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in relativistic heavy-ion collisions
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We propose a picture of turbulent pattern formation in the relativistic heavy-ion collision, which follows an
efficient process to break color strings and dispose energy in the whole phase space. We perform numerical
simulations using the SU(2) pure Yang–Mills theory in a nonexpanding box to observe a dynamical phenomenon
in the transverse plane akin to the domain growth in time-dependent spin systems.
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I. INTRODUCTION

Relativistic heavy-ion collision experiments at the BNL
Relativistic Heavy Ion Collider (RHIC) and at the CERN Large
Hadron Collider (LHC) have successfully created a quark-
gluon plasma and probed into its detailed properties; among
the milestones in quark-gluon-plasma research, the recognition
of the so-called perfect fluidity, i.e., the smallness of the ratio
of the shear viscosity to the entropy density was the most
influential, which has triggered interdisciplinary discussions in
many fields including nuclear physics and superstring theories.

Thanks to the tremendous developments of the lattice
simulation of quantum chromodynamics (QCD) [1] and the
(dissipative) hydrodynamic model [2], we have reached a
reasonable understanding of the static properties of high-T
QCD matter and the subsequent dynamical evolution. We are,
however, still far from establishing a firm theoretical frame-
work for the prethermalization stage. Generally speaking, the
thermalization process out of equilibrium is a ubiquitous but
complicated problem, and theoretical research mostly relies
on numerical methods.

Luckily, in the case of relativistic heavy-ion collisions at
sufficiently high energy, the very early-time dynamics on
the time scale of the order of τ ∼ Qs � 0.1 fm/c can be
expressed in terms of coherent gluon fields, where Qs is the
saturation momentum [3]. The initial state characterized by Qs

is sometimes referred to as the “glasma” initial condition [4]. In
this glasma picture, most important is the presence of boost-
invariant longitudinal chromo-electric and chromo-magnetic
fields, Eη and Bη, the intensity of which is given by Qs again.

In contrast to the glasma stage, the time scale when
the hydrodynamic model starts working is of order τ �
1 fm/c. It is an urgent theoretical problem to fill in the gap
between these times scales. Along this line there are many
theoretical attempts based on the glasma simulation [5–7],
the plasma instability [8], the hard-loop expansion [9], the
kinetic description [10], the holographic duals [11,12], and
the classical Yang–Mills simulations [13,14].

In this work we solve the Yang–Mills equation of motions
starting with the glasma initial condition. The question is
then: what is the most likely candidate for the mechanism
to “decohere” the longitudinal Eη and Bη on such a short time
scale? This kind of decoherence problem is a quite generic
problem that we may encounter in various circumstances

(see, e.g., Ref. [15] for a scalar-model study). Our proposal
is that turbulent diffusion should be the driving force for this;
indeed it is known in many physical phenomena that turbulence
is a much faster process than the typical molecular diffusion
by several orders of magnitude.

In the context of the RHIC and LHC physics, the role
of turbulence has been emphasized as a possible account for
the smallness of the ratio of viscosity to the entropy density
[16]—because energy transport is efficient, an anomalously
small viscosity arises generally in a turbulent flow. The actual
calculation assumes a random background distribution of
chromo fields [17]. Therefore, we still need to consider from
where these fields are generated, and the glasma simulation
is indispensable to answer such a question. The turbulence,
especially the wave turbulence, has also been investigated nu-
merically and analytically [18–21]. It has been understood that
the Kolmogorov-type cascade leads to a power-law spectrum
(where the power index may take different values at strong
coupling). The Kolmogorov behavior is, however, realized in
a system with a well-developed inertial region [22]. This means
that we have to wait for a certain time until the power-law spec-
trum grows steadily, while what we want to clarify is not the
steadiness but the rapid reorganization from the initial state. We
should, therefore, disturb the initial system with substantially
large fluctuations that breach the boost invariance.

For this purpose, in this work, we turn off the effect of
the expanding geometry. We do this because the expanding
geometry is singular at the initial time, and it is difficult to
disturb the initial state without ambiguity. Besides, the expan-
sion quickly renders the transverse dynamics frozen, so one
should carefully formulate the initial spectral shape (involving
the UV divergence) and also elaborate the proper renormal-
ization (or subtraction) procedures [15,23]. Otherwise, useful
information on the underlying physics can be easily diluted
and even concealed by the effect of expansion. These are not
simply technical problems; the expanding geometry represents
curved spacetime and quantum fluctuations on such curved
spacetime are distorted, so that the physical vacuum should be
Bogoliubov transformed from the vacuum in flat spacetime.
Interestingly enough, as we will find later, a particular initial
condition corresponding to the heavy-ion collision already
captures the essential features of the anisotropic dynamics.
Moreover, we have checked whether we can confirm the same
observation using a code for the expanding case and have
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found similar behavior if we employ large fluctuations, while
the nonexpanding simulation always leads to inhomogeneous
pattern formation for any (small) fluctuations.

One might feel that the approximation of adopting a
nonexpanding box is an artificial simplification. However, it
is just obvious that the expansion effects should delay the
decohering processes, so one must first understand the deco-
hering mechanism for the nonexpanding system; otherwise
it is impossible to give any account for the expanding case.
Then, one should test the presumed mechanism to see whether
it works to overcome the delay in the expanding case. This is
why we dare to drop the expansion off; the relevance to the
experiment becomes less, but the theory becomes more well
behaved thanks to this simplification.

The most important point in this work is that the longi-
tudinal and transverse dynamics behave totally differently at
early time when the anisotropy from the collision geometry
is huge. One can presume by intuition that the longitudinal
decoherence should go much faster than the transverse one;
otherwise the isotropization is never achieved. Indeed, we will
confirm this anticipation and find that it indeed happens in a
very interesting manner.

II. FORMULATION

Most importantly, we can make use of the glasma initial
condition [24,25] as it is even in the nonexpanding case
because the initial fields lie only in the transverse plane.
In terms of the link variables on the lattice, the canonical
momenta leads to the following time evolution:

Ui(t + 2�t) = exp[−igEi(t + �t)2�t]Ui(t), (1)

where the time arguments are shifted in accord to the
leapfrog algorithm which preserves exactly Gauss’s law. We
omit writing the lattice spacing a throughout this paper.
The classical Yang–Mills equations of motion (Hamilton’s
equations) read

Ei(t + �t) − Ei(t − �t)

= 2�t
i

2g

∑
j �=i

[Uji(t) + U−ji(t) − (H.c.)] (2)

in the temporal axial gauge; Ut = 1. The initial condition is
given in a standard way, which simplifies particularly for the
SU(2) color group [25] as

Ui = (
U

(1)
i + U

(2)
i

)(
U

(1)†
i + U

(2)†
i

)−1
, (3)

Ez = −i

4g

∑
i=x,y

{
(Ui − 1)

(
U

(2)†
i + U

(1)†
i

) + [U †
i (x − �xi) − 1]

× [
U

(2)†
i (x − �xi) − U

(1)†
i (x − �xi)

] − (H.c.)
}
, (4)

with the pure gauge configurations, U
(m)
i (x⊥) =

V (m)(x⊥)V (m)†(x⊥ + �xi), and the gauge rotation,
V (m)† = eig�(m)

, by the static potential obtained as a
solution of the Poisson equation, ∂2

⊥�(m) = −ρ(m).
We assume the Gaussian distribution for the color source,

〈ρ(n)(x⊥)ρ(m)(x′
⊥)〉 = δnmg2μ2δ(x⊥ − x′

⊥), where μ is sup-
posed to be related to the characteristic scale Qs as was

mentioned in the previous section. If we solve the time
evolution with the initial conditions (3) and (4), there would
appear to be no dependence on the longitudinal coordinate
(i.e., z in the present case without expansion, corresponding to
η in Bjorken coordinates). This means that QCD color strings
extend along the z direction at initial time. We shall introduce a
minimal perturbation to make it the clearest how these strings
are disrupted by extra fluctuations:

Ei = g3μ2[f (z − �z) − f (z)]ξ i, f (z) = � cos(2πz/Lz),

(5)

where 〈ξ i(x⊥)ξ j (x′
⊥)〉 = δij δ(2)(x⊥ − x′

⊥) and δEη is solved
from Gauss’s law. In this way we put a seed of electric-field
amplitude ∝ � at the lowest nonzero momentum |k(min)

z | =
2π/Lz. As long as the instability stays weak, the linear
superposition gives a good approximation for the results
with more general fluctuations [7]. In this work, however,
we will also choose a nonsmall � to test the robustness of
what we discover. In principle, we should generate quantum
fluctuations according to the ground-state (Gaussian) wave
function and take the ensemble average over all fluctuations,
which would lead to the UV divergence of the zero-point
oscillation energy. To avoid this complication, in this work, we
pick up a “representative” of the configuration by Eq. (5). This
simplification would affect quantitative details such as the pre-
cise time scale of the decoherence, but should be harmless to
the qualitative nature of the phenomenon that we will discuss.

III. NUMERICAL RESULTS

First let us address the case without z-dependent fluctua-
tions. With unbroken translational invariance in the z direction,
the transverse pressure PT approaches a finite value, while the
longitudinal pressure PL decreases to vanish asymptotically,
where they are, respectively, defined as

PL = tr[(Ex)2 + (Ey)2 − (Ez)2 + (Bx)2 + (By)2 − (Bz)2],

PT = tr[(Ez)2 + (Bz)2]. (6)

In our numerical computation we use g2μ = 120/L⊥ (cor-
responding to the choice g2μ ∼ 2 GeV) with g = 2 and the
transverse and longitudinal site numbers, L⊥ = Lz = 96. This
is a conventional choice of parameters following Ref. [4], but
the classical approach would be more well defined with a
smaller g. The most important for the validity of the classical
approach is, however, not the choice of g but the scale of the
quantities we look at. That is, the classical description should
be reasonable for quantities with momentum scale smaller than
Qs . With the above parameters the transverse lattice spacing
is of the same order as Q−1

s , so that the classical approach can
be legitimate to capture phenomena over several lattice sites,
as we will see later.

We note that the initial energy density is both UV and IR
singular [26]:

ε(t = 0) = Nc
(
N2

c − 1
) (g2μ)4

8π2g2

[
ln

�UV

mIR

]2

, (7)

where �UV and mIR are UV and IR cutoff scales, respectively.
This singularity is problematic in a nonexpanding box, while
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the time evolution soon diminishes this singularity in the
expanding case [26]. In our numerical simulation, thus, we
need to introduce a UV cutoff (k⊥)max when we solve the
Poisson equation, i.e., higher modes with k⊥ > (k⊥)max =
32 × 2π/L⊥ ∼ 1.7g2μ ∼ 3.4 GeV are dropped to get the
results presented in this paper. We have then confirmed that
our results have only minor dependence on L⊥ as long as we
keep the same (k⊥)max. We also note that, because of the color
string, the initial PL starts from a negative value (i.e., two
nuclei feel an attractive force).

It is already a nontrivial observation that PL vanishes at
late time. In the expanding case, since the system is stretched
and diluted, one may anticipate PL → 0 as a result of the free
streaming. In the present simulation, however, the box does
not expand and nothing streams out, so that PL → 0 is purely
realized by the choice of the initial conditions (3) and (4). This
implies that PL → 0 even in the expanding glasma should be
attributed not to the expansion but to the initial conditions.
In other words, the free streaming is not the reason, but the
physical interpretation of the result.

We shall next proceed to the results with z-disturbing
fluctuations, as shown in Fig. 1. We here adopt three different
�; a substantially large � = 0.2 gives the energy density from
fluctuations of the same order of magnitude as the background
fields. Therefore, this value is a kind of upper bound above
which solving the classical equations of motion is no longer
justified. A marginal � = 0.02 is much safer; the initial energy
density is dominated by the background fields, and the time
evolution is almost identical to the case with even smaller
� = 0.002, as is manifested in Fig. 1. (To avoid making the
figure too busy, we did not show the fluctuation-free results
with � = 0 that behave like the results with � = 0.02 or 0.002
till g2μt ∼ 60 and monotonically approach zero beyond it.)

There are two interesting observations that one can notice at
a glance. First, the choices of � = 0.02 and 0.002 make only
little change in the onset of the instability around g2μt ∼ 100
where PL/PT start growing. Owing to this, we can be very
sure that our results should be robust at least on a qualitative
level regardless of our ignorance of the precise value of �. We
note that, as long as the amplitude of each unstable mode is

FIG. 1. (Color online) Pressure ratio PL/PT as a function of
dimensionless time. Without fluctuation the ratio approaches zero,
while it goes to a nonzero constant if fluctuations are implemented.
An ensemble average is taken over 50 configurations.

small in the linear regime, it should obey a simple scaling law
of proportionality with � as observed in Ref. [7], while the
time evolution is fixed by the background fields and is rather
insensitive to �. Because Fig. 1 shows not a mode amplitude
but a bulk pressure involving all modes, it is not transparent
how the results exhibit the scaling law with �. Nevertheless,
the similar behavior with � = 0.02 and 0.002 suggests that
the onset time is predominantly determined by the properties
of the background fields unless large fluctuations could affect
the background fields.

Second, if � is less than ∼0.2, we cannot reach the complete
isotropization. (In principle, if we wait forever, it may achieve
complete isotropization, though we could not confirm it in our
long-time simulation.) This is quite unexpected: Because the
simulation runs in the isotropic setup, the anisotropy given
at the initial time should naturally fade out if we wait for a
sufficiently long time. This intuition is correct, but the point
is that it takes an extraordinarily long time unless � is so
large that it also modifies the initial energy density. It is quite
instructive to see that the isotropization at later time is a very
slow process even in a nonexpanding and symmetric box. Here
we make a comment on recent results in Ref. [27] where a ten-
dency toward isotropization was observed. Our claim is con-
sistent with their finding: complete isotropization (PL = PT)
is difficult to realize but 50%–60% of isotropization would be
more realistic, as seen in Ref. [27] and in this present study.

To discuss more microscopic dynamics, we shall split the
time evolution into three distinct characteristic regimes as
shown below.

A. Temporarily and spatially oscillatory regime

The pressure has oscillatory behavior in the earliest stage
(i.e., g2μt � 15 for � = 0.2 and g2μt � 50 for � = 0.02 as
deduced from Fig. 1). The so-called glasma instability must be
developing from lower to higher longitudinal modes, but their
effects are not yet appreciable in the bulk thermodynamics
at zero mode. In the phenomenological sense, the theoretical
understanding in this regime is the most crucial issue, while
many theoretical efforts had been devoted to rather later-time
dynamics. Hence, our central objective in this present paper is
to shed light on this oscillatory regime.

Obviously, the equation of state still has fast components
in time, which means that the derivative expansion should not
work. One cannot therefore apply the hydrodynamic equations
to describe the time evolution yet. Then, a natural question
arises; what about the spatial structure? Is it already smooth
enough or linked somehow to the rough structure in time?

To diagnose the microscopic dynamics, we make three-
dimensional (3D) and density plots to illustrate the cascade
flow of the energy spectrum toward higher kz or the wave
number nz (where kz = nz2π/Lz) in the longitudinal direction.
We define the following energy spectrum with only the z
direction Fourier transformed as

ε(x,y,kz) =
∑

i

tr[Ei(x,y,−kz)E
i(x,y,kz)

+Bi(x,y,−kz)B
i(x,y,kz)], (8)
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FIG. 2. (Color online) Energy spectrum as a function of the coordinate x (in unit of a) and the momentum kz with y = Ly/2 fixed,
calculated for � = 0.02. The far left (a) represents the result at the initial time g2μt = 0.2, and the time increments up to g2μt = 50 of (c) at
the right.

which is measured for each configuration. This is not a
gauge-invariant quantity and we need to fix the gauge to define
it uniquely. We already chose the temporal axial gauge but
time-independent gauge rotations are still redundant, which
does not change the gauge-invariant observable but modifies
ε(x,y,kz). Therefore, we fix the initial gauge configurations (3)
and (4) (with fluctuations included) to satisfy the Coulomb-
gauge condition ∇ · A = 0 that would flatten spiky textures.
We used the over-relaxation method with 1000 steps to impose
the Coulomb gauge and explicitly checked that the gauge
configurations become extremely smooth then.

For qualitative discussions we may choose any �, in
principle, but to remove an impression that our findings come
from artificially large �, we here adopt a rather safer choice
of � = 0.02 that has no effect on the very early dynamics as is
clear from Fig. 1. Then, for graphical purpose, we pick a slice
of y = Ly/2 up and make a 3D plot of ε(x,y,kz) as a function
of x and nz in Fig. 2 for one configuration.

We can understand from Fig. 2 what is actually happening
on the microscopic level during the oscillatory regime. In this
very first stage the energy amplitude spreads toward larger kz

triggered by spots localized in x (and y) space. These localized
spots look like narrow avalanches. Let us here “define” what
we really mean by avalanche for clarity.

To do so, we have to magnify the initial energy stored
at nz = 0 mode, which is presented in Fig. 3. It should be
noted that this is nothing but the energy distribution already
shown in Fig. 2(a) in the form of a logarithmic plot. Even
though Fig. 3 may look like it has a rough structure, the
energy fluctuates within only one order of magnitude. It
is evident from Figs. 2(b) and 2(c) that the inhomogeneity
developing later at larger nz is correlated to the initial pattern,
and the resulting intensity differs by more than ten orders of
magnitude! We would call this huge (but relative) amplification
of the spatial pattern the avalanche phenomenon.

This type of the avalanche phenomenon is quite common
in many physics problems. The avalanche breakdown of an
insulator or semiconductor is one familiar example in which
free electrons trigger the creation of electron-hole pairs. In the
present glasma simulation, we have specified both the initial
conditions (3) and (4), and the initial fluctuations (5) according
to the Gaussian distribution, and some local positions happen
to have irregular amplitudes as observed in Fig. 3, which
is responsible for the avalanches. Probably they have much

to do with the magnetic vortices discovered recently in the
same model setup [28]. We here point out that these narrow
avalanches are collective consequences from the simultaneous
existence of the glasma fields and the fluctuation fields. We
turned the glasma background fields off as a test calculation,
and we found that the amplitudes just smoothly and slowly
decayed into higher kz, but no rapid narrow avalanche emerged.

These avalanche-like structures gradually spread over x
(and y) space as time elapses, and eventually the distribution
appears uniform in transverse space at a further later time,
which we call transverse diffusion. To access the full transverse
structure and visualize the diffusion, we show ε(x,y,kz) as
snapshots in Fig. 4 at g2μt = 35, 50, and g2μt = 75 using
the same configuration as was used to draw Fig. 2. We can
then clearly perceive the dynamical pattern formation in the
transverse geometry and subsequent diffusion; at localized
spots with brighter colors we have larger amplitudes for the
maximum kz mode, namely, k(max)

z = (Lz/2)(2π/Lz) = π/2
(in units of a−1). To the best of our knowledge the present
analysis is the very first demonstration that has revealed
the spontaneous generation of spatial patterns in a real-time
simulation of the Yang–Mills theory. At the same time as we
emphasize the novelty, we would also like to draw attention
to the similarity to many other systems out of equilibrium:
One intuitive example lies in the formation of the magnetized

FIG. 3. (Color online) Energy spectrum corresponding to Fig. 2
for � = 0.02 at nz = 0 at the initial time g2μt = 0.2 and shown on
a linear scale.
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FIG. 4. (Color online) Snapshots of the energy amplitude for � = 0.02 at maximum kz on the transverse x-y plane (in units of a). These
are taken at the times corresponding to Fig. 2. Clearly a dynamical pattern is formed first and the region with high kz next spreads over the
transverse directions.

domains described by the time-dependent Ginzburg–Landau
theory of the classical spin models. Such a pattern was
numerically discovered in the direction from the random initial
state to the ordered spin state at lower T , and amazingly
also in the opposite direction from the enforced ordered (or
coherent) state to the disordered (or decoherent) spin state at
high T [29]. Our results are reminiscent of the latter associated
with nonequilibrium decohering processes.

Let us quantify the transverse diffusion processes by
calculating the energy-density correlation function from Fig. 4
or the “power spectrum” defined by

P (k⊥) = 〈
ε
(−k⊥,k(max)

z

)
ε
(
k⊥,k(max)

z

)〉
, (9)

where we note that the meaning of k⊥ is totally different from
kz; we introduced k⊥ as the Fourier transform of x and y of
ε(x,y,kz), while kz refers to the momentum carried by the
chromo-electric and chromo-magnetic fields.

To absorb orders-of-magnitude differences at different
times, we normalize the power spectrum by the zero-mode
value P (0) and draw Fig. 5 for g2μt = 25, 50, and 75.

We can clearly confirm that the long-range correlation
becomes more and more enhanced as time goes on, which

FIG. 5. (Color online) Power spectrum P (k⊥) as a function of
transverse wave number, normalized by the zero-mode value. The
ensemble average is taken over 50 configurations.

is quite consistent with what we can see from Fig. 4. (We note
that the wave number, say 10 on this plot, corresponds to the
physical scale, 10 × 2π/L⊥ ∼ 1 GeV.) The reason why the
normalized power spectrum seemingly looks more suppressed
at larger g2μt is that the zero-mode grows larger. Thus the
relative height decreases, although the absolute height is much
larger at later time. It should be clearly noted here that we
should not take this enhancement of the long-range correlation
for a signal of the Bose-Einstein condensate, as speculated in
Ref. [30]. We are now looking not at the particle distribution
but at the energy-density correlation. We observe that the spots
in the transverse plane spread out quickly toward uniformity,
which is to be interpreted as the diffusion as can be inferred
from Fig. 4.

B. Intermediate fast-growing regime

After some time (15 � g2μt � 30 for � = 0.2 and 50 �
g2μt � 100 for � = 0.02 in Fig. 1) the equation of state
behaves smoothly enough in time and also in space, which
should enable the hydrodynamic evolution to work fine during
this regime since the derivative expansion makes sense. The
system still goes on approaching isotropization, and thus it is
neither isotropic nor thermalized yet. An important question
is what determines the typical time scale for the transition
from the oscillatory regime to the growing regime. In other
words, we need to know what is still missing to accelerate the
onset time for the hydrodynamic evolution. The time scale
is characterized by the balance between the initial energy
density stored at the zero mode and the rate of the energy flow
that is intrinsically determined by the Yang–Mills interactions.
Within the present framework it is difficult to yield the onset
time around a few times g2μ ∼ 2 GeV ∼ 0.1 fm/c as required
by the analysis of the experimental data.

It is important not to be confused by the behavior of the most
unstable mode in the expanding case [5,7], which looks very
similar to Fig. 1. In the expanding case the onset is delayed
simply by the kinematical reason [6], and in the nonexpanding
case in Fig. 1 it is not the most unstable component but the
whole pressure that we are dealing with. Therefore it takes
time for the instability to spread over the whole phase space.
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α

FIG. 6. (Color online) Power index deduced from the tail of the
energy spectrum fit by k−α

z given as a function of dimensionless time.

C. Asymptotic slowly growing regime

The diffusion is caused by inhomogeneity, and so it
becomes slower and slower with less and less inhomogeneity
and anisotropy. Naturally the tendency toward isotropization
becomes weakened as PL and PT get closer to each other.
In such an asymptotic regime (g2μt � 30 for � = 0.2 and
g2μt � 100 for � = 0.02 in Fig. 1) the characteristic time
scale, if taken literally, seems to be too long as compared to
the typical time scale in the experiment. If we take a smaller
g and thus larger Qs , however, hundreds of Qs would still
be within a reasonable time window that is relevant to the
thermalization process in the heavy-ion collision.

Usually some kind of scaling law may be observed in a
well-developed turbulent system at late time. In the present
simulation with specific initial conditions (3) and (4), however,
the zero mode cannot be a consistent source to supply the
energy injection and so it cannot sustain a steady inertial region
in the energy spectrum. Still, there may be a chance to see
scaling behavior at the tail of the energy spectrum. To test this
idea, we attempt to fit the longitudinal energy spectrum by
the power-law spectrum ∼k−α

z , and we find that the fit works
well in the range, nz = 25 ∼ 48. Then, the power α turns
out to be a function of time as in Ref. [19], which is plotted in
Fig. 6. The value of the index α decreases with increasing time,
which crosses the Kolmogorov value 5/3 = 1.67 and becomes
even smaller. As we discussed above, the inertial region is
not stable and the precise value of α is not very important
in the present case but this level of qualitative agreement is
quite suggestive. One might care about the consistency with
Ref. [18] in which a stable power law has been identified.
We note that this difference between the present analysis
and Ref. [18] comes from the totally different choice of
initial conditions (3) and (4) that resemble the anisotropy in a
heavy-ion collision.

IV. CONCLUSIONS

With the results from our numerical simulations, we arrive
at the picture of the very-early-time stage in a relativistic
heavy-ion collision sketched in the illustration of Fig. 7.

FIG. 7. (Color online) Schematic picture of two fastest processes
in the early-time dynamics in a relativistic heavy-ion collision.

The fastest process is driven by the avalanche-like decay
along the longitudinal direction which takes place locally in
the transverse plane. These avalanches are to be attributed to
initial fluctuations. Once this occurs, the boost invariance or the
z invariance is quickly but only locally broken as in Fig. 7(a).
This view also invokes the famous Reynolds’ experiment of
turbulent flow inside a pipe [31] where the translationally
steady flow of ink begins wandering under disturbances if the
Reynolds’ number exceeds a critical point. From this analogy
it may well be reasonable to identify these local avalanches as
the appearance of a sort of fluid turbulence. Also, it would be
conceivable to associate them with the QCD string breaking
which is accompanied by the particle production.

The next vital fast process is the diffusion over the
transverse plane. This turbulent diffusion is quite an efficient
mechanism to dispose of energy in the whole phase space,
and eventually to let the equation of state behave smoothly
enough.

Before addressing the possible relevance to the experimen-
tal data, the following upgrades should be taken into account:
First, it is necessary to incorporate the full quantum spectrum
that should further accelerate the process speed. Second, re-
lated to this, we should carefully deal with the renormalization
and subtract the UV divergence originating from the quantum
fluctuation. Third, we need to turn the expansion on, which
makes it even more subtle to handle the first and the second
points above. In principle, as we commented, the avalanches
should be associated with the particle production, which is
to be reflected in the moments of the angular distribution of
the produced particles. For quantitative theoretical prediction,
however, we must tackle the tough above-mentioned obstacles
and complete the thermalization scenario first. We believe
that the qualitative finding reported in this work should be
a crucial step toward solving the puzzle of the thermalization
problem.
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