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Isospin-asymmetric nuclear matter
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This study uses classical molecular dynamics to simulate infinite nuclear matter and study the effect of isospin
asymmetry on bulk properties such as energy per nucleon, pressure, saturation density, compressibility, and
symmetry energy. The simulations are performed on systems embedded in periodic boundary conditions with
densities and temperatures in the ranges ρ = 0.02 to 0.2 fm−3 and T = 1, 2, 3, 4, and 5 MeV, and with isospin
content of x = Z/A = 0.3, 0.4, and 0.5. The results indicate that symmetric and asymmetric matter are self-bound
at some temperatures and exhibit phase transitions from a liquid phase to a liquid-gas mixture. The main effect of
isospin asymmetry is found to be a reduction of the equilibrium densities, a softening of the compressibility and
a disappearance of the liquid-gas phase transition. A procedure leading to the evaluation of the symmetry energy
and its variation with the temperature was devised, implemented and compared to mean field theory results.
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I. INTRODUCTION

Investigations of neutron-rich nuclei have recently attracted
attention due to the advent of radioactive beam facilities
[1–3]. The goal of such experimental studies is to extend what
is known about the nuclear forces away from the valley of
stability and in the direction of large isospin asymmetry; this is
particularly important to understand the stability of radioactive
nuclei and their reactions, as well as bulk properties of nuclear
matter of relevance in astrophysics [4–8].

The study of the role of isospin asymmetry on nuclear forces
predates current efforts. The fact that light nuclei tend to have
equal numbers of protons and neutrons motivated Bethe and
Weizsäcker to add an ad hoc term to their parametrization of
the nuclear binding energy to favor the condition A = 2Z,
(other researchers later imposed it to the volume and surface
terms [9]); such condition is attributable to the Pauli exclusion
principle which lowers the overall energy of the nucleus by
filling both protons and neutrons to equal levels instead of
different ones. The isospin symmetric rule, however, is not
satisfied in heavier nuclei (A � 40) which tend to have more
neutrons than protons due to a competition between the short-
ranged nuclear force and the Coulomb force: in large nuclei
the distance between nucleons on opposite ends of the nucleus
exceeds the short-range of the attractive p-n force and thus
are not be able to overcome the repulsive p-p Coulomb force
unless more neutrons are added to restore stability.

This interplay between quantum and classical effects
illustrates the difficulty of understanding the role of isospin
symmetry in the nuclear binding energy in terms of first
principles. The situation becomes more entangled in heavy-
ion reactions where the nucleon energy varies with density
and temperature in addition to isospin. To incorporate all
of these degrees of freedom it is necessary to replace the
Bethe-Weizsäcker parametrization by a full-fledged equation
of state (EOS).

An intermediate compromise was based on an extension
of the liquid drop formula into nonsymmetric isospin val-
ues through an additive term [10], E(ρ,α) = E(ρ,α = 0) +
Esym(ρ)α2 + O(α4) with α = (N − Z)/A. Operationally such
expression can be taken as a Taylor expansion of E(ρ,α)

in terms of α about the isospin symmetric point α = 0 with
the odd-terms in α excluded due to the exchange symmetry
between protons and neutrons of the strong force. Under
this scheme, the symmetry term is readily obtained through
Esym(ρ) = (1/2!)(∂2E/∂α2) and can be analyzed as a function
of the density and compared to experimental data (see, e.g.,
[10–12]). In spite of these efforts, at present the isospin
dependence of the nuclear equation of state is far from
being determined; this is particularly true for the temperature
dependence of Esym which has been less investigated than its
zero temperature counterpart.

A more complete approach is, of course, to use microscopic
theories to develop a complete equation of state with the
density, temperature and isospin degrees of freedom built
in from the start. Theories such as relativistic [13–19] and
nonrelativistic [20,21] Hartree-Fock approximations, as well
as relativistic [22] and nonrelativistic mean-field models
[23–29] have been used for this purpose at T = 0 with
varying degrees of success; the reader is directed to [30,31]
for a comprehensive review of the use of these techniques
in the study of the symmetry energy term. In a nutshell, the
knowledge we have about the properties of asymmetric nuclear
matter is as good as the techniques used for solving the nuclear
many-body problem, which are far from perfect.

A way around these technical difficulties is through the use
of numerical methods like Monte Carlo, molecular dynamics,
lattice calculations, etc., which are able to construct systems
from which the wanted properties of nuclear matter can be ob-
tained phenomenologically. Transport-theory models that have
been used in nuclear reactions can be divided into classical,
semiclassical or quantum. Synoptically, semiclassical models
(BUU, IBUU, etc., see, e.g., [32]) track the time evolution
of the Wigner function under a mean potential to obtain a
description of the probability of finding a particle at a point
in phase space. On the quantum side, the molecular dynamics
models (QMD, AMD, IQMD, etc., see, e.g., [33–35]) solve
the equations of motion of nucleon wave packets moving
within mean fields (derived from Skyrme potential energy
density functional) with a Pauli-like blocking mechanism
imposed and using isospin-dependent nucleon-nucleon cross
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sections, momentum dependence interactions, etc. Although
these methods succeed in presenting a reasonable evolution
of density fluctuations in heavy-ion reactions, they both
fail to produce clusters of appropriate quality or quantity
[32], and their use of hidden adjustable parameters (width
of wave packets, number of test particles, modifications of
mean fields, effective masses, cross sections, etc.) makes
their findings questionable at best. As before, practitioners
of this field conclude that more detailed analysis for the
equation of state is needed for the nuclear and the astrophysical
community [36].

On the other hand, classical molecular dynamics (CMD)
models have been used to study nuclear reactions for decades
[37–40] and neutron star crusts more recently [41–47].
Generally speaking nucleons are treated as classical particles
interacting through pair potentials with their equations of
motion solved numerically with any of the several methods
available, without any adjustable parameters and including all
particle correlations at all levels, i.e., two-body, three-body, etc.
Indeed the method can describe nuclear systems ranging from
highly correlated cold nuclei (such as two approaching heavy
ions in their ground state), to hot and dense nuclear matter
(nuclei fused into an excited blob), to phase transitions (frag-
ment and light particle production), to hydrodynamics flow
(after-breakup expansion), and secondary decays (nucleon and
light particle emission). The only apparent disadvantage of the
CMD is the lack of quantum effects, such as the Pauli blocking,
which at very low excitation energies stops the method from
describing nuclear structure correctly; fortunately, in collisions
the high energy deposition opens widely the phase space
available for nucleons and renders Pauli blocking practically
obsolete.

Thus the motivation of this study, to use CMD as a com-
putational many-body technique to simulate infinite nuclear
systems with varying density, temperature and isospin content
to extricate the isospin dependence of as many nuclear charac-
teristics as possible. In the following section the model used to
obtain the energy, pressure, saturation density, compressibility
and symmetry energy of infinite nuclear systems at different
values of isospin, density and temperature will be presented.
An overview of the resulting bulk properties of the systems
studied is presented in Sec. III, followed by a discussion
of the existence of phases in asymmetric matter in Sec. IV,
an estimation of the nuclear symmetry energy in Sec. V, a
discussion of the limit of applicability of the classical model
in Sec. VI and a summary of findings in Sec. VII.

II. CLASSICAL MOLECULAR DYNAMICS

In this work we use a CMD model with the Pandharipande
potentials which were designed by the Urbana group to
reproduce experimental cross sections in nucleon-nucleon
collisions of up to 600 MeV [38], to mimic infinite systems
with realistic binding energy, density, and compressibility and
to produce heavy-ion dynamics comparable to those predicted
by the Vlasov-Nordheim equation. This parameter-free model
has been successfully used to study nuclear reactions obtaining
mass multiplicities, momenta, excitation energies, secondary
decay yields, critical phenomena and isoscaling behavior that

have been compared to experimental data [48–57]. More
recently, and of interest to the present work, the model was
used to study infinite nuclear systems at low temperatures [58]
and in neutron star crust environments [45–47].

The Pandharipande potentials are comprised of
an attractive potential between a neutron and a
proton: Vnp(r) = Vr exp(−μrr)/r − Vr exp(−μrrc)/rc

−Va exp(−μar)/r − Va exp(−μarc)/rc, and a repulsive
interaction between equal nucleons (nn or pp):
VNN (r) = V0 exp(−μ0r)/r − V0 exp(−μ0rc)/rc. The range
of these potentials is limited to a cutoff radius of rc = 5.4
fm after which they are set to zero. The parameters Vr ,
Va , V0, μr , μa , and μ0 were phenomenologically adjusted
by Pandharipande to yield a cold nuclear matter saturation
density of ρ0 = 0.16 fm−3, a binding energy E(ρ0) = −16
MeV/nucleon and a compressibility of about 250 MeV for
their “medium” model, which is the one used here.

At a difference from a previous study of nuclear matter at
low temperatures [58] where this model was used to obtain a
description of the equilibrium structures (i.e., the “pasta”),
in the present case we are interested on creating systems
with different values of isospin content that will allow us
to extract the isospin dependence of physical observables
such as the energy per nucleon, pressure, equilibrium density,
compressibility, and the symmetry energy. With this in mind,
and with an eye on future studies of transport coefficients, the
molecular dynamics code used is based on the Nosé-Hoover
equations of motion which add to the Newtonian mechanics
the effect of a heat reservoir [59].

The addition of the heat flow variable to the classical
equations of motion results in the Nosé-Hoover equations of
motion which can be integrated by Størmer finite differences.
In principle this approach corresponds to a canonical ensemble
and does not conserve energy which is added or removed by the
heat reservoir; configurations in thermal equilibrium, however,
can be achieved faster than with the usual microcanoni-
cal formalism of Newtonian mechanics and an Andersen’s
thermostat [60].

To mimic an infinite system A = 2000 nucleons were
placed in cubic cells under periodic boundary conditions.
We focus on systems with isospin content of x = Z/A =
0.3, 0.4, and 0.5, where Z is the number of protons. The
number densities were enforced by placing the nucleons in
cubical boxes with sizes selected to adjust the density. The
temperatures of the systems studied are T = 1, 2, 3, 4, and
5 MeV, and their densities were selected to be around and
below the corresponding saturation densities values, which
vary with isospin content and temperature. The procedure
followed is straightforward: the nucleons are placed at random
within the cell avoiding overlaps (i.e., interparticle distances
smaller than 0.1 fm) and endowed with a Maxwell-Boltzmann
velocity distribution corresponding to the desired temperature.
The system then is rapidly evolved until the temperature is
maintained within 1%. After reaching thermal equilibrium,
the system continues evolving and its information at selected
time steps (nucleon positions and momenta, energy per
nucleon, pressure, temperature, density, etc.) is stored for
future analysis. The calculations were carried out in the High
Performance Computing Center of the University of Texas at
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El Paso which has a beowulf class of linux clusters with 285
processors.

III. BULK PROPERTIES OF NUCLEAR MATTER

Following the procedure outlined before, the energy per
nucleon (kinetic plus potential) was calculated for systems
with x = 0.3, 0.4, and 0.5. Figure 1 shows the variation
of the energy as a function of the density at temperatures
T = 1, 2, 3, 4, and 5 MeV; each point represents the average
of 200 thermodynamically independent configurations, the
average of the standard deviations is 0.036 MeV which is
smaller than the points used. In all cases the curves show
the characteristic “∪” shapes around their corresponding
saturation density (minimum of the ∪). It is easy to see that
bound matter (i.e., with negative binding energy) exists in all
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FIG. 1. Energy per nucleon as a function of the density for three
different isospin contents. In each case the curves correspond to
temperatures ranging from T = 1 MeV (lower curve) to 5 MeV
(upper curve) with the intermediate curves corresponding to 2, 3,
and 4 MeV. The lines indicate the fits used in Sec. V to estimate the
symmetry energy.
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FIG. 2. Values of the pressure obtained in the molecular dynamics
simulations presented as a function of the density for three different
isospin contents and T = 1 and 5 MeV.

three isospin cases although at high temperatures the systems
become unbound. Also seen in the plots is a departure from
the ∪ shapes at low densities signaling a transitions from a
uniform continuous medium around saturation densities to
nonhomogeneous media at subsaturation densities; this effect
is clearly noticeable for x = 0.5 and 0.4 but not for 0.3, point
which will be discussed further in the following section.

The CMD calculations also yielded the pressure of the
systems at each values of (T ,ρ,x). Figure 2 shows the pressure
versus density curves for T = 1 and 5 MeV for the three
isospin contents x = 0.3, 0.4, and 0.5. As seen in Figs. 1 and 2,
the equilibrium densities correspond to the minima of the
energy-density curves as well as to the zero pressure points;
we estimate the values of the saturation density through a
least-squares fit of a quadratic polynomial of E(T ,ρ) around
the minimum of each curve; Fig. 3 shows the variation of the
saturation density with the temperature for the three values
of x. As expected, the trend for symmetric matter tends to
ρ0 = 0.16 fm−3 as T goes to zero as expected for infinite cold
nuclear matter. The case of x = 0.3 appears to have a very low
saturation density with little temperature variation.
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FIG. 3. Saturation density as a function of the temperature for
three different isospin content.
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FIG. 4. Compressibility as a function of the temperature for three
different isospin content.

The compressibility at saturation density can also
be obtained from the previous fit through K(T ,ρ) =
9ρ2[∂2E/∂ρ2]ρ0 . Figure 4 shows the values obtained for
K(T ,ρ) for the cases studied; as a reference the values at
T = 0 obtained in a previous work [58] are also included. As
it can be seen, the compressibility decreases drastically with x,
and it is further reduced (by about 30%) as T increases from
1 to 5 MeV for the systems with x = 0.4 and 0.5, while it
remains extremely soft in the neutron-rich system of x = 0.3.

IV. PHASES IN ASYMMETRIC MATTER

Figure 1 shows the transition from a continuous phase to
an amorphous one, this phenomenon was first pointed out
for cold symmetric matter in the Thomas-Fermi calculation
of Williams and Koonin [61], and was recently explored at
nonzero temperatures (T < 1 MeV) in a CMD microcanonical
study [58] using this and two other potentials. In the case of
T = 1 MeV (cf. Fig. 1) it is easy to see the transition from
a smooth ∪ shape to an extraneous curve at ρ ≈ 0.10 fm−3

for x = 0.5, and at ρ ≈ 0.08 fm−3 for x = 0.4; the behavior
persists in these systems at higher temperatures but appears to
be absent for the x = 0.3 case. As discussed in detail for the
symmetric case in Ref. [58], the smooth ∪ shape corresponds
to a uniform phase (crystal-like at low temperatures and liquid-
like at higher temperatures) and the lower-density separating
part signals the existence of a non-homogeneous structure
(such as a “pasta” at low temperatures and a liquid-gas mixture
at higher temperatures).

The different behavior of the systems with x = 0.3 would
suggest that at low temperatures the system would never
enter a liquid-gas mixture region and would always stay in
a liquid-like continuous medium down to very low densities.
To investigate this we examined the structures formed at
T = 1 MeV through the radial distribution function (RDF)
and their mass distribution.

The radial distribution function, g(r) = ρ(r)/ρ, (cf. Fig. 5)
was obtained from averaging 200 systems at T = 1 MeV
at a liquid density (ρ = 0.16 fm−3, bottom panel) and at
a liquid-gas mixture density (ρ = 0.06 fm−3, top panel).
The strengths of the nearest-neighbor peaks show that at
low densities nucleons tend to be more correlated than at
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FIG. 5. Radial distribution functions of systems with x = 0.3,
0.4, and 0.5 at T = 1 MeV and densities ρ = 0.06 fm−3 in (a) and
ρ = 0.16 fm−3 in (b).

higher densities indicating that at ρ = 0.06 fm−3 the main
contribution at short distances is from nucleons in droplets,
while at ρ = 0.16 fm−3 the larger nucleon mobility reduces
such correlation. This is also observed in the second-neighbor
peaks which appear at the same distance for all values of x
at ρ = 0.06 fm−3 but not at ρ = 0.16 fm−3 indicating again
a reduced mobility of nucleons in the droplets. The growth of
the second-neighbors peak over the first one for x = 0.3 is due
to the large number of nn repulsive interactions which exceed
the smaller number of np attractive interactions.

It is instructive to explore the mass distributions attained
by the systems in these two density regimes. In all cases the
mass distribution at ρ = 0.06 fm−3 showed an overabundance
of intermediate mass fragments over those obtained at ρ =
0.16 fm−3. Figure 6 shows that for x = 0.3 at T = 1 MeV
the system contains more intermediate-mass droplets at ρ =
0.06 fm−3 than at 0.16 fm−3 where more matter remained in a
continuous medium; this figure was obtained by averaging 200
systems at similar conditions and the clusters were identified
through a minimum spanning tree method.

The results presented in this section thus indicate that the
transition from an homogeneous medium at near-saturation
densities to a non-homogeneous one at lower densities con-
tinues to exist in asymmetric nuclear matter with x = 0.4
and 0.3 at low temperatures (T � 2 MeV); in other words,
phases appear to be are alive and well in these cases of high
isospin asymmetry. A related observation is that these systems
become unbound at temperatures as low as T = 2 MeV for
x = 0.3; observation that is in line with previous findings of
the unboundness of pure neutron matter within the nuclear
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Thomas-Fermi model [62], and it is probably connected to the
shift of the saturation density to exceedingly low values for
low x.

V. NUCLEAR SYMMETRY ENERGY

The previous scheme can be used to extract the nuclear sym-
metry energy through Esym(ρ) = (1/2!)[∂2E/∂α2]α=0. This
can be done by inserting the α dependence into an expression of
the type E(T ,ρ,α) = E1(T ,α)ρ + E2(T ,α)ρ2 + E3(T ,α)ρ3

and adjusting the parameters E1(T ,α), E2(T ,α), and E3(T ,α)
to fit the values of E(T ,ρ,x) for each T and x in the ∪ region,
namely from ρ = 0.09 to 0.2 fm−3 for x = 0.4 and 0.5, and
ρ = 0.04 to 0.2 fm−3 for x = 0.3. The resulting fits are shown
as solid lines in Fig. 1.

More explicitly, using the data for x = 0.5, 0.4, and 0.3 and
remembering that α = (N − Z)/A = 1 − 2x, it is possible to
obtain, for instance, values for E1(T ,α = 0), E1(T ,α = 0.2),
and E1(T ,α = 0.4) and approximate E1(T ,α) = E10(T ) +
E12(T )α2 + E14(T )α4, where the coefficients E10(T ), E12(T ),
and E14(T ) can be obtained by solving the resulting system
of coupled equations. Using similar expressions for E2(T ,α)
and E3(T ,α) it is simple to obtain Esym(T ,ρ) = E12(T ) +
E22(T )ρ + E32(T )ρ2. The resulting Esym are presented in
Fig. 7 as a function of the density for T = 1, 2, 3, 4, and
5 MeV.

The smooth dependence of Esym with the density is
reminiscent of previous results obtained with microscopic
field theories. For comparison we show the symmetry energy
obtained by Chen et al. [31] using a relativistic Hartree
calculation (curve labeled “NL2”) along with values obtained
with other field theories all plotted at their corresponding
saturation densities (see [31] for complete details).

Another result worth mentioning is the smooth temperature
dependence of Esym(T ,ρ) which, interestingly, has a trend
opposite to previous findings. In the past the temperature
dependence of Esym has been studied using an equation of
state obtained through a virial expansion at T = 2, 4, and
8 MeV [63], and through a self-consistent model using various
effective interactions at temperatures ranging up to 50 MeV
[64]; in both of these calculations an inverse temperature
dependence was found, that is Esym decreased as T increased.
From a different perspective, the CMD results appear to be in
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FIG. 7. The solid lines show the symmetry energies obtained from
the CMD values of E(T ,ρ,α) for T = 1, 2, 3, 4, and 5 MeV as
explained in the text. For comparison, the dashed line (NL2) and the
points all show values of the symmetry energy obtained with different
relativistic Hartree calculations.

line with those obtained by de Lima and Randrup [65] with
a modified Seyler-Blanchard model, which show an overall
increase of the free energy through changes of the volume and
surface coefficients and nuclear surface tension in the range of
T � 5 MeV.

It stands to reason that the differences between the CMD
results and those of field theories reflect the distinct underlying
assumptions of the models. A major difference is that the
field theories were adapted to reproduce the binding energies
and charged radii of stable (i.e., nearly isosymmetric) finite
nuclei in their ground state while the CMD results stem out
of a generalized analysis of heated infinite systems at varying
isospin content. Another significant difference is that the Esym

extracted from the CMD results is not based on the extraneous
partition of the liquid drop formula into an isospin symmetric
part and an isospin asymmetric additive term; indeed the CMD
results stem from the holistic effects the density, temperature
and isospin dependence have on the energy simultaneously.
Other differences are the amount of interactions that each
method incorporates, while field theories are usually limited
to the ladder diagrams, the CMD contains all many-body
interactions. Fortunately, as it will be discussed in more detail
in Sec. VI, the lack of quantum effects of CMD appears not to
play a major role in the validity of these results.

However, independent of all of these differences between
the models, there is another important factor. Unfortunately—
or perhaps, fortunately—the procedure used to obtain Esym

from the CMD results involves fitting algorithms that contain
an intrinsic variability (due to the specific points included in
the fit, error bars, etc.) that yields a margin to play with the fit
of E(T ,ρ,α) which in turn produces various functional forms
of Esym(T ,ρ). In fact, it is possible to work “backwards” (using
multivariate regression analysis) and find relatively close fits
of E(T ,ρ,α) that produce an specific form of Esym(T ,ρ).
Figure 8, for instance, shows fits of E(T ,ρ,α) for T = 1 MeV
that fall within 0.7 MeV of the CMD data points (indicated by
the data bars) and yield exactly the NL2 symmetry energy of
Fig. 7. Viewing this on the positive side, these results signal
a possible compatibility between the CMD results and other
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FIG. 8. The lines show the fits of E(T ,ρ,α) for T = 1 MeV that
lead to a symmetry energy identical to NL2 in Fig. 7.

theories. But viewing it on the negative side, this variability
effectively rules out the procedure used for an exact extraction
of the nuclear symmetry energy and limits its scope to more
general “ball park” estimates.

VI. QUANTUM CAVEATS

As explained in the Introduction, classical molecular
dynamics lacks all quantum effects, such as the Pauli blocking,
which at low excitation energies could produce an incorrect
energy distribution. The question then arises, how does this
deficiency of CMD affect the results of this investigation? In
the Introduction it was stated that for high excitation energies
the phase space available for nuclei would be so ample that
it would render Pauli blocking practically obsolete. In this
section such statement is quantified in a bit more detail.

Quantum effects affect the behavior of many body sys-
tems on, at least, two fronts: energy distribution and wave
mechanics. From the point of view of the energy, in bound
clusters the energy of individual nucleons becomes discrete
and the distribution of energy levels is ruled by Fermi-Dirac
statistics with Pauli exclusion principle further regulating the
occupation of such levels. As stated before, at high excitation
energies the density of states becomes so finely dense that
Pauli blocking is rendered obsolete, such limit can be said
to exist whenever the number of quantum states available to a
nucleon at a given temperature is much greater than the number
of nucleons. According to statistical mechanics this previous
condition is �(ε) � N and, for the simple case of a particle
in a box where �(ε) = πV

6 ( 8Mε
h2 )3/2 and ε = 3T/2, it can be

approximated by [66]

N/�(ε) =
√

π

6

ρh3

(2πMT )3/2
� 1 , (1)

where M is the nucleon mass and ρ is the neutron or proton
number densities at saturation. Using the values of ρ from
Fig. 3 along with ρn = (1 − x)ρ and ρp = xρ for neutrons
and protons respectively, N/�(ε) yields the values shown in
Fig. 9, which demonstrate that condition (1) is fully satisfied
in all of the cases considered in this study except, perhaps, for
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x � 0.4 at T ≈ 1 MeV where N � �(ε) and the condition is
marginally satisfied.

A second test of the validity of the classical approach has to
do with the wave features of the particles. It is known that wave
mechanics yields to classical mechanics whenever the mean
interparticle distance is much larger than the mean thermal de
Broglie wavelength λT . Using (V/N )1/3 = ρ−1/3 as the inter
particle distance, this condition yields to the inequality [67]

ρλ3
T = ρh3

(2πMT )3/2
� 1 . (2)

We notice that condition (2) is practically identical to condition
(1) except for a small numerical factor of order 1. In this
case, however, M stands for the nuclei masses and ρ for
the overall system’s density. Figure 10 shows the values of
ρλ3

T as a function of density and for masses A = 1 (top
band) and 10 (lower band). The shaded regions indicate the
values obtained for each of the two masses for the range of
temperatures 1 MeV � T � 5 MeV; higher masses produce
bands with values of ρλ3

T that are even smaller. It is easy to
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FIG. 10. Values of ρλ3
T as a function of density and for a range

of temperatures and for two values of the masses.
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see that condition (2) is fully satisfied by all size particles at
all of the densities and temperatures considered in the present
study except, perhaps, for free nucleons at T ≈ 1 MeV and
ρ > 0.1 fm−3, where ρλ3

T ≈ 1 and the condition is marginally
satisfied.

Figures 9 and 10 thus provide a degree of confidence
over the CMD results. Indeed Fig. 9 provides certainty over
the energy distribution attained by nucleons in nuclei near
saturation density, while Fig. 10 confirms the validity of the
dynamics of the system (and hence its thermodynamics) in
the liquid-gas phase. Other quantum effects, such as collective
excitations, superfluidity, superconductivity, etc., are known
to occur at lower temperatures, near the ground state of the
nucleus, and are unlikely to affect the results of the present
calculation.

VII. CONCLUDING REMARKS

In this study we used CMD to simulate infinite nuclear
systems with varying density, temperature, and isospin content
to extract the isospin dependence of the energy per nucleon,
pressure, saturation density, compressibility, and symmetry
energy. We studied systems with 2000 nucleons embedded in
periodic boundary conditions with densities and temperatures
in the ranges ρ = 0.02 to 0.2 fm−3 and T = 1, 2, 3, 4, and
5 MeV, and with isospin content of x = Z/A = 0.3, 0.4, and
0.5.

The results obtained for the energy per nucleon (cf. Fig. 1)
indicate that symmetric (x = 0.5) and asymmetric matter (x =
0.3 and 0.4) can be self-bound for certain values of T and ρ.
The equilibrium densities obtained from the minima of the
energy-density curves indicate that as T increased from 1 to
5 MeV, the saturation densities varied from ρ0 = 0.16 fm−3

to 0.12 fm−3 for isospin symmetric matter, and from ρ0 ≈
0.12 fm−3 to 0.09 fm−3 for matter with x = 0.4.

The compressibility around saturation density was deter-
mined from the E(T ,ρ) data and it was found that isospin
asymmetry softens nuclear matter by a factor of about 50% as
x drops from 0.5 to 0.4 or from 0.4 to 0.3. It was also observed
that the compressibility is further reduced (by about 30%) as
T increases from 1 to 5 MeV for the systems with x = 0.4 and
0.5.

The existence of phases was identified by examining the
density dependence of the energy per nucleon. At all isospin
asymmetries the energy E(T ,ρ) showed ∪ shapes around the
saturation densities characteristic of a continuous liquid-like
phase. At subsaturation densities the energy-density curves
of x = 0.4 and 0.5 departed from the uniform liquid phase
signaling a transition to a nonhomogeneous one, presumably
a liquid-gas mixture.

The larger asymmetric case of x = 0.3 deserves a special
mention. Such systems become unbound at all densities for
temperatures as low as T = 3 MeV, and exhibited very low
saturation densities and extremely small compressibility at all
temperatures. These assertions were ratified by the measure-
ments of the the zero-pressure densities (cf. Fig. 2). Although
these findings would suggest that at low temperatures the
system would never enter a liquid-gas mixture region and
would always stay in a liquid-like continuous medium down

to very low densities, a close examination of the structures
formed at T = 1 MeV through the radial function and mass
distribution at ρ = 0.06 and ρ = 0.16 fm−3 indicate that
phases are alive and well in this highly isospin symmetric
case.

Turning now to the nuclear symmetry energy, a procedure
to obtain Esym(T ,ρ) from the CMD values of E(T ,ρ,α) was
devised and implemented. The results show both a smooth
dependence of the symmetry energy with the density and
the temperature. Unfortunately, the statistical variations of
the energy density are not small enough as to pinpoint the
symmetry energy with satisfactory accuracy.

Comparing to previous studies, our dynamical results
confirm certain previous predictions while extending them to
higher temperatures or other values of isospin asymmetry. For
instance, the shapes of E(T ,ρ,α) resemble closely the predic-
tions of Skyrme—Hartree—Fock and relativistic mean-field
calculations for zero temperature [68]. Likewise, the softening
of K with excitation energy appears to be consistent with
IQMD calculations of intermediate-mass fragments multiplic-
ities in simulations of 197Au + 197Au at 600 MeV/nucleon [36]
and with BUU calculations of the traverse component of the
elliptic flow of similar reactions at 1 GeV/nucleon [6], both
observables presumably correspond to higher excitations. As
mentioned before, the low binding energy of x = 0.3 matter is
in line with the lack of binding of neutron-rich [68] and pure
neutron matter [62] at zero temperature.

Along the same lines, our results for the symmetry energy
are reminiscent of relativistic and nonrelativistic Hartree
calculations [31] and, in fact, can be made to fully agree
with such calculations. Characteristics such as the temperature
dependence of Esym(T ,ρ) appear to be in agreement with the
variations of liquid-drop terms and nuclear surface tension in
the range of T � 5 MeV [65] but in disagreement with trends
obtained by other theories [63,64].

In summary, the CMD model indeed helps to understand
the role of isospin on several nuclear properties. Besides
corroborating previous studies, this work extends some of
their results to other values of isospin content and non-zero
temperatures. Findings that we believe are new are the tem-
perature variation of the saturation density and compressibility
for isospin asymmetric matter, certain details of the existing
phases at x = 0.3 and 0.4, as well as a new procedure to
estimate Esym(T ,ρ) from kinetic simulations.

In the future this study will be extended to lower temper-
atures (where crystalline structures exist) and other transport
properties such as speed of sound, diffusion coefficients, and
to finite systems.
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