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Microscopic description of α + N bremsstrahlung by a Siegert approach
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A microscopic cluster model of the nucleus-nucleus bremsstrahlung based on an extension of the Siegert
theorem, i.e., based on the charge density rather than on the current, allows including implicitly a part of the
effects of meson-exchange currents. This approach was developed in a previous paper for zero-spin nuclei and
applied to the α + α bremsstrahlung. This model is extended to colliding nuclei with nonzero spins and applied to
the α + p and α + n bremsstrahlungs. A comparison between the bremsstrahlung cross sections for these mirror
systems is made. The importance of the meson-exchange currents on the α + N bremsstrahlungs is discussed
by comparing the E1 and E2 components of the bremsstrahlung cross sections obtained in the Siegert approach
where these currents are partly included and in the non-Siegert approach where they are fully neglected.
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I. INTRODUCTION

Nucleus-nucleus bremsstrahlung is a radiative transition
between continuum states, where the photon emission is
induced by a collision between two nuclei or a nucleus
and a neutron. It is an interesting tool for studying the
cluster structure of the unbound states [1,2]. It is also
interesting by itself, particularly since the perspective of using
the t(d,nγ )α bremsstrahlung to diagnose plasmas in fusion
experiments [3].

The description of electromagnetic transitions in nuclear
systems is based on the interaction between the nuclear current
and the electromagnetic field of the photon. The nuclear
current is caused by the motion of the nucleons and also
by the motion of the mesons which are responsible for the
nucleon-nucleon (NN ) interaction. In most previous studies
of nucleus-nucleus bremsstrahlung [4–13], the contribution of
the meson-exchange currents is merely neglected. Recently,
in Ref. [14], it was proposed to include partially the meson-
exchange currents in the bremsstrahlung models by using an
extended version of the Siegert theorem [15]. Contrary to
the usual Siegert theorem, the extended one [15] does not
rely on the long-wavelength approximation, which cannot
be used for bremsstrahlung. Indeed, for transitions in the
continuum, the initial and final states are not square-integrable
and consequently, making the long-wavelength approximation
leads to divergent matrix elements of the electric transition
multipole operators.

Based on this extension of the Siegert theorem, a micro-
scopic cluster model of bremsstrahlung partially including
the meson-exchange currents was developed in Ref. [14] and
applied to the α + α system. In this microscopic cluster model,
each nucleon of the studied system is taken into account and the
scattering wave functions are fully antisymmetrized to satisfy
the Pauli principle. The internal wave functions of the colliding
nuclei are assumed to have a simple cluster structure in the
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harmonic-oscillator shell model. The results are derived from
an effective NN interaction with one parameter fitted to elastic
data only. This microscopic cluster model of bremsstrahlung
is extended here to colliding nuclei with nonzero spins and
applied to the α + N bremsstrahlungs.

Studying the α + N bremsstrahlungs presents several inter-
ests. On the one hand, it makes possible a direct comparison
between theory and experiment since the α + p system
is one of a few light-ion systems for which experimental
bremsstrahlung cross sections exist [16]. On the other hand,
the α + n bremsstrahlung has not been studied yet neither
experimentally because measurements would be extremely
difficult to perform, nor theoretically. The comparison with
the mirror reaction of the cross section and of the roles
of their E1 and E2 components is however interesting.
Moreover, since it describes the final channel, it is a necessary
preliminary step to the more important study of the t(d,nγ )α
bremsstrahlung.

In Sec. II, the microscopic cluster model of bremsstrahlung
is presented and the calculation of the electric transition
matrix elements is outlined. The model is applied to the
α + N systems in Sec. III for an effective NN interaction
adapted to the cluster approach. Contributions of the E1
and E2 transitions to the bremsstrahlung cross sections are
evaluated and a comparison between the α + n and α + p
systems is done. The effects of the meson-exchange currents
on the α + N bremsstrahlungs are analyzed by comparing
the non-Siegert and Siegert cross sections. For the α + p
bremsstrahlung, the non-Siegert and Siegert cross sections
are also compared with experimental data [16]. Concluding
remarks are presented in Sec. IV.

II. NUCLEUS-NUCLEUS BREMSSTRAHLUNG MODEL

A. Cross sections

Two nuclei with reduced mass μM collide at the initial
relative momentum pi = �ki in the z direction and relative
energy Ei = p2

i /2μM . Each nucleus is characterized by its
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number of nucleons Ak , its charge Zke, its parity πk , its spin
Ik , and its spin projection νi

k where k = 1 or 2. After emission
of a photon with energy Eγ = �kγ c and momentum pγ = �kγ

in the direction �γ = (θγ ,ϕγ ), the system has a final relative
momentum pf = �kf in the direction �f = (θf ,ϕf ) and a
relative energy Ef = p2

f /2μM , which satisfies

Ef = Ei − Eγ , (1)

where the small recoil energy is neglected. The nuclei are
assumed to be the same in the initial and final states but for
their spin projections, denoted by ν

f
1 and ν

f
2 after collision.

More general formulas, for which this assumption is not done,
can be found in Ref. [17].

The bremsstrahlung cross sections are evaluated from the
multipole matrix elements, which are proportional to the
matrix elements of the electromagnetic transition multipole

operators Mσ
λμ between the incoming initial state �

νi
1ν

i
2+

i in
the z direction with energy Ei and the outgoing final state

�
ν

f
1 ν

f
2 −

f (�f ) with energy Ef and direction �f ,

u
σν

if
12

λμ (�f ) = ασ
λ

〈
�

ν
f
1 ν

f
2 −

f (�f )
∣∣Mσ

λμ

∣∣�νi
1ν

i
2+

i

〉
, (2)

where σ = 0 or E corresponds to an electric multipole and
σ = 1 or M corresponds to a magnetic multipole, ν

if
12 is a

shorthand notation for νi
1ν

i
2ν

f
1 ν

f
2 , and ασ

λ is given by

ασ
λ = −

√
2π (λ + 1)iλ+σ kλ

γ√
λ(2λ + 1)(2λ − 1)!!

. (3)

Assuming that the photon helicity and the final spin
projections are not observed, i.e., the collisions are counted
whatever the photon helicity or the final spin projections, and
assuming that the incident beam is unpolarized, the differential
bremsstrahlung cross section is given by [17]

dσ

dEγ d�γ d�f

= Eγ

8(π�)4�c

p2
f

4πε0(2I1 + 1)(2I2 + 1)

×
∑
ν

if
12

∑
σσ ′

∑
λλ′

(−1)λ+λ′+σ+σ ′+1

×
∑
μμ′

(−1)μei(μ−μ′)ϕf u
σν

if
12

λμ (θf ,0)

× u
σ ′νif

12∗
λ′μ′ (θf ,0)Fλλ′σ+σ ′

μμ′ (�γ ), (4)

where

Fλλ′ε
μμ′ (�γ ) =

√
4π

∑
j

′(2j + 1)−1/2(λλ′μ −μ′|jμ−μ′)

×(λλ′1 −1|j0)Yμ′−μ
j (�γ ). (5)

The prime on the summation symbol indicates that the sum is
restricted to values of j for which j + λ + λ′ + ε is even. Other
differential bremsstrahlung cross sections can be obtained by
integration. For instance, the angle-integrated cross section is

given by

dσ

dEγ

= 1

1 + δ12

∫
dσ

dEγ d�f d�γ

d�f d�γ (6)

= Eγ

π2�5c4πε0

p2
f

(1 + δ12)(2I1 + 1)(2I2 + 1)

×
∑
ν

if
12

∑
σλμ

∫ π

0

∣∣uσν
if
12

λμ (θf ,0)
∣∣2

2λ + 1
sin θf dθf , (7)

where δ12 is equal to unity if nuclei 1 and 2 are identical and
to zero otherwise. Dividing by (1 + δ12) is required to take the
symmetry of the output channel into account [18].

Experimental differential bremsstrahlung cross sections are
measured in the equal-angle coplanar Harvard geometry [16].
For this geometry, nuclei 1 and 2 are detected, respectively,
in directions �1 = (θ1,0) and �2 = (θ2,π ) and the photon is
undetected. Before the collision, nucleus 1 has momentum pi1

and nucleus 2 is assumed to be at rest. The bremsstrahlung
cross section corresponding to this configuration is given
by [17]

dσ

d�1d�2
= kf p4

i1

4(π�)4μM

sin2 θ1 sin2 θ2

sin5(θ1 + θ2)

1

4πε0(2I1 + 1)(2I2 + 1)

×
∑
ν

if
12

∑
σσ ′

∑
λλ′

′∑
μμ′

′(−1)μ+1u
σν

if
12

λμ (�f )u
σ ′νif

12∗
λ′μ′ (�f )

×
∫ π

0
Fλλ′σ+σ ′

μμ′ (θγ ,0)dθγ . (8)

The prime on the summation symbols indicates that the sums
are restricted to the terms such that μ + μ′ and λ + λ′ + σ +
σ ′ are even.

The matrix element u
σν

if
12

λμ is evaluated by expanding the

initial and final states �
νi

1ν
i
2+

i and �
ν

f
1 ν

f
2 −

f (�f ) in partial waves.
In the microscopic cluster approach presented here, these
partial waves are described by the resonating-group method
(RGM) [19,20] as

�JMπ
l0I0

(E) =
√

A!

A1!A2!
(
1 + δA1A2

)
×

∑
lI

A[
Yl(�ρ)

[
φ

π1
I1

φ
π2
I2

]I ]JM
gJπ

lI,l0I0
(E,ρ),

(9)

where E is the relative energy between the clusters, A = A1 +
A2 is the total number of nucleons in the system, J is the
total angular momentum, M is its projection, π is the total
parity, l is the relative orbital angular momentum, I is the
channel spin, φ

π1
I1

and φ
π2
I2

are the internal wave functions of
the clusters, ρ = (ρ,�ρ) is the relative coordinate between the
cluster centers of mass, gJπ

lI,l0I0
is the relative wave function.

Indices l0 and I0 correspond to the entrance channel. The total
parity π is linked with the individual nuclei parities by

π = π1π2(−1)l . (10)
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The internal wave functions φ
π1
I1

and φ
π2
I2

are obtained by removing a c.m. factor from Slater determinants describing the ground
states of the clusters within the harmonic oscillator shell model. The normalization of the relative wave function gJπ

lI,l0I0
is fixed

by its asymptotic behavior,

gJπ
lI,l0I0

(E,ρ) −→
ρ→∞

√
π (1 + δ12)(2l0 + 1)il+1eiσl0 (E)

√
vkρ

[
δll0δII0Il(η,kρ) − UJπ

lI l0I0
(E)Ol(η,kρ)

]
, (11)

where k = √
2μME/� is the wave number, v = �k/μM is the relative velocity, η = Z1Z2e

2/4πε0�v is the Sommerfeld parameter,
σl0 is the Coulomb phase shift, UJπ

lI l0I0
is an element of the unitary and symmetric collision matrix UJπ , and Il and Ol are the

incoming and outgoing Coulomb wave functions.
From the partial waves defined by Eq. (9), the multipole matrix elements can be written as [17]

u
σν

if
12

λμ (�f ) = 2
√

πασ
λ

∑
JiJf

∑
li Ii

∑
lf If

∑
lI

∑
νiνf

∑
Mf mf

(
I1I2ν

i
1ν

i
2

∣∣Iiνi

)(
I1I2ν

f
1 ν

f
2

∣∣If νf

)
(liIi0νi |Jiνi)(lf If mf νf |Jf Mf )(Jiλνiμ|Jf Mf )

× [(2Jf + 1)(2l + 1)]−1/2Y
mf

lf
(�f )U

Jf πf

lI lf If
(Ef )ei[σlf

(Ef )+σl (Ef )]〈
�

Jf πf

lI (Ef )
∣∣|Mσ

λ |∣∣�Jiπi

li Ii
(Ei)

〉
. (12)

The convention adopted here to define the reduced matrix
element is the same as in Ref. [21]. The sums over νi νf ,
Mf , and mf are only apparent since the Clebsch-Gordan
coefficients imply νs = νs

1 + νs
2 with s = i,f , Mf = νi + μ,

and mf = Mf − νf .
For some configurations, a lot of partial waves have to be

considered in Eq. (12) to obtain converged results. However,
since nuclear effects are restricted to few partial waves, the
contribution of the other partial waves with higher orbital
momenta can be evaluated accurately in a purely Coulombic
pointlike nuclei approach. Then, as explained in Ref. [7], the
purely Coulombic contribution can be calculated by summing
up analytically the partial wave expansion, avoiding the
problem of the slow convergence.

In this work, the scattering wave function is described by
the generator coordinate method (GCM) [19,20], which can
be seen as a particular form of the RGM. In the GCM, the
same oscillator parameter b is used for describing the internal
wave function of both clusters and the gJπ

lI,l0I0
relative function

is approximated as a sum of projected Gaussian functions
�l(ρ,Rn) defined by

�l(ρ,Rn) = (μ′
M/πb2)3/4e−μ′

M (ρ2+R2
n)/2b2

il(μ
′
MρRn/b

2),

(13)

where Rn are real parameters called generator coordinates,
μ′

M = A1A2/A, and il is a modified spherical Bessel function
of the first kind or spherical Hankel function. With this
particular choice of gJπ

lI,l0I0
, the partial waves �JMπ

l0I0
can be

written from Slater determinants, which makes systematic
the calculation of matrix elements. However, the projected
Gaussian functions fail to reproduce the correct asymptotic
behavior of gJπ

lI,l0I0
given by Eq. (11). This problem is solved

by the microscopic R-matrix method (MRM) [22,23]. In this
approach, the configuration space is divided at the channel
radius a into two regions: an internal region (ρ < a) where
the partial waves �JMπ

l0I0
are described by the GCM and an

external region (ρ > a) where the antisymmetrization between
the colliding nuclei is neglected and the radial relative function
gJπ

lI,l0I0
is approximated by its asymptotic behavior.

The collision matrix and the coefficients of the expansion
of gJπ

lI,l0I0
in projected Gaussian functions are obtained by

solving a Bloch-Schrödinger equation, based on a microscopic
Hamiltonian, associated with the continuity condition between
the internal and external parts of �JMπ

l0I0
at a [22,23]. For a value

of a chosen larger than the range of the nuclear forces and
of antisymmetrization effects between nucleons belonging to
different nuclei, the wave function is insensitive to the specific
value of a.

B. Electric multipole operators

Since the electric transitions dominate for light-ion
bremsstrahlung at low photon energy, the magnetic transitions
are not considered hereafter. In the non-Siegert approach,
the electric transition multipole operators are given explicitly
by [24]

ME
λμ = ie(2λ + 1)!!

mNc(λ + 1)kλ+1
γ

×
A∑

j=1

[(
1

2
− tj3

)
χλμ(kγ ,r) · (pj − A−1Pc.m.)

− 1

2
k2
γ gsj (r × ∇)φλμ(kγ r) · sj

]
r=rj −Rc.m.

, (14)

where mN is the nucleon mass, rj , pj , sj , and tj are the
coordinate, momentum, spin, and isospin of nucleon j , Rc.m.

and Pc.m. are the c.m. coordinate and momentum, gsj = (gn +
gp)/2 + tj3(gn − gp), where gn and gp are the neutron and
proton gyromagnetic factors, respectively, and

χλμ(k,r) =
(

k2r + ∇ ∂

∂r
r

)
φλμ(kr), (15)

φλμ(kr) = jλ(kr)Yλμ(�), (16)

with r = (r,�).
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The Siegert electric transition multipole operators are written explicitly as [14]

ME(S)
λμ = e(2λ + 1)!!

kλ
γ

A∑
j=1

(
1

2
− tj3

)
φλμ[kγ (rj − Rc.m.)] + ie(2λ + 1)!!

2mNc(λ + 1)kλ+1
γ

A∑
j=1

{(
1

2
− tj3

)
[χλμ(kγ ,r)

− (λ + 1)∇φλμ(kγ r),pj − A−1Pc.m.]+ − k2
γ gsj (r × ∇)φλμ(kγ r) · sj

}
r=rj −Rc.m.

, (17)

where [a,b]+ is a shorthand notation for a · b + b · a. The
spin-dependent terms of the Siegert and non-Siegert operators
are the same.

At the long-wavelength approximation, the electric tran-
sition multipole operators are reduced in the non-Siegert
approach to

M̃E
λμ = ie

mNckγ

A∑
j=1

(
1

2
− tj3

)
× [∇rλY

μ
λ (�)

]
r=rj −Rc.m.

· (pj − A−1Pc.m.) (18)

and in the Siegert approach to

M̃E(S)
λμ = e

A∑
j=1

(
1

2
− tj3

)[
rλY

μ
λ (�)

]
r=rj −Rc.m.

. (19)

C. Matrix elements of electric transition multipole operators

The calculation of the matrix elements of electric transition
multipole operators is outlined in this section. Details can be
found in Refs. [14,17].

Let me note Mλ for ME
λ or ME(S)

λ . The reduced matrix
element of Mλ is approximated with a good accuracy by [4]〈

�
Jf πf

lf If

∣∣|Mλ|
∣∣�Jiπi

li Ii

〉 = 〈
�

Jf πf

lf If int

∣∣|M̃λ|
∣∣�Jiπi

li Ii int

〉
− 〈

�
Jf πf

lf If int

∣∣|M̃λ|
∣∣�Jiπi

li Ii int

〉
ext

+ 〈
�

Jf πf

lf If ext

∣∣|Mλ|
∣∣�Jiπi

li Iiext

〉
ext, (20)

where �Jπ
lI int and �Jπ

lIext designate, respectively, the internal and
external parts of the partial waves. The energy-dependence of
the wave functions is dropped to simplify the notations. The
first matrix element in the right-hand side (r.h.s.) of Eq. (20)
is calculated microscopically over the whole space while the
last two are evaluated over the external region, by neglecting
the antisymmetrization.

The long-wavelength approximation can be done for the
matrix elements between �

Jiπi

li Ii int and �
Jf πf

lf If int without that
convergence problems arise since the wave functions in the
internal region are square-integrable. This approximation,
which is not essential, leads to much simpler matrix elements.

The calculation of the first term of the r.h.s. of Eq. (20)
can be performed by working with individual nucleon co-
ordinates [4,25], which makes simpler the treatment of the
antisymmetrization.

The calculation of the matrix elements evaluated over
the external region in Eq. (20) is simplified by neglecting
the antisymmetrization between nuclei, consistently with the

R-matrix approach, and by replacing the electric transition
multipole operators defined by Eqs. (14) and (17) by their
asymptotic forms, which can be found in Ref. [17].

III. APPLICATION TO THE α + N BREMSSTRAHLUNGS

A. Model specifications

E1 and E2 transitions are taken into account in the
evaluation of the bremsstrahlung cross sections. Only the spin-
independent part of the electric transition multipole operators
are considered here since at low-photon energy, the
contribution of the spin-dependent terms is expected
to be weak. For an energy range similar to the one considered
here, the contribution of the M1 transitions is calculated for the
α + p system in a microscopic approach in Ref. [6]. It is proved
to be negligible. M1 transitions are thus not considered here.

The oscillator parameter b is set at 1.36 fm to reproduce
the experimental α radius. Ten generator coordinates from 0.4
to 8.5 fm in steps of 0.9 fm are used to describe the wave
function in the internal region. The effective NN interaction
is the sum of the Minnesota interaction [26] and the Coulomb
potential. The exchange parameter u is set at the value 0.96
and the spin-orbit strength S0 at 35.6 MeV fm5 for α + n
and at 35.5 MeV fm5 for α + p. With these values, this
model reproduces the experimental phase shifts with a good

accuracy [27]. The matrix elements u
Eν

if
12

λμ are calculated by
taking account of the contribution of the nuclear effects for the
partial waves with an orbital momentum up to lmax = 7. The
results are not modified significantly when lmax is increased
from 7 to 8.

Two values of the channel radius are considered: a = 7.6 fm
and a = 8.5 fm to check the insensitivity of the results with
respect to the value of a. Only the results for a = 7.6 fm are
displayed in the figures.

B. Cross sections

In Figs. 1 and 2, the respective contributions of the E1 and
E2 transitions to the angle-integrated cross sections dσ/dEγ ,
given by Eq. (7), are shown as a function of the initial relative
energy Ei for three values of the photon energy: Eγ = 1, 5, and
9 MeV. The angle-integrated cross sections taking the E1 and
E2 transitions into account are simply obtained by summing
both individual contributions.

For the α + p system, the absolute differences between
cross sections at the two considered values of the channel
radius are smaller than 140 nb/MeV for the E1 transitions
and 0.6 nb/MeV for the E2 transitions. For the α + n system,
absolute differences between cross sections at the two
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FIG. 1. Contributions of the E1 transitions to the angle-integrated
cross sections dσ/dEγ for Eγ = 1, 5, and 9 MeV as a function of
the initial relative energy Ei for the α + p (a) and α + n (b) systems.
Full lines correspond to the Siegert operator ME(S)

λμ and dashed lines
to the non-Siegert operator ME

λμ.

considered values of the channel radius are smaller than
11 nb/MeV for the E1 transitions and 2 pb/MeV for the
E2 transitions. The differences are often much smaller than
these values.

Each cross section shown in Figs. 1 and 2 has a peak at
the energy of the final channel corresponding to the 3/2−
resonance. Since the 3/2− resonance is at a lower energy for the
α + n scattering than for the α + p scattering, the resonances
in the bremsstrahlung cross sections are also at a lower energy
for the α + n system than for the α + p system. They are thus
narrower and more pronounced for the α + n bremsstrahlung
than for the α + p bremsstrahlung.

For both systems, the E1 transitions largely dominate. The
bremsstrahlung cross sections taking the E1 and E2 transitions
into account look thus the same as the contributions of the E1
transitions only to the bremsstrahlung cross sections shown
in Fig. 1. The contribution of the E1 transitions has the same
order of magnitude in both systems. Off-resonance, they are
even almost identical. On the contrary, the contribution of
the E2 transitions is about 80 times weaker for the α + n
bremsstrahlung than for the α + p one. The ratio of the orders
of magnitude of the electric transition contributions can be
explained by comparing the effective charges defined by

Z
(λ)
eff = Z1

(
A2

A

)λ

+ Z2

(−A1

A

)λ

. (21)
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FIG. 2. Contribution of the E2 transitions to the angle-integrated
cross sections dσ/dEγ for Eγ =1, 5, and 9 MeV as a function of the
initial energy Ei for the α + p (a) and α + n (b) systems. Notice that
scales are very different in both figures. Full lines correspond to the
Siegert operator ME(S)

λμ and dashed lines to the non-Siegert operator
ME

λμ. Non-Siegert and Siegert curves are nearly indistinguishable at
the scale of the figure.

In potential models, where pointlike nuclei are considered, the
dominant term of the electric transition multipole operator is
proportional to the effective charge at low photon energy as can
be proved from relations of Ref. [7]. In first approximation, the
ratio between the contributions of a given electric transition
for the α + p and α + n bremsstrahlung cross sections is thus
given by the square of the ratio between the effective charges

dσ (αp,Eλ)

dσ (αn,Eλ)
≈

(
Z

(λ)
eff,αp

Z
(λ)
eff,αn

)2

, (22)

where dσ (αN,Eλ) designates the contribution of the Eλ
transitions to the α + N bremsstrahlung cross sections and
Z

(λ)
eff,αN is the effective charge associated with the α + N

system. This ratio is equal to 1 for the E1 transitions and
81 for the E2 transitions.

As noted in the study of the α + α bremsstrahlung [14], the
differences between the Siegert and non-Siegert approaches
increase with the photon energy. For E1 transitions, these
differences are nearly negligible at Eγ = 1 MeV but become
quite important beyond Eγ = 5 MeV. At Eγ = 9 MeV, for the
energy range displayed in Fig. 1, these differences can reach
up to around 3.0 μb for the α + n system and up to around
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FIG. 3. Laboratory differential cross section dσ/d�1d�2 in the
coplanar geometry at θN = 70◦ and θα = 30◦ as a function of the
initial energy Ei for α(p,αp)γ (a) and α(n,αn)γ (b). The E1 and
E2 contributions are taken into account. Full lines correspond to the
Siegert operator ME(S)

λμ and dashed lines to the non-Siegert operator
ME

λμ. Experimental data come from Ref. [16].

1.6 μb for the α + p system. For E2 transitions, even if the
differences between the Siegert and non-Siegert approaches
also increase with the photon energy, they are still negligible
at Eγ = 9 MeV. For E2 transitions, these differences are
much weaker than in the α + α bremsstrahlung. For the three
considered photon energies, the Siegert approach leads to
higher cross sections than the non-Siegert approach.

Let me compare the model results with experimental
data available for the α(p,αp)γ bremsstrahlung [16]. The
experimental differential bremsstrahlung cross sections are
measured in the coplanar Harvard geometry, for which θp =
70◦ and θα = 30◦. Differential bremsstrahlung cross sections
for this configuration are shown in Fig. 3.

As in Fig. 1, the bremsstrahlung cross sections are higher
in the Siegert approach than in the non-Siegert one. The non-
Siegert α + p cross section seems to be in a better agreement
with the experimental data than the Siegert one. However,
the error bars include only statistical errors and are quite
important. More numerous and more accurate experimental
data are required to perform a conclusive comparison between
the Siegert and non-Siegert approaches.

In Fig. 4, the contributions of the E2 transitions to the
Harvard cross sections are compared for the α + p and α + n
systems.
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FIG. 4. The E2 contributions to the laboratory differential cross
section dσ/d�1d�2 in the coplanar geometry at θN = 70◦ and θα =
30◦ as a function of the initial energy Ei for α(n,αn)γ (full lines) and
α(p,αp)γ (dashed lines). The α + n cross sections are multiplied by
81. Siegert and non-Siegert cross sections are indistinguishable at the
scale of the figure.

Again, the E1 transitions largely dominate and the
bremsstrahlung cross sections taking only the E1 transitions
into account look thus the same as the bremsstrahlung cross
sections including the E1 and E2 contributions, shown in
Fig. 3. The contribution of the E1 transitions has the same
order of magnitude in both α + N systems. Again, differences
between the Siegert and non-Siegert approaches are negligible
for the E2 transitions and the contribution of the E2 transitions
is about eighty times weaker for the α + n bremsstrahlung than
for the α + p bremsstrahlung.

IV. CONCLUSION

A microscopic cluster model of bremsstrahlung, taking
implicitly account of a part of the meson-exchange currents
by following a Siegert approach, is extended to nonzero spins
nuclei and is applied to the α + N systems. It is noted that
differences between cross sections obtained with the Siegert
and non-Siegert approaches increase with the photon energy
and that at a given photon energy, these differences are much
larger in the E1 transitions than in the E2 transitions. In both
approaches, for the energies and the configurations that are
considered here, the contribution of the E2 transitions to the
bremsstrahlung cross sections is negligible.

For the α + p bremsstrahlung, the partial inclusion of the
meson-exchange currents in the microscopic cluster approach
leads to a less good agreement with experiment. The origin
of this surprising result merits further investigations as well
experimentally as theoretically. Indeed, more numerous and
accurate measurements should be useful to know if the Siegert
approach deteriorates the agreement with experiment for any
configuration or collision energy and if so, to what extent.
In a theoretical point of view, a disagreement between the
model and the experiment could be due to some simplifying
assumptions of the microscopic cluster model as the use of
an effective potential to describe the NN interaction or the
use of simple cluster wave functions. It should be interesting
to verify if this effect is present in ab initio bremsstrahlung
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calculations based on more realistic NN interactions and more
complex wave functions. An ab initio model of the α + N
bremsstrahlung should be also useful to prepare the ab initio
study of the t(d,nγ )α bremsstrahlung.

The results presented in this paper provide the first theoret-
ical description of the α + n bremsstrahlung. No experimental
data are available. The α + n bremsstrahlung cross sections
are compared with the α + p ones. The contributions of the
E1 transitions are very similar for the α + p and α + n
systems except for the locations and widths of resonances
while the contributions of the E2 transitions are very different

as expected by a comparison of the effective charges of both
systems.
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