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Optical potential for the n-9Be reaction
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The optical-model potential for the n + 9Be reaction is obtained by two methods. The first method is from a
modification and generalization of previous work [Bonaccorso and Bertsch, Phys. Rev. C 63, 044604 (2001)]
and the second is from a dispersive-optical-model fit. The two potentials and also quantities derived from the S

matrices used to calculate neutron knockout cross sections are compared.
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I. INTRODUCTION

This paper is concerned with the search for a phenomeno-
logical optical-model potential to reproduce the available
experimental data [1] for the total [2], elastic [3–8], and
reaction [4,5,7,9–15] cross sections of the system n-9Be. In
this paper we refer to all reaction channels different from the
elastic channel as “reaction.” The original motivation was that
9Be is one of the most commonly used targets in knockout
experiments. Theoretical calculations of this process, such as
the transfer-to-the-continuum method, need the correct energy
dependence of the neutron-target optical potential for the
determination of the S matrices [16]. On the other hand, 9Be
is in itself a very interesting light nucleus for which various
anomalies have been noted in the past, like the large radius and
quadrupole moment [17]. Also the seminal Satchler and Love
[18] paper on the folding model for 9Be scattering found evi-
dence of anomalously large deformation and surface effects.

We discuss two different methods to obtain the n-9Be
phenomenological optical-model potential and we compare
their results. One method starts with the use of the potential of
Ref. [19] and with its generalization as proposed in Ref. [20].
Here we have extended it to the full range of incident neutron
energies for which data are available.

Let us start with Fig. 1, which shows the neutron [2] total
cross section in dots (red online), and the available elastic
(diamonds, green online) [3–8] and reaction (circles, orange
online) cross sections [4,5,7,9,10,12–14]. Because the latter
are rather scarce, we have also included proton reaction data
(triangles, cyan online) [11–15], which starting from about
20 MeV should represent the effect of the nuclear interaction
quite well as the Coulomb effect becomes negligible for these
energies. Below about 5 MeV, the total and elastic cross
sections are dominated by two resonances which strongly
increase the cross section. Conversely at higher energies, the
cross section shows a smooth decrease.

On the other hand, one of the most accurate methods
for constructing an optical-model potential is the dispersive
optical model, DOM, originally introduced in Ref. [21]. It has
been traditionally used for stable, heavy nuclei and recently
the possibility to extend it to nuclei away from the valley
of stability has been explored [22–26]. The DOM was not
intended for light nuclei as these have strong deformation
effects in the low-energy region, similar to what we have found
in n-9Be. However, there have been some attempts to use the

DOM for medium mass nuclei, for example, in Refs. [27–29].
In these papers, the n-27Al, n-59Co, n-28Si, n-32S DOM was
constructed and some interesting conclusions were drawn,
namely that for most deformed nuclei, an analysis of scat-
tering and reaction observables requires that the Schrödinger
equation be solved in the coupled-channels framework [30].
It was also found that the Coupled-Channel Method, CCM, is
particularly important for achieving a successful description of
neutron-nucleus interaction properties at low incident energies
Einc <10 MeV, especially for the total cross section and
for average resonance parameters [31]. Also a more recent
publication [32] applied the DOM to the analysis of neutron
and proton scattering on Cr, Fe, and Ni isotopes. In this
work a large and comprehensive set of data, including total
cross sections, proton reaction cross sections, nucleon elastic
and inelastic angular distributions, (p,n) data, and analyzing
powers, was analyzed using the dispersive coupled-channels
optical model. Furthermore, collective levels and transitions
among them were calculated microscopically, finally obtaining
an approximate Lane-consistent dispersive coupled-channels
optical potential. On the other hand, the importance of
introducing deformation effects in order to reproduce the
low-energy part of cross sections on light nuclei is also
discussed in detail in Refs. [33–35]. In particular those authors
pointed out the clear � dependence of the potential, which they
attributed to particle-vibration couplings, consistent with what
was proposed in Ref. [36].

II. A PHENOMENOLOGICAL N-9BE
OPTICAL POTENTIAL

The first method we present here is highly phenomeno-
logical as we have constrained our potential (AB) by the
simple requirement that the total, elastic, and reaction cross
sections from Refs. [1–15] are reproduced. We start with the
potential of Ref. [19] obtained from fitting elastic-scattering
angular distributions from 9 to 15 MeV and with the extension
we made to it in Ref. [20] to cover energies from 20 to
180 MeV. An equally good reproduction of the experimental
angular distributions over the 9 to 15 MeV range can be
obtained by making the real potential shallower and wider
(see Fig. 2). This modification allows for a better reproduction
of the lower-energy data, and for even lower energies, a strong
surface deformation potential was also introduced to improve
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FIG. 1. (Color online) Neutron and proton-9Be experimental and
calculated cross sections. Experimental neutron total cross-section
data in circles (red online) [2], and the available elastic (diamonds,
green online) [3–8] and reaction data [4,5,7,9–15] (proton data, trian-
gles, cyan online; neutron data, circles, orange online). Calculations:
total cross section (solid and dashed lines, violet online), elastic cross
section (solid and dashed lines, green online), and reaction cross
section (solid and dashed lines, cyan online) as indicated in the legend.

the fit to the total cross sections. The final calculated cross
sections obtained by an optical-model code are indicated by
the dashed curves in Fig. 1.

The AB potential used in the optical-model calculations is
defined as follows:

UAB(r,E) = − [VWS(r,E) + δV (r,E) + iWAB(r,E)] . (1)
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FIG. 2. (Color online) Fitted elastic-scattering angular distribu-
tions for n + 9Be with the dispersive optical model, the AB potential,
and the Dave and Gould (DG) potential [19]. The experimental data
are from Refs. [6,8,19,37–42]. For display purposes, the fits and data
have been successively scaled by a further factor of 30 for each higher
neutron energy. Curves and data are labeled by the neutron laboratory
energy in MeV.

The real part of the neutron-target interaction is given by VWS ,
the usual Woods-Saxon potential plus spin-orbit:

VWS(r) = V Rf (r,RR,aR)

−
(

�

mπc

)2
V so

r

d

dr
f (r,Rso,aso)l · σ (2)

where the Woods-Saxon form factor is

f (r,Ri,ai) = 1

1 + e
r−Ri

ai

(3)

and

Ri = ri
0A

1/3. (4)

The quantity δV is a correction which originates from
surface-deformation effects and represents channels for which
a simple Woods-Saxon form is not appropriate. Such couplings
suggest the following additional real surface potential [36]:

δV (r) = 16αe2(r−RR )/aR/(
1 + e(r−RR )/aR)4

. (5)

The imaginary part of the optical-model potential is

WAB(r) = W volf (r,RI ,aI ) − 4aIW sur d

dr
f (r,RI ,aI ). (6)

The parameters of UAB(r,E) for the n-9Be interaction used in
this paper are given in Table I.

From 0 to 5 MeV, the experimental n-9Be cross section
includes some resonances in the elastic scattering that, as
expected, the simple phenomenological optical potential can-
not reproduce in detail. We have obtained two resonances at
Elab = 0.7 MeV (p1/2) and Elab = 3.1 MeV (d5/2) using two
different parameters for the δV potential of Eq. (5), namely
α = −26.05 MeV and α = 3 MeV. We further discuss such
values later. Notice that in the n + 9Be system, the thresholds
for α + 6He and 2n + 8Be are both below 2 MeV. We have
simulated the peak around 2.5 MeV by varying the real
potential as the data seem to be dominated by the elastic
scattering. Thus the large enhancement of the low-energy
cross section is obtained mainly thanks to the surface real
term. Starting from 3 MeV, we have a small surface imaginary
term which reproduces the reaction data which is probably due
to surface oscillations and breakup and also a small volume
imaginary potential.

III. A DISPERSIVE OPTICAL MODEL POTENTIAL n-9Be

The second method we present is the dispersive optical
model developed by Mahaux and Sartor, of which a complete
description can be found in Ref. [21]. The real part of
the nucleon self-energy or optical-model potential can be
decomposed into an energy-independent nonlocal part and an
energy-dependent part, which can also be nonlocal, i.e.,

Re�(r,r ′; E) = Re�(r,r ′; EF ) + �V(r,r ′; E), (7)

where EF is the Fermi energy and the second term, the
dispersive correction, can be determined from the imaginary
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TABLE I. Energy-dependent optical-model parameters for the AB potential. α = −26.05 MeV for Elab < 2.4 MeV, α = 3 MeV if 2.4 �
Elab < 10 MeV, α = 3.2 − 0.02Elab if Elab � 10 MeV; V so = 7.9 MeV for Elab < 2 MeV, V so = 5.5 MeV for Elab � 2 MeV; rso = 1.27 fm,
aso = 0.7 fm; rI

0 = 1.3 fm, aI = 0.3 fm at all energies.

Elab (MeV) V R (MeV) rR
0 (fm) aR (fm) W sur (MeV) W vol (MeV)

0.1 � Elab < 3 32. − 0.377Elab 1.647 0.3 0 0
3 � Elab < 5 31.304 − 0.145Elab 0.4 + 1.543(Elab − 3) 0.1 + 1.025(Elab − 3)
5 � Elab < 20 1.647 − 0.005(Elab − 5) 1.65 + 0.365Elab 1.0 + 0.23Elab

20 � Elab < 40 0.3-0.0001Elab 5.6 − 0.005(Elab − 20)
40 � Elab < 111 16.25 − 0.05(Elab − 40) 5.5 − 0.01(Elab − 40)
111 � Elab < 180 0.288 4.8

part through the subtracted dispersion relation

�V(r,r ′; E)

= + 1

π
P

∫
Im�(r,r ′; E′)

(
1

E′ − E
− 1

E′ − EF

)
dE′,

(8)

where P stands for the principal value and we note the
convention to employ the same sign for the imaginary part
of the self-energy above and below the Fermi energy [21]. By
definition in Eq. (7) the dispersive correction is zero at the
Fermi energy. The dispersive correction varies rapidly around
EF and causes the valence single-particle levels to be focused
towards the Fermi energy.

Following Perey and Buck [43], the nonlocal energy-
independent term Re�(r,r ′; EF ) can be approximated by
a local energy-dependent term which Mahaux and Sartor
designate as the Hartree-Fock potential VHF (r,E). Strictly this
is not a Hartree-Fock potential, but it does describe the effects
of the mean field. The energy derivative of VHF is a measure
of nonlocality, which is related to the momentum-dependent
effective mass

m̃ (r,E)

m
= 1 − dVHF (r,E)

dE
, (9)

where m is the nucleon mass.
A consequence of the local approximation is that one needs

to use a scaled imaginary potential

W = m̃ (r,E)

m
Im � (10)

and a similarly scaled dispersive correction. The imaginary
part of the self-energy is also approximated as a local potential
and thus the dispersive correction is correspondingly local.
Mahaux and Sartor argue that this modifies �V by a smooth
function of energy which can easily be compensated by

a correspondingly smooth modification of VHF . Through
these assumptions, the nonlocal self-energy �(r,r ′; E) can
be replaced by an effective energy-dependent local potential

UDOM(r,E) = VHF (r,E) + �V (r,E) − iWDOM(r,E). (11)

The Fermi energy is defined as

EF = E+
F + E−

F

2
, (12)

E+
F = MA+1 − (MA + m), (13)

E−
sF = MA − (MA−1 + m), (14)

where E+
F and E−

F represent the binding energy for adding
or removing a nucleon, or alternatively, the single-particle
energies of the valence particle and hole states.

A. Parametrization of the DOM potential

Again the imaginary potential is assumed to be composed
of the sum of volume and surface components:

WDOM(r) = W volf (r,Rvol,avol)

− 4asurW sur d

dr
f (r,Rsur,asur), (15)

but now the radii for the two components are allowed to
be different. The phase space of particle levels for E � EF

is significantly larger than that of hole levels for E � EF .
Therefore the contributions from two-particle–one-hole states
for E � EF to the self-energy will be larger than that for
two-hole–one-particle states at E � EF . Thus at energies well
removed from EF , the form of the imaginary volume potential
should no longer be symmetric about EF . Hence the following
form was assumed for the depth of the volume potential:

W vol(E) = �WNM (E) +
⎧⎨
⎩

0 if |E − EF | < Evol
p ,

Avol (|E−EF |−Evol
p )4

(|E−EF |−Evol
p )4+(Bvol)4

if |E − EF | > Evol
p ,

(16)

where �WNM (E) is the energy-asymmetric correction modeled after nuclear-matter calculations. Apart from this correction, the
parametrization is similar to the Jeukenne and Mahaux form [44] used in many DOM analyses.

We set the parameter Evol
p = 11 MeV to force the imaginary potential to be zero just in the vicinity of the Fermi energy (see

later).

024619-3



ANGELA BONACCORSO AND ROBERT J. CHARITY PHYSICAL REVIEW C 89, 024619 (2014)

The energy-asymmetric correction was taken as

�WNM (E) =

⎧⎪⎨
⎪⎩

αNMAvol
[√

E + (EF +Ea )3/2

2E
− 3

2

√
EF + Ea

]
for E − EF > Ea,

−Avol (EF −E−Ea )2

(EF −E−Ea )2+(Ea )2 for E − EF < −Ea,

0 otherwise,

(17)

which is similar to the form suggested by Mahaux and Sartor [21]. Following our previous study [24], we have taken αNM =
0.08 MeV−1/2 and Ea = 60 MeV.

The imaginary surface potential is taken to have the form

W sur(E) =

⎧⎪⎨
⎪⎩

0 if |E − EF | < Esur
p ,

Asur

1+exp
( |E−EF |−Csur

Dsur

) exp
( |E−EF |−Esur

p
Bsur

)
−1

exp
( |E−EF |−Esur

p
Bsur

)
+1

if |E − EF | > Esur
p .

(18)

The Hartree-Fock potential is parametrized in the following
way:

VHF (r,E) = −V vol
HF (E) f (r,RHF ,aHF )

+ 4aHF V sur
HF

d

dr
f (r,RHF ,aHF )

+V so(r,E) + �V (r,E), (19)

where the spin-orbit V so and dispersion �V terms have been
separated from the volume and surface components.

A real surface term is included in the Hartree-Fock
potential. Such a term was required in the DOM analysis of
closed-shell nuclei in Ref. [24]. However, in the deformed 9Be
system it can also take on the physics contained in the δV term
[Eq. (5)] in the AB potential.

The volume component contains the energy-dependence
representing nonlocality, which is approximated by the cubic
equation

V vol
HF (E) = V HF

0 − αvol (E − EF )

−βvol (E − EF )2 − γ vol (E − EF )3 . (20)

The spin-orbit potential was taken to have the standard
form, but with an energy-dependent magnitude given by V so

0 −
αsoE.

The dispersion correction is related to the imaginary
potential through the subtracted-dispersion relationship

�V (r,E) = + 1

π
P

∫
W (r,E′)

(
1

E′ − E
− 1

E′ − EF

)
dE′.

(21)

The parameters of the potentials were obtained by simul-
taneously fitting elastic-scattering angular distributions, reac-
tion, and total cross sections. The fitted angular distributions
are displayed in Fig. 2, the calculated total, elastic, and reaction
cross sections are the solid curves shown in Fig. 1, while the
fitted parameters are listed in Table II. All diffusenesses were
fixed to 0.3 fm.

IV. COMPARISON OF THE TWO POTENTIALS

Figure 1 shows that all three cross sections (total, elastic,
reaction) obtained with the two potentials are equally good

at all energies. The detailed region of the resonances is
reproduced naturally by the DOM. On the other hand with
the AB potential we need to use two, fixed but not energy-
dependent, values for the parameter α in Eq. (5) to achieve the
same level of accuracy.

The two real potentials seem to have very similar character-
istics. Both potentials contain the effects of the deformation.
The DOM has it through the surface term in Eq. (19), the
spin-orbit term, and the �V term coming from the dispersion
relation. The AB has it through the spin orbit and the δV
coupling potential, Eq. (5). It seems that the surface term could
be interpreted as the results of the combined effect of what in
the DOM is the sum of the surface and dispersive terms in

TABLE II. Fixed and fitted parameters from a fit
to n + 9Be data with the dispersive optical model.

EF −4.238 MeV
rHF

0 1.287 fm
aHF 0.3 fm
V HF

0 21.87 MeV
αvol 0.3259
βvol −1.80×10−3 MeV−1

γ vol 3.46×10−6 MeV−2

V sur
HF 12.82 MeV

V so
0 8.768 MeV

αso 0.0261
rso

0 1.230 fm
aso 0.3 fm
Asur 12.4 MeV
Bsur 1.311 MeV
Csur 47.08 MeV
Dsur 39.09 MeV
Esur

p 6.60 MeV
r sur

0 1.428 fm
asur = avol 0.3 fm
αNM 0.08 MeV−1/2

Ea 60 MeV
Avol 3.29 MeV
Bvol 37.96 MeV
Evol

p 11 MeV
rvol

0 1.472 fm
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Eq. (19). However, this term is more phenomenological than
the dispersive term of the DOM.

For the AB potential, we have found that the very low-
energy part of the spectrum can be described by a real potential
having a conventional Woods-Saxon form plus a surface term.
Such term is necessary to reproduce the strong increase of the
cross section at low energies. However, the effect of this terms
becomes almost negligible at around 20–30 MeV. Deformation
effects are common to light nuclei and have been reproduced in
various ways. For example, the well-known paper by Comfort
and Karp [45] on the p + 12C scattering quotes strong spin-orbit
strengths of 6.5 and 7.6 MeV (in our notation) for incident
energies of 12 and 22 MeV.

The various parts of the two potentials have been studied
and compared in detail for four energy regions. The first is
the very-low-energy region where 10Be neutron single-particle
levels are important. As the DOM potential was designed
to account for both positive- and negative-energy quantities,
one might expect it to reproduce this region better. First, the
DOM potential reproduced the valence neutron p3/2 level by
construction as this basically defines the Fermi energy. The
p1/2 and d5/2 levels are calculated to occur at Ec.m.= 0.58
and 2.75 MeV, respectively. Note in Fig. 1, these energies
correspond to strong enhancements in the total cross sections
and the only way to reproduce such structures with the DOM
potential is by placing these single-particle resonances at these
energies.

If the definition of the phenomenological real potential
AB is extrapolated to negative energies it is found that the
potential corresponding to the valence neutron separation
energy of 6.8 MeV would have V R = 34.56 MeV. We have
found that the separation energy of the p3/2 valence orbit can
be obtained by solving the bound-state Schrödinger equation
with V R = 31.5 MeV, if the surface term is put to zero. In this
potential we also find the p1/2 state, bound by 5.3 MeV, and
a narrow (� = 0.5 MeV) d5/2 resonance at 3.9 MeV. Using
instead the δV surface correction we find a p1/2 resonance at
Ecm = 0.606 MeV (� = 0.08 MeV) while the d5/2 resonance
occurs at 2.96 MeV (� = 0.29 MeV). Obviously the surface
term should be used also in a bound-state calculation, which
is automatically achieved by the DOM.

The second comparison has been done at 3 MeV. There
one sees that the phenomenological AB potential has a real
part that is about 10 MeV deeper than the DOM potential
of Sec. II, although the shapes are rather similar. The AB
potential has a strong surface term. This is necessary to
partially simulate the surface dispersive component, which
is present explicitly in the DOM, whose surface term need not
to be very strong. The DOM has a surface imaginary part about
one order of magnitude larger that the phenomenological AB,
and this is at the origin of the important dispersive component
in the real part. This component allows for the smooth and
continuous increase of the total and elastic cross sections below
20 MeV.

We have then looked at the intermediate-energy region,
taking as an example Einc = 20 MeV. In this case the two
potentials have very similar surface terms, with a depth of
about 8 MeV, but while the DOM has a small volume imaginary
part, the AB potential has a Woods-Saxon volume with a depth

10 100
Elab(MeV)

0.1

1

σ(
ba

rn
)

D & G total
D & G elastic
D & G reaction
B & B total
B & B elastic
B & B  reaction

FIG. 3. (Color online) Cross sections calculated with the poten-
tials of Dave and Gould (DG) [19] and Bonaccorso and Bertsch (BB)
[20]. The data are the same as in Fig. 1.

of about 6 MeV, thus giving a bit more absorption in total.
Finally in the high-energy region at Einc = 80 MeV, the AB
volume potential has decreased very slightly while the surface
potential has become about 30% deeper. The DOM potential
has for both terms a depth of about 3 MeV. Thus its volume part
is quite close to the corresponding AB part, while the surface
is about five times smaller. In this region the AB cross sections
are dominated by the reaction component while the DOM gives
similar amounts of elastic and reaction cross section.

Figure 3 shows the same data as Fig. 1 and the cross
sections calculated according to Refs. [19,20] in the energy
range for which each potential was fitted, namely 9–15 MeV
for Ref. [19] and 20–180 MeV for Ref. [20]. Notice that
both the DOM and the AB potentials provide more accurate
reproductions of the elastic and reaction data as indicated by
Fig. 1. Furthermore they extend over a much larger energy
range including very low energies.

Figure 2 displays the elastic-scattering angular distributions
calculated according to the DOM and AB potentials and also
with the potential of Ref. [19]. They are compared to the
available data from Refs. [6,8,19,37–42]. All calculations give
reasonable fits to the experimental data except for the potential
from Ref. [19] at the highest two energies (Elab = 96 and
136 MeV). The latter is not surprising as the potential from

0 1 2 3 4 5
j=l+1/2

0

1

2

3

S(
j) 

DOM  |1-S|2

DOM  1-|S|2

AB      1-|S|2

AB      |1-S|2

FIG. 4. (Color online) The quantities |1 − S|2 and 1 − |S|2 cal-
culated with the two optical-model potentials for a neutron bombard-
ing energy of 3 MeV.
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DOM 1-|S|2

DOM |1-S|2

AB     |1-S|2

AB     1-|S|2

FIG. 5. (Color online) Same as for Fig. 4, but for a neutron
bombarding energy of 20 MeV.

Ref. [19] was fit just in the 9–15 MeV region. Overall the AB
potential reproduces the data somewhat better than the DOM
potential, but we note that experimental angular distributions
covering the full angular range are available only for a small
range of neutron energies.

V. S MATRIX

In neutron knockout calculations, the neutron-target S
matrix is needed in both the transfer-to-the-continuum method
[16] and the eikonal method [46]. In both methods, the
knockout cross section is separated into two components:
an elastic or diffraction component where the knocked-out
neutron interacts elastically with the target and an inelastic or
stripping component where the neutron elastic flux is absorbed.
The quantities |1 − S|2 and 1 − |S|2 are used to calculate these
components, respectively.

These quantities, calculated from the two potentials at 3, 20,
and 80 MeV, are plotted in Figs. 4 to 6 as a function of the total
angular momentum j = l + 1/2. By using the semiclassical
relation l + 1/2 = bk where b is the n-target impact parameter
and k is the momentum of relative motion, one can deduce
from these figures an impact-parameter dependence for the S
matrix. Similar plots could be made for the case j = l − 1/2.

The quantity 1 − |S|2 is of course bounded by unity,
which would represents complete absorption of the elastic
flux by the target. Even at small j values, we see some
transparency with both potentials for the two higher energies
(20 and 80 MeV). In these figures, the calculations with the
two potentials show some significant differences. The most
important angular momenta for knockout reactions are the
more peripheral collisions, where the quantity 1 − |S|2 is more
similar for the two potentials at all energies. The quantity
|1 − S|2 calculated with the DOM consistently gives a larger
contribution for larger j values at 20 and 80 MeV. Calculations
with the two potentials can be used to gauge the uncertainty in
the neutron-target S matrix to the predicted cross sections.

0 2 4 6 8 10
j=l+1/2

0

1

2

S(
j) 

DOM |1-S|2

DOM 1-|S|2

AB     1-|S|2

AB     |1-S|2

FIG. 6. (Color online) Same as for Fig. 4, but for a neutron
bombarding energy of 80 MeV.

VI. CONCLUSION

In this paper, we have presented and compared two
parametrizations of the optical-model potential for the system
n-9Be over a large energy range. To our knowledge, this is
the first time that such an effort is presented in the literature
for a very light system and with two independent methods.
The two potentials have similar features. Namely, both present
unusually strong real surface terms in the low-energy region,
which are necessary to reproduce the steep enhancement of
the cross section. We interpret this effect as representative
of strong surface deformation and related channel couplings.
This is the most interesting aspect of the present work which
allows for a microscopic interpretation of the potentials. An
important surface term for both potentials is also necessary
in the imaginary part. Volume terms are present in both
potentials, but with lesser strength, in agreement with the
common understanding of light nuclei dynamics as dominated
by surface properties. While the DOM potential provides
naturally an excellent reproduction of the cross sections at all
energies including the resonance region, the simple optical-
model potential does not contain the necessary ingredients to
reproduce the details of the resonant parts of the excitation
function and needs a surface phenomenological correction to
achieve comparable results. This is interpreted as a need for
the dispersive term contained in the DOM. We believe that
such findings could have a strong impact in the studies of light
exotic nuclei, in particular neutron-unbound nuclei, for which
it is very important to obtain a unified description of states
around the particle-emission threshold.
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