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Disappearance of Mott oscillations in sub-barrier elastic scattering of identical heavy ions, and the
nuclear interaction
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Background: The sub-barrier elastic scattering of heavy ions is discussed.
Purpose: We investigate the sensitivity of the Mott cross section to the short-range nuclear interaction.
Method: The conventional scattering theory of identical particles is used to discuss the disappearance of Mott
oscillations at a certain critical value of the Sommerfeld parameter. This, universal, phenomenon is called
“transverse isotropy”.
Results: It is found that a significant modification of the transverse isotropy arises from the inclusion of the
short-range nuclear interaction even at the sub-barrier energies considered. Comparison with existing data on the
α + α system is made.
Conclusions: We suggest that the study of this lack of Mott oscillation, namely the “transverse isotropy” is a
potentially useful mean to study the nuclear interaction.
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I. INTRODUCTION

Deviations from pure Mott scattering in the case of heavy-
ion systems have been the subject of investigation over a long
period. In particular, it has been suggested [1,2] that heavy-ion
systems, such as 12C on 12C and 16O on 16O at sub-barrier
energies, may exhibit deviation from a pure Mott scattering
of identical bosons, owing to the underlying Fermi nature
of the constituent nucleons. These authors invoke the idea
of parastatistics to quantify their suggestion. The concept of
parastatistics is advanced to describe systems obeying neither
the Bose, nor the Fermi statistics, but somewhere in between.
Using a parameter that interpolates between the two major
statistics, one can test possible deviations of composite bosonic
systems such as even-even nuclei from the Bose statistics.
Experiments at Yale of 12C on 12C and 16O on 16O elastic
scattering at deep sub-barrier energies seem to exhibit such
deviation, albeit small [3].

The quest for information about the short-range nuclear
interaction from elastic scattering data has been going on for
a long time. This is even more challenging in the case of
elastic scattering of heavy ions, where the long-range Coulomb
interaction is very important, especially at low energies. This
fact prompted researchers to measure the cross section at
higher energies, where the Coulomb effects are concentrated
in the very small angular region around θ = 0. Useful
information was obtained about the nuclear interaction at these
higher energies, especially in systems where nuclear rainbow
dominates [4–6]. One may still wonder if low energy scattering
could be used to obtain such information. In fact, it has been
shown that information about several useful nuclear properties
can be obtained when the energy is below the Coulomb barrier
and the cross section is predominantly Coulomb [7–9]. Further,
any deviation from the Coulomb interaction, even if very small,

may lead to measurable change in the characteristics of the
Mott oscillations in the scattering of identical nuclei. This fact
leads, among other things, to a test of the existence of color
Van der Walls force in the Mott scattering of 208Pb + 208Pb
[10,11]. In this paper we propose to study a special feature of
the Mott scattering to obtain information about the short range
nuclear interaction, which would, in principle, complement
the information obtained at high energies. This special feature
is the apparent disappearance of the oscillations at a certain
critical value of the Sommerfeld parameter. Preliminary work
on this has been done in [12], where the effect was coined
transverse isotropy (TI). A recent experiment [13] on α + α
Mott scattering seems to show this TI. Here we go further, and
demonstrate and this “transverse isotropy” is quite sensitive to
the presence of the nuclear interaction, making it an attractive
venue to look for the latter.

II. IDENTICAL PARTICLE SCATTERING

In the scattering of identical bosons the wave function is
symmetric with respect to the exchange of the projectile and
the target. In the simple case of spin 0, or collisions of polarized
particles with spin aligned, the spacial part of the wave function
must be symmetric. The angular distribution must then be
given by the expression

σ (θ ) = |f (θ ) + f (180o − θ )|2, (1)

where we use the short-hand notation: σ (θ ) ≡ dσ/d�. Equa-
tion (1) can be written in the form

σ (θ ) = σinc(θ ) + �int(θ ), (2)
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where σinc(θ ) is the incoherent sum of contributions from the
two amplitudes,

σinc(θ ) = |f (θ )|2 + |f (180o − θ )|2, (3)

and �int(θ ) is the interference term,

�int(θ ) = 2 Re{f ∗(θ ) × f (180o − θ )}. (4)

Note that the incoherent part of the cross section is positive-
definite, whereas the interference term may assume positive or
negative values.

Since the scattering amplitude must have a continuous
derivative with respect to θ and the cross section is symmetric
with respect to θ = 90o, σ (θ ) must have a vanishing slope at
this angle. This poses a few interesting questions such as:

(i) What are the conditions for the angular distribution to
have a maximum or a minimum at θ = 90o?

(ii) Can a system present maxima and minima for different
collision energies?

(iii) If the answer to the previous question is ‘yes’, how
does the cross section behaves near the transition
energy?

The aim of the present paper is to answer these questions.

III. MOTT SCATTERING

We begin by considering a simple scattering problem: the
collision of structureless particles, interacting only through
point-charge Coulomb forces. In this case, the problem has an
analytical solution (see, e.g., Ref. [14]),

fC(θ ) = −a

2
e2iσ0

e−iη ln(sin2 θ/2)

sin2(θ/2)
, (5)

where η and a are, respectively, the Sommerfeld parameter
and half the distance of closest approach in a head-on collision
given by

η = q2

�v
, a = q2

2E
. (6)

Above, q is the charge of the identical particles (the projectile
and the target), v is the relative velocity, and σ0 is the s-wave
Coulomb phase shift

σ0 = arg{�(1 + iη)}, (7)

with � standing for the usual � function.
Using these results and normalizing all functions with

respect to the Mott cross section at θ = 90o,

σM(θ ) → σ M(θ ) = σM(θ )

σM(90o)
,

σinc(θ ) → σ inc(θ ) = σinc(θ )

σM(90o)
,

�int(θ ) → �int(θ ) = �int(θ )

σM(90o)
,

we can write

σ M(θ ) = σ inc(θ ) + �int(θ ), (8)

FIG. 1. (Color online) Second derivative of the renormalized
Mott cross section at θ = 90o.

with

σ inc(θ ) = 1

16

[
1

sin4(θ/2)
+ 1

cos4(θ/2)

]
(9)

and

�int(θ ) = 1

16

[
2

cos[2η ln ( tan(θ/2))]
sin2(θ/2) cos2(θ/2)

]
.

Note that here the cross sections are normalized with respect
to the Mott cross section at θ = 90o, whereas in Ref. [12] the
normalization was with respect to the Rutherford cross section.
These normalizations differ by a factor 4.

The sign of the second derivative of the angular distribution
at θ = 90o would indicate wether the cross section has
a maximum or a minimum at this angle. Note that the
normalized cross section depends exclusively on the value
of the Sommerfeld parameter. In Fig. 1 we show the second
derivative of the angular distribution at θ = 90o, as a function
of the Sommerfeld parameter. We see that the second derivative
is positive for small values of η and is negative at large values.
This means that the angular distribution has a minima for
η < η0 and a maximum above η0. The transition value of the
Sommerfeld parameter can be obtained analytically. After a
lengthy calculation [12], one obtains η0 = √

2.
To illustrate this behavior we show in Fig. 2 the normalized

Mott cross sections for a value of the Sommerfeld parameter
below η0 (η = 0.2) and one value above (η = 4.0). As
expected the former has a minimum at θ = 90o, whereas the
latter has a maximum. However, the most interesting feature of
this figure is the cross section at the critical value of the Som-
merfeld parameter, η = √

2. In this case, the cross section is re-
markably flat around 90o. This phenomenon was called trans-
verse isotropy in Ref. [12]. The important question at this stage
is: Can this behavior be observed in some physical system?

IV. TRANSVERSE ISOTROPY IN NUCLEAR PHYSICS

In principle, nuclear systems can be good candidates to
exhibit the flat cross sections discussed in the previous section.
However, nuclei interact through both Coulomb and nuclear
forces. Thus, the prediction of a flat cross section at the critical
value of the Sommerfeld parameter will only be valid if the
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FIG. 2. (Color online) Mott cross sections for three values of the
Sommerfeld parameter, normalized with respect to their value at
θ = 90o.

corresponding collision energy is below the height of the
Coulomb barrier. We should then check if there are nuclear
systems satisfying this condition. As qualitative approach
to the problem, we set ZP = ZT = Z and AP = AT = 2Z,
evaluate the collision energy corresponding to η0,

E0 = Z2e2

�η0

√
m0 Z

2
,

and estimate the barrier height by the approximate expression,

VB � ZPZTe
2

r0
(
A

1/3
P + A

1/3
T

) = e2

r0
Z5/3 2−4/3.

In Fig. 3 we plot the ratio E0/VB against the atomic
number. We see that only two systems satisfy the condition
that the transition energy lies below the Coulomb Barrier:
2H + 2H and 4He + 4He. For a third system, 6Li + 6Li,
this condition is nearly satisfied and for heavier systems the
transition energy lies well above the barrier. In the cases of
2H + 2H and 6Li + 6Li the problems is more complicated
because these nuclei do not have spin zero. In this way,
the above discussion of the cross section only applies for

FIG. 3. (Color online) The ratio of the energy E0 to the Coulomb
barrier, VB, as a function of the atomic number of the identical
collision partners. For details see the text.

FIG. 4. The experimental angular distributions for the 4He + 4He
system at several collision energies. The figure was taken from
Abdullah et al. [13]. For details see the text.

polarized projectile and target with spin aligned. Therefore,
we concentrate the discussion to the 4He + 4He collision.

Figure 4 shows experimental angular distributions for the
4He + 4He system at several collision energies. The figure
was taken from Abdullah et al. [13] (note that the collision
energies are given in the laboratory frame). The lowest
energy where data were taken in [13] is Elab = 2.0 MeV
(Ec.m. = 1.0 MeV), which is higher than the collision energy
where the cross section is expected to be flat. For this system,
η = √

2 corresponds to Ec.m. = 0.397 MeV. However, the
data show the flat behavior for the two lowest energies, which
correspond to Ec.m. = 1.0 MeV and Ec.m. = 1.5 MeV. This is
surprising and one can only assume that the nuclear interaction
is producing the flat behavior at higher energies. To check
this point we include a nuclear potential in the Hamiltonian
and re-evaluate the second derivative of the cross section. We
first try a nuclear potential frequently used to describe nuclear
collisions. We consider the Akÿuz-Winther potential [14,15].
This potential is an approximation to the double folding
interaction, parametrized by the Woods-Saxon shape,

V (r) = V0

1 + exp [(r − R0) /a]
.

The parameters V0, R0, and a are functions of the mass
numbers of the projectile and the target and for the
4He + 4He system they have the values: V0 = −22.21 MeV,
R0 = 3.63 fm, and a = 0.5152 fm. Since the 4He nuclei do
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FIG. 5. (Color online) Second derivative of the Mott cross sec-
tion at θ = 90o for the Akyüs-Winther potential. The dotted line is
basically the same line of Fig. 1, except that here the plot is against the
collision energy. The solid line takes into account both the Coulomb
and the nuclear potentials.

not have excited states at low energies, we do not include an
imaginary part in the nuclear interaction.

In Fig. 5 we show the second derivative of the cross section,

σ ′′(θ ) ≡ d2σ (θ )

dθ2
,

at θ = 90o, both including (solid line) and not including (dotted
line) nuclear forces. Using the Akÿuz-Winther potential, the
Coulomb barrier for the 4He + 4He system takes the value VB =
0.87 MeV, as indicated within the figure. We see that the two
curves are very close below VB and the transition energy E0 is
not significantly changed by the nuclear interaction. However,
at higher energies the two curves become progressively
different. A very interesting effect of the nuclear force is that
it leads to a second transition energy E′

0 = 1.10 MeV. In this
way, we can distinguish three energy regimes:

reg. 1 : E < E0 → σ ′′(90o) < 0 (maximum),

reg. 2 : E0 < E < E′
0 → σ ′′(90o) > 0 (minimum),

reg. 3 : E0 > E′
0 → σ ′′(90o) < 0 (maximum).

In regions 1 and 3 the second derivative is negative, hence
σ (90o) is a maximum. On the other hand, in region 2 the
second derivative is positive and σ (90o) is a minimum.

Figure 5 explains some features of the experimental cross
sections of Fig. 4. First, it predicts a second region where the
cross sections is flat. This regions is around Ec.m. ∼ 1 MeV,
as in the data of Abdullah et al. [13]. Above this region,
Fig. 5 predicts that cross section will have a maximum at
θ = 90o. This is correct, with one exception: the data at
Elab = 3.84 MeV. At this energy the experimental cross section
has a minimum, whereas following Fig. 6, a maximum is
predicted. This point should be studied more carefully.

The Akÿuz-Winther interaction is quite successful for the
description of heavy ion collision. However, it is not suitable
for 4He. The data in the α energy region Eα= 2–34.2 MeV
were accounted for by a real nuclear interaction given by the
sum of two gaussians, one attractive and one repulsive, plus
the Coulomb interaction. This potential, which in the work of

FIG. 6. (Color online) Same as Fig. 5 but now the nuclear
potential is given by Eqs. (10)–(12), with the parameters given in
the text.

Abdullah et al. [13], was called BFWC, is given by

VBFWC(r) = −VA e−r2/R2
A + VR e−r2/R2

R + VC(r). (10)

Above, VC(r) is the Coulomb interaction,

VC(r) = 4e2

2RC

(
3 − r2

R2
C

)
, for r < RC (11)

= 4e2

r
for r � RC, (12)

with RC = 5.8 fm, and the parameters of the nuclear potential
are VA = 122.62 MeV, RA = 2.132 fm, VR = 3.0 MeV, and
RR = 2.0 fm.

We then adopt this potential and evaluate the second
derivative of the cross section at θ = 90o, as a function
of the collision energy. The result is given in Fig. 6. The
lowest transition energy shifts slightly, taking the value E0 =
0.47 MeV and the second one moves to E′

0 = 2.41 MeV.
Between these two energies the second derivative remains very
small, getting very close to zero around 2.2 MeV. The energy
Elab = 3.84, where the experimental cross section shows a
minimum at 90o is in the region where the second derivative
grows before dropping as the energy approaches E′

0.
The results shown in Fig. 6 imply that the cross sections

must be very flat at the energies Ec.m. = 0.47 MeV and Ec.m. =
2.41 MeV and between these values the cross section has a
slight minimum. Above 2.41 MeV, the cross sections present
pronounced maxima at 90o. This is effectively the experimental
behavior [13]. No experimental results are available for the
other predicted transition point at Ec.m. = 0.47 MeV.

V. CONCLUSIONS

We have discussed the effect of the nuclear interaction on
the transverse isotropy, namely, the angular region where the
Mott cross section becomes flat. Application was made for
the α + α system, where data exist at the near-barrier energies
considered [13]. We have found an important sensitivity to the
nuclear interaction. Our finding should be helpful to investigate
the nuclear interaction in the Mott scattering of heavy ions.
In particular the transition region with transverse isotropy
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predicted at Ec.m. = 0.47 MeV in the 4He + 4He system
should give a precise determination of the long range part
of the nuclear potential.
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