mass scaling, typical of
hydrodynamics and Eq. (18). A very different pattern might
indicate nonhydrodynamic fragmentation, possibly correlated
fragmentation of the type of Eq. (26) if the tests outlined in
Eq. (25) are not passed.

Along the same direction, two-particle correlations with
identified heavy quark mesons in pA and dA collisions might
be instrumental in assessing the relative importance of flow
with respect to initial-state correlations: While correlations due
to high initial gluon density should be equally strong for light
and heavy quarks according to formulas similar to Eq. (20)
(updated with the heavy-quark creation diagrams [61]), in a
hydrodynamic system the “effective Knudsen number” for
a heavier particle is KM ∼ M

T
K [62], so a hydrodynamic

correlation will be parametrically weaker.
It will also be illuminating to see whether vn(pT ) in pA go

to the same pT � 50 GeV as in AA [63]. For pA the most
commonly used tomographic variable, RpA(pT ) � 1 from
pT � 3–4 GeV onward [64]. This would naively suggests the
“medium” in pA is transparent to particles at 3–4 GeV. Yet
v2(pT ) in pA was measured to be non-negligible for these
momenta [11–13]. This suggests that the influence of “the
medium” on one- and two-particle correlations is dramatically
different. This observation, as well as giving us an explanation
for the inability of most jet energy loss models to describe both
RAA and v2 together (unless a nontrivial opacity evolution with
density is assumed [65,66]), raises the question of how far in
pT does vn(pT ) reach in “small systems” such as pA and dA
collisions.

To answer these questions, one must determine if pT =
3–4 GeV in the “soft” regime determined by hydrodynamics
or the “hard” regime determined by fragmentation. Knudsen-
number scaling suggests, as shown in the Appendix, that for a
“fluid” with low absolute opacity, after a

pT � (T 3εnR/K)1/2−2/3, (27)

one expects hydrodynamic vn(pT ) to be �0. Tomographic vn

for these pT s is ruled out by RpA � 1.
A sizable v2 for pA, dA collisions at pT � 10 GeV might

suggest that either η/s is really low (but then again, what
about pp collisions?), or the initial state is somehow impacting
two-particle correlations even at high momenta.

In conclusion, I have discussed the possible physical origin
of the observed “ridge-like” two-particle correlations observed
in pA and AA collisions. I cannot draw any firm conclusions:
On the one hand, the scaling of the observed ridge as the
system size increases from pp to pA-dA and AA is difficult
to see in a hydrodynamic model. On the other hand, the
successful fit by hydrodynamic calculations [48,49] of the PID
ridge, together with the failure, even on a qualitative level, of
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existing in-vacuum fragmentation ansatze to reproduce the
pattern observed in experiment, suggests that the ridge is very
much a final-state phenomenon: The mass ordering, provided
fragmentation happens through usual vacuum fragmentation,
is nontrivial to reproduce when the two-gluon correlation
function is tuned to reproduce charged dihadron correlations. I
eagerly hope that further tests for this mass ordering, involving
φ mesons, heavy quarks, and high pT charged particles, can
clarify these issues.
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APPENDIX: THE “EFFECTIVE KNUDSEN NUMBER”
AT HIGHER pT

Combining the standard formula η
s

∼ T lmfp ∼ 1
〈σ (pT )T 2〉

with the dimensional estimate σ (pT � T )/ 〈σ 〉 ∼ T 2/p2
T and

the Knudsen number defined in Eq. (3) I get that, for pT ∼√
T 3R/(K) the number of “hard” scatterings is ∼1. For a

Fourier component in the scattering difference in azimuthal
angles to vanish, it is enough that the azimuthal difference in
number of scatterings be small. For this one requires pT ∼√

T 3εnR/(K) for the nth component. A radiative dominated
freeze-out will bring the square root to a 3/2 root [47].
“Tomographic” soft scatterings and radiative corrections could
remain, as they do not contribute to the transport properties of
the bulk per se. However, RpA � 1 after a pT = 3–4 GeV
seems to place strict limits on their significance.
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