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Nuclear vorticity in isoscalar E1 modes: Skyrme-random-phase approximation analysis
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Two basic concepts of nuclear vorticity, hydrodynamical (HD) and Rawenthall-Wambach (RW), are critically
inspected. As a test case, we consider the interplay of irrotational and vortical motion in isoscalar electric
dipole E1(T = 0) modes in 208Pb, namely the toroidal and compression modes. The modes are described in a
self-consistent random-phase approximation (RPA) with the Skyrme force SLy6. They are examined in terms
of strength functions, transition densities, current fields, and form factors. It is shown that the RW conception
(suggesting the upper component of the nuclear current as the vorticity indicator) is not robust. The HD vorticity
is not easily applicable either because the definition of a velocity field is too involved in nuclear systems. Instead,
the vorticity is better characterized by the toroidal strength which closely corresponds to HD treatment and is
approximately decoupled from the continuity equation.
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I. INTRODUCTION

It is well known that the nuclear flow may be both
irrotational and vortical [1,2]. The irrotational motion is
presented by numerous examples of low-energy excitations
and electric giant resonances (GR) [3] while the vortical
motion is exhibited by single-particle excitations [4], nuclear
rotation [1], and particular GR (toroidal electric dipole [5,6]
and twist magnetic quadrupole [7,8]).

Collective nuclear vorticity in electric GR is especially in-
teresting. Though multipole electric GR are most irrotational,
there is a remarkable exception in the isoscalar E1(T = 0)
channel. Here, after exclusion of the nuclear center-of-mass
(c.m.) motion, the vortical toroidal mode (TM) dominates in
the low-energy (E < 10 MeV) E1(T = 0) excitations [9,10].
So, in this channel, the nuclear vorticity is realized as a leading
mode. It is remarkable that the TM lies in the energy region
of so-called pygmy dipole resonance (PDR) and determines
there the main flow [11,12]. The low-energy strength (LES)
in this region is of high current interest as it can deliver
useful information on principle nuclear properties (nuclear
symmetry energy, neutron skin) with consequences to various
astrophysical applications [9]. The vorticity can affect these
relations and thus deserves detailed analysis.

Despite some previous studies (see, e.g., [4,6,13,14]), our
knowledge about the nuclear vorticity is still poor. Even the
basic points, the definition of nuclear vorticity and choice of
the proper observable, are disputable. In hydrodynamics (HD),
the vorticity is defined as a curl of the velocity [15],

�� (�r) = �∇ × �v(�r) . (1)

However, nuclear physics deals not with velocities but nuclear
currents. In this connection, Raventhall and Wambach have
proposed the j+(r) component of the nuclear current as an
indicator of the vorticity (RW vorticity in what follows) [4].
Indeed, j+(r) may be posed as unrestricted by the continuity
equation (CE)

δρ̇ν(�r) + �∇ · δ �jν(�r) = 0 (2)

(where δρν and δ �jν are nucleon and current transition densities
for excited states ν) and thus suitable for a divergence-
free (vortical) observable [4,14,16]. However, HD and RW
definitions of the vorticity strictly contradict each other [10]
when being applied to the E1(T = 0) compression mode
(CM) [17,18]. Following HD, the CM velocity field is

�vCM(�r) ∝ �∇ (r3Y1μ) (3)

and so this mode is fully irrotational. At the same time, the CM
has an essential j+(r) contribution [10] and so, following RW,
is of a mixed (vortical/irrotational) character. This discrepancy
certainly needs a careful analysis.

The aim of the present paper is to scrutinize the HD
and RW prescriptions and finally propose the most relevant
indicator and measure of the nuclear vorticity. As shown
below, the RW prescription is not accurate and may result
in wrong conclusions, like in the CM case mentioned above.
The HD prescription (1) is more physically transparent but not
convenient for practical use in nuclear physics. Instead, the
toroidal strength seems to be the most appropriate (though not
perfect) measure of nuclear vorticity in internal single-particle
and collective excitations. Toroidal strength can be considered
as an approximate HD treatment in a practicable form. It
provides sufficiently good decoupling from CE (2), avoids
shortcomings of the RW prescription, and exhibits a natural
curl-like vortical motion.

Our analysis uses TM and CM as most relevant representa-
tives of the vortical and irrotational flows. Schematic images
of these modes in E1(T = 0) channel are presented in Fig. 1.
Note that the TM and CM operators are related [10]. Both
modes dominate the E1(T = 0) channel and their maxima are
well separated in energy.

The calculations are performed for 208Pb within the
Skyrme random-phase-approximation (RPA) approach [19].
The method is fully self-consistent in the sense that both
the mean field and residual interaction are derived from the
Skyrme functional [20–23]. The residual interaction takes into
account all the terms of the Skyrme functional as well as
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FIG. 1. (Color online) (a) Schematic view of the E1(T = 0)
toroidal (a) and compression (b) modes [12]. The driving field is
directed along the z axis. The arrows indicate the flow directions
but not the strengths. In (b), the compression (+) and decompression
(–) regions, characterized by increased and decreased density, are
marked.

the Coulomb (direct and exchange) terms. The Skyrme force
SLy6 [24], well describing the isovector (T = 1) giant dipole
resonance (GDR) in heavy nuclei [25], is used. This study
is a continuation of our previous exploration of TM, CM,
and RW strengths [10] within the self-consistent separable
random-phase-approximation (SRPA) method [26,27]. The
present Skyrme RPA approach does not use any separable
approximation and implements a wider configuration space.

A large set of dynamical characteristics is analyzed. Not
only strength functions but also current/velocity fields, and
form-factors are considered. What is important, curls and di-
vergences of TM and CM flows, as their natural signatures, are
inspected. These characteristics are refined from the dominant
Tassie collective modes [28] (GDR in the Goldhaber-Teller
treatment [29] or spurious center of mass motion) whose ve-
locity curls and divergences are zero [1,2,30]. At the same time,
the curls and divergences are effective fingerprints of the vor-
tical TM and irrotational CM, which are not the Tassie modes.

The paper is organized as follows. In Sec. II, the basic
formalism for TM/CM modes and RW/HD vorticity pre-
scriptions is presented. In Sec. III, the calculation scheme
is outlined and the dynamical characteristics to be explored
(strength functions, current/velocity fields) are defined. In
Sec. IV, the numerical results are presented. In Sec. V, various
prescriptions of the vorticity are discussed. The toroidal
strength is shown to be the most robust measure of the vorticity.
In Sec. VI, the summary is done.

II. THEORETICAL BACKGROUND

A. Basic expressions

The standard electrical multipole operator reads [31]

M̂(Eλμ,k) = −i
(2λ + 1)!!

ckλ+1(λ + 1)

×
∫

d3r �̂jnuc(�r)·[ �∇×(�r× �∇)jλ(kr)Yλμ(�̂r)]

= (2λ + 1)!!

ckλ+1

√
λ

λ + 1

×
∫

d3r [jλ(kr) �Yλλμ(�̂r)] · [ �∇ × �̂jnuc(�r)],

(4)

where �̂jnuc(�r) = �̂jc(�r) + �̂jm(�r) is operator of the nuclear current
density consisting from the convection and magnetization
parts; jλ(kr) is the spherical Bessel function; �Yλλ±1μ(�̂r) and
Yλμ(�̂r) are vector and ordinary spherical harmonics [33].

Following [10], the role of the magnetization current �̂jm(�r)
in E1(T = 0) channel is negligible. So only the convection

current �̂jc(�r) is further considered. For the sake of brevity,
we will skip below (up to the cases of a possible confusion)
the coordinate dependence in currents, densities and spherical
harmonics.

In the long-wave approximation (k → 0), we get

M̂(Eλμ,k) ≈ M̂(Eλμ) + k M̂TM(Eλμ), (5)

where

M̂(Eλμ) = − i

kc

∫
d3r ( �∇ · �̂jc)rλYλμ

= −
∫

d3r ρ̂ rλYλμ (6)

is the familiar electric operator (with ρ̂ being the density
operator) and

M̂TM(Eλμ) = i

2c(λ + 1)(2λ + 3)

×
∫

d3r �̂jc · [ �∇ × (�r × �∇)rλ+2Yλμ] (7)

= − 1

2c

√
λ

λ + 1

1

2λ + 3

∫
d3r rλ+2 �Yλλμ

× ( �∇ × �̂jc) (8)

is the toroidal operator [5,6,10,32]. This operator is the second
order (∼k2) correction to the dominant electric operator (6).
It becomes dominant at k � 0. Being determined by the curl

( �∇ × �̂jc), the toroidal flow is well (though not exactly, see
discussion in Sec. IV D) decoupled from CE. For this reason
the toroidal operator cannot be presented through the nuclear
density alone and needs knowledge of the current distribution.

The CM operator reads [10,17,18]

M̂CM(Eλμ) = − i

2c(2λ + 3)

∫
d3r rλ+2Yλμ( �∇ · �̂jc) (9)

= −k
1

2(2λ + 3)

∫
d3rρ̂rλ+2Yλμ (10)

= −kM̂ ′
CM(Eλμ), (11)

where M̂ ′
CM(Eλμ) is its familiar density-dependent

form [17,18]. The CM operator does not follow from the
long-wave expansion of the initial electric operator (4) but
is introduced as a proper probe operator for excitation of
the isoscalar dipole giant resonance [17,18]. Unlike the TM
case, this operator may be presented in both current- and
density-dependent forms. As mentioned above, the velocity
of the CM flow is a gradient function, which justifies the
irrotational (longitudinal) character of the flow.
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As was found in [10], the sum of the TM and CM operators
gives the operator responsible for RW vorticity:

M̂RW(Eλμ) = M̂TM(Eλμ) + M̂CM(Eλμ) . (12)

This relation makes possible a direct comparison of RW,
TM, and CM strengths. Besides, it shows that all these three
operators are of the second order with respect to the electric
operator (6).

B. E1(T = 0) case

In the E1(T = 0) channel, the RW, TM, and CM operators
are reduced to

M̂RW(E1μ) = − i

5c

√
3

2

∫
d3r �̂jcr

2 �Y12μ, (13)

M̂TM(E1μ) = − i

2
√

3c

∫
d3r �̂jc

×
[√

2

5
r2 �Y12μ + (r2 − 〈r2〉0) �Y10μ

]
, (14)

M̂CM(E1μ) = − i

2
√

3c

∫
d3r �̂jc

×
[

2
√

2

5
r2 �Y12μ − (r2 − 〈r2〉0) �Y10μ

]
, (15)

M̂ ′
CM(E1μ) = 1

10

∫
d3rρ̂

[
r3 − 5

3
〈r2〉0r

]
Y1μ. (16)

Here, 〈r2〉0 = ∫
d3rρ0r

2/A is the ground-state squared radius,
ρ0(�r) is the ground state density, A is the mass number. The
operators (14)–(16) have the center-of-mass correction (c.m.c.)
proportional to 〈r2〉0, while in Eq. (13) the c.m.c. is zero. In
what follows, we consider only μ = 0 case and thus skip the
μ index.

The RW, TM, and CM matrix elements for E1 transitions
between the ground state |0〉 and RPA excited state |ν〉 can be
determined through the current transition density

δ �jν(�r) = 〈ν| �̂jc(�r) |0〉 = [
jν

10(r) �Y ∗
10 + jν

12(r) �Y ∗
12

]
(17)

as

〈ν|M̂RW(E1)|0〉 = − 1

5
√

2c

∫
drr4jν

12, (18)

〈ν|M̂TM(E1)|0〉 = − 1

6c

∫
drr2

×
[√

2

5
r2jν

12 + (r2 − 〈r2〉0)jν
10

]
, (19)

〈ν|M̂CM(E1)|0〉 = − 1

6c

∫
drr2

×
[

2
√

2

5
r2jν

12 − (r2 − 〈r2〉0)jν
10

]
. (20)

The upper and lower current components are usually denoted
as j+ and j− (j+ = j12 and j− = j10 in the E1 case). In
accordance to [4], just j+ determines the vorticity [and RW
matrix element (18)]. The flow can be fully vortical (j+ �=0,
j−=0), fully irrotational (j+ =0, j− �=0), and mixed (j+ �=0,

j− �=0). Following this prescription, both TM and CM are
of a mixed (irrotational/vortical) character, which contradicts
with predominantly curl- and gradient-like velocities of these
flows [10].

C. Hydrodynamical vorticity

To analyze the HD vorticity (1), we should define the
velocity of a nuclear motion and build the corresponding
matrix elements. This can be done by definition of the velocity
transition density through the current one [13],

δ�vν(�r) = δ �jν(�r)

ρ0(�r)
, (21)

and the replacement

[ �∇ × δ �jν(�r)] → ρ0(�r)[ �∇ × δ�vν(�r)] (22)

in the relevant matrix elements. It is easy to see from the exact
expression

�∇ × δ �jν(�r) = ρ0(�r) �∇ × δ�vν(�r) + �∇ρ0(�r) × δ�vν(�r) (23)

that the replacement (22) neglects �∇ρ0(�r) and thus a large
change of ρ0(�r) at the nuclear surface. So, the HD vorticity
build from Eq. (22) is relevant by construction only at nuclear
interior.

Among RW, TM, and CM operators, only the TM one (8)
and its matrix element

〈ν|M̂TM(E1)|0〉

= − 1

10
√

2c

∫
d3r

[
r3 − 5

3
r〈r2〉0

]
�Y11 · [ �∇ × δ �̂jν] (24)

have the necessary curl-of-current structure suitable for using
the replacement (22). Then, by substituting Eq. (22) into
Eq. (24), we get the matrix element

〈ν|M̂HD(E1)|0〉

= − 1

10
√

2c

∫
d3r

[
r3 − 5

3
r〈r2〉0

]
ρ0 �Y11 · [ �∇ × δ �̂vν],

(25)

characterizing the HD vorticity. The explicit expressions for

curls and divergences of δ �̂jν and δ �̂vν are given in Appendix A.
Note that, though the general electric operator (4) also

has the curl-of-current term, it cannot be used for building
HD matrix elements through the replacement (22). Indeed the
vorticity is the second-order divergence-free effect vanishing
in the long-wave (k → 0) approximation (LWA). Instead, the
operator (4) still has the LWA contribution.

Definition of the velocity (21) has a well-known shortcom-
ing. Being inverse to the density ρ0(�r), the velocity becomes
artificially large at the nuclear surface and beyond. This
shortcoming persists in the HD matrix elements (25). As was
mentioned above in connection to Eq. (23), the HD vorticity
built from Eq. (22) may be applied only to the nuclear interior
where ρ0(�r) changes smoothly. The toroidal flow is similar to
HD in the interior but has a good behavior at the surface. Thus
the TM strength is a more robust measure of the HD vorticity
than the construction (25). This will be confirmed in Sec. IV
by numerical results.
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III. METHOD

For analysis of the nuclear vorticity, a representative
set of variables is used: strength functions, flow patterns
and coordinate-energy maps for current (velocity) transition
densities and their derivatives (curls and divergences), and
form factors.

A. Strength function

The energy distribution of the mode strengths is described
by the strength function

Sα(E1; ω) = 3
∑

ν

ωl
ν |〈ν|M̂α(E1)|0〉|2ζ (ω − ων) (26)

involving the Lorentz weight

ζ (ω − ων) = 1

2π

�

(ω − ων)2 + �2

4

(27)

with the smoothing width �. The type of the transi-
tion operator M̂α(E1) is determined by the index α =
{E1,RW, TM, CM, HD}, ν runs over the RPA spectrum with
eigenfrequencies ων and eigenstates |ν〉. The E1(T = 1)
strength function (α = E1) uses the energy weight (l = 1)
and the ordinary E1 operator with the effective charges
en

eff = −Z/A and e
p
eff = N/A (see the operator D̂1 below).

Other strength functions with α = {RW, TM, CM, HD} skip
the energy weight (l = 0) and, being studied in T = 0 channel,
use en

eff = e
p
eff = 1.

B. Flow patterns and coordinate-energy maps

The strength functions provide a first overview of the
modes. A more insight can be gained by inspection of the
current (velocity) transition densities and their derivatives.

Since we are interested in general features of the modes,
it is convenient to consider the integral variables (involving
contributions from all the RPA states in a given energy interval
[E1,E2])

�A(D)(�r) =
∑

νε[E1,E2]

D∗
ν

�Aν(�r), (28)

B(D)(�r) =
∑

νε[E1,E2]

D∗
νB

ν(�r), (29)

or average variables (smoothed by the Lorentz weight ζ )

C(D)(r,ω) =
∑

ν

D∗
νC

ν(r)ζ (ω − ων) . (30)

The vectors variables �A(D)(�r) give the flow patterns describing
in detail the coordinate (radial and angular) distribution of
the modes. The vector contributions �Aν(�r) could be the cur-
rent/velocity transition densities, their components and curls.
Further, the variables B(D)(�r) provide the similar coordinate
distribution but for the scalar patterns like divergences of
the flows. The coordinate-energy maps C(D)(r,ω) deliver
information on radial/energy distribution, thus combining
properties of the transition densities and strength functions.
Using Eqs. (28)–(30) allows to avoid individual details of RPA
states but highlight their common features.

The calculation of such variables needs a precaution
because of arbitrary signs of RPA ν states. To overcome
this trouble, we use the technique [12] where the values of
interest are additionally weighted by the matrix elements
Dν = 〈ν|D̂T (E1)|0〉 of the dipole probe operator D̂T (E1).
Then every state ν contributes to Eqs. (28)–(30) twice and
thus the ambiguity is removed. Two dipole probe operators are
implemented: isovector

D̂1(E1) = (N/A)
Z∑
i

(rY1)i − (Z/A)
N∑
i

(rY1)i (31)

for the GDR (giant dipole resonance, α = E1) strength and
isoscalar

D̂0(E1) =
A∑
i

(r3Y1)i (32)

for the modes α = {RW, TM, CM, HD}.
For example, for the current transition density δ �j (�r) and its

radial component j21(r), the variables (28) and (30) read

δ �j (D0)
1 (�r) =

∑
νε[E1,E2]

D∗
ν δ

�jν
1 (�r), (33)

δj
(D0)
12 (r,ω) =

∑
ν

D∗
ν δj

ν
12(r)ζ (ω − ων). (34)

The explicit expressions for other cases are given in
Appendix B.

C. Form factors

The form factors are obtained from the average vari-
ables (30) by the Fourier-Bessel transformation

F (D)(k,ω) =
∑

ν

D∗
ν ζ (ω − ων)

∫
drr2j1(kr)Cν(r), (35)

where j1(r) is the dipole spherical Bessel function.

D. Calculation details

The calculations are performed within the one-dimensional
(1D) Skyrme RPA approach [19,23]. The approach is fully
self-consistent in the sense that both the mean field and residual
interaction are derived from the Skyrme functional [20–23].
Besides, the residual interaction takes into account all terms
of the Skyrme functional as well as the Coulomb (direct and
exchange) terms. There is no variational c.m.c. term in the
functional. The calculations are performed for the doubly
magic nucleus 208Pb. We use the Skyrme force SLy6 [24]
providing a good description of the GDR in heavy nuclei [25].

The calculations employ a 1D spherical coordinate-space
grid with the mesh size 0.3 fm and a calculational box of
21 fm. We have tested smaller spacings down to 0.1 fm and
find no visible difference in the RPA spectra. So the present
grid provides quite accurate results for averaged characteris-
tics (26)–(30) and (35) considered in the present study. A large
RPA expansion basis is used. The particle-hole (1ph) states are
included up to an excitation energy of ∼35 MeV. Furthermore,
we employ a couple of fluid dynamical basis modes [19], which
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(a)

(b)

(c)

FIG. 2. The RPA strength functions. (a) E1(T = 1) GDR. The
line with the arrow indicate the experimental width and energy
centroid of the resonance [34]. (b) E1(T = 0) toroidal (TM, solid
line) and compression (CM, dotted line) strengths. The widths and
energy centroids of the low- and high-energy branches of E1(T = 0)
excitations observed in (α,α′) reaction [35,36] are denoted.
(c) The E1(T = 0) hydrodynamical (HD, solid line) and Rawenthal-
Wambach (RW, dotted line) vortical strengths.

allows to: i) include global polarization effects up to 200 MeV,
ii) provide correct extraction of the center-of-mass mode, and
iii) produce 100% exhaustion of the energy-weighted sum
rules for the isovector [2] and isoscalar [3] GDR.

The strength functions (26), coordinate-energy maps (30),
and form factors (35) employ the Lorentz weight (27) with
the constant smoothing width � = 1 MeV. This smoothing
allows to avoid unnecessary details and provide a reasonable
averaging.

IV. NUMERICAL RESULTS

A. Strength functions

In Fig. 2, the relevant RPA strength functions in 208Pb are
exhibited. [Note that plots (a,b) of this figure somewhat deviate
from the similar plots in our previous study of the pygmy
resonance [12]. This is caused by using in [12] the energy-
dependent smoothing width �(ω)].

In Fig. 2(a), the calculated isovector GDR is compared
to the experimental data [34]. A good agreement with the
experiment justifies a satisfactory accuracy of our description.

Further, panels (b), (c) demonstrate the TM, CM, HD,
and RW strengths in the E1(T = 0) channel. Note that due

to the large configuration space and c.m.c. in the transition
matrix elements (19), (20), and (25), the spurious strength
is fully downshifted below 0.5 MeV and thus does not
affect the results. Panel (b) shows that the calculated TM
and CM strengths are peaked at 7–8 MeV and ∼25 MeV,
respectively. These results somewhat deviate from available
experimental (α,α′) data for the E1(T = 0) resonance [35,36]
which give maxima at 12.7 and 23.0 MeV. Such discrepancy
is common for various theoretical approaches [9] and worth to
be commented in more detail.

First of all, following panel (b), the measured E1(T = 0)
resonance may be treated as manifestation of the CM alone,
i.e., without TM contribution. Indeed, the experimental peaks
at 12.7 and 23.0 MeV can correspond to the CM structures at
13–15 and 25 MeV in our RPA calculations. The familiar
interpretation of the experimental peak at 12.7 MeV as
TM [35,36] is questionable since the calculated TM lies much
lower, namely at 7–8 MeV. The experiment [35,36] explores
the excitation energy interval 8–35 MeV and perhaps loses the
strong and narrow TM peak at 7–8 MeV. Moreover, the (α,α′)
reaction, being mainly peripheral, is generally not suitable for
observation of the vortical TM.

Further, the discrepancy for CM energy (25 MeV in the
theory versus 23 MeV in the experiment) may be explained
by a sensitivity of this high-energy strength to the calculation
scheme, in particular to the size of the configuration space.
The larger the space, the lower the CM energy. It seems that
even our impressive space size (up to ∼200 MeV) is not yet
enough. Perhaps, the coupling to complex configurations has
here some effect.

Our RPA results are close to the previous relativistic [37,38]
and Skyrme nonrelativistic [10,39] studies, including SRPA
ones [10]. Note that the TM lies at 6–9 MeV, i.e., at the PDR
location. Following [12], the E1(T = 0) strength in this region
has a complex composition with a strong toroidal fraction.

Panel (c) exhibits the RW and HD strengths calculated
with the transition dipole matrix elements (18) and (25),
respectively. As mentioned above, both them were proposed as
the vortical fingerprints. It is seen that RW and HD give about
equal strong peaks at 7–8 MeV, i.e., just at the TM energy. So
both them signal on the truly TM vortical motion. However,
the RW and HD deviate at higher energies. The HD, being
similar to TM by construction, is modest everywhere with
exception of the TM region. Instead, the RW has additional
maxima at the GDR (10–15 MeV) and CM (25 MeV) regions,
characterized by strong irrotational flows. This means that RW
is not a robust measure of the vorticity.

In Fig. 3, the contributions of j−(r) ≡ j10(r) and j+(r) ≡
j12(r) components of the nuclear current (17) to E1(T = 0)
TM, CM, RW, and HD strengths are demonstrated. It is seen
that both components are peaked in low-energy (LE) and
high-energy (HE) regions, with some preference of LE for
j+ and HE for j−. Following expressions (19), (20), (25), and
Appendix A, the TM, CM, and HD strengths are produced
by constructive or destructive interference of j+ and j− (or
v+ and v−) contributions. The LE interference is constructive
for TD/HD and destructive for CM. For HE, the picture is
opposite. The RW is by construction fully determined by j+.
Following Fig. 3, there is no any essential advantage of j+

024321-5



REINHARD, NESTERENKO, REPKO, AND KVASIL PHYSICAL REVIEW C 89, 024321 (2014)

(a) (b)

(c) (d)

FIG. 3. (a) Toroidal (TM), (b) compression (CM), (c) hydrody-
namical (HD), and (d) Rawenthal-Wambach (RW) RPA strength
functions for the full nuclear current (bold line) and its j− ≡ j10

(dotted line) and j+ ≡ j12 (thin line) components. For RW case, we
have j− = 0 and so only j = j+ strength is shown.

over j− to represent the nuclear vorticity. Both components
are almost equally active in the vortical TM at 7–8 MeV and
irrotational CM at 25 MeV. This once more distrusts j+ as a
vortical descriptor.

B. Flow patterns

As compared to the strength functions, the flow patterns
deliver a more detailed information on nuclear dynamics.
Here we depict not only nuclear current and velocity fields
but also their divergences and curls. The patterns �∇ · �j and
�∇ × �j are especially important since they directly indicate
if the current contributes to CE. Obviously, only curl-free
( �∇ × �j = 0) currents are irrotational and coupled to CE.
Instead, the divergence-free ( �∇ · �j = 0) currents carry the
vorticity and are CE unrestricted.

Note that the isovector GDR (in the Goldhaber-Teller
model [29]) and isoscalar spurious c.m. motion are basically
driven by the operator rY1μ with the velocity field �v ∝
�∇(rY1μ). They are collective Tassie modes with �∇ · �v =
�∇ × �v = 0 [1,2,28,30] and thus their contributions to �∇ · �j and
�∇ × �j is strongly suppressed, at least at the nuclear interior.
Instead, the E1 TM and CM are characterized by the operators
with r3 dependence and so do not belong the Tassie modes.
For them, the patterns �∇ · �j and �∇ × �j are indeed instructive.

In Fig. 4, different patterns for the energy bin 6–9 MeV
containing the TM are considered. Panel (a) shows that, in
accordance with our previous study [12], the current �j is
mainly of the toroidal nature [to be compared to Fig. 1(a)
for the schematic image of TM]. The same takes place for
the velocity field �v exhibited in panel (b). The velocity is not
damped by the density factor and so is artificially strong at
the nuclear surface (marked by the circle of the radius R =
1.16 fm A−1/3) and beyond. Following panels (c) and (e),
the current curl is much stronger than its divergence, which
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(e) ∇ · j
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(f) ρ0∇ · v

FIG. 4. E1(T = 0) current and velocity flow patterns (28)
and (29) at the x-z plane for the TM energy bin 6–9 MeV in 208Pb:
(a) nuclear current �j , (b) nuclear velocity �v, (c) current curl �∇ × �j , (d)
velocity curl ρ0 �∇ × �v, (e) current divergence �∇ · �j , and (f) velocity
divergence ρ0 �∇ · �v. In (c) and (d), the flows, being perpendicular to the
plane x-z, are exhibited by circles. The open (filled) circles represent
flows along (opposite to) the y axis. In (e) and (f), the open (filled)
circles represent positive (negative) values. The flow magnitude is
depicted by the size of the arrows and circles (in arbitrary units). The
nuclear boarder is marked by a large circle. See explicit expressions
for patterns in Appendix B.

confirms basically vortical character of the flow. The density-
weighted curl and divergence of the velocity in panels (d)–(f)
are very similar to their current counterparts in the nuclear
interior. A difference takes place only at the nuclear surface.
So, up to the surface region, the HD vorticity determined by
�∇ × �v can be well characterized by �∇ × �j .

As shown in Sec. II, the TM and CM operators are
composed from �j+ and �j− components of the nuclear current.
Moreover, following [4], the component �j+ is treated as a
measure of the nuclear vorticity. So it is worth to inspect the
�j+ and �j− flows in more detail. The relevant flow patterns
are given in Fig. 5. Panels (a) and (b) show that �j+ and �j−
are essentially different: the former is maximal in the north
and south poles while the later is maximal in the nuclear
center. Despite this difference, curls of �j+ and �j− are rather
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FIG. 5. E1(T = 0) flow patterns for the current components �j+
(left) and �j− (right) at the x-z plane for the TM energy bin 6–9 MeV
in 208Pb. The current components �j± (a) and (b), as well as their curls
(c) and (d) and divergences (e) and (f) are exhibited. The presentation
is similar to that in Fig. 4. See explicit expressions for the patterns in
Appendix B.

similar [panels (c) and (d)]. The same takes place (up to the
total sign) for the divergencies [panels (e) and (f)]. Moreover,
divergences and curls of �j+ and �j− are of the same order
of magnitude. So none of these current components alone is
suitable to represent neither vortical nor irrotational flows.
Only their proper combinations, like TM and CM ones, may
be appropriate for this aim. The value �j+ has no any significant
advantage over �j− as a measure of the vorticity, which makes
the RW vorticity criterium [4] questionable.

In Fig. 6, both �j and �v reproduce the typical compression
dipole motion [to be compared to Fig 1(b) for the schematic
image of CM]. The divergence of the current is stronger than its
curl. This is natural for CM which, being almost irrotational,
is not however the Tassie divergence-free mode.

C. Coordinate-energy maps and form-factors

In Fig. 7, the smoothed coordinate-energy maps (30) for
divergence and curl of the nuclear current are given for 1ph
(unperturbed Hartree-Fock) and RPA E1(T = 0) excitations.
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]

T = 0 22-32 MeV

(a) j (b) v
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]

x [fm]

(c) ∇ × j

-8 -6 -4 -2 0 2 4 6 8
x [fm]

(d) ∇ · j

FIG. 6. E1(T = 0) flow patterns in 208Pb for the CM energy bin
22–32 MeV. See Fig. 4 for notation.

It is seen that both �∇ · �j and �∇ × �j are strong in a wide radial
region 3 fm < r < 10 fm around the nuclear surface at ∼7 fm.
Following panels (a), (b), the 1ph strength is concentrated
in broad energy intervals: low-energy (LE) 4–17 MeV and
high-energy (HE) 28–35 MeV. In both intervals, the curl and
divergence are strong. The strength is multimodal, which is
common for noncollective (single-particle) excitations.

As seen from panels (c) and (d) for the RPA case, inclusion
of the residual interaction considerably changes the pictures.

FIG. 7. (Color online) The coordinate-energy maps for the di-
vergence (a), (c) and curl (b), (d) of the nuclear current in the
E1(T = 0) channel in 208Pb. The upper (a), (b) and lower (c), (d)
panels represent the 1ph and RPA strengths, respectively. The nuclear
radius is marked by the dotted line. See explicit expressions for the
patterns in Appendix B.
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FIG. 8. (Color online) The E1(T = 0) RPA formfactors in 208Pb
for the current divergence (a), current curl (b), j+ component of
the current (c), and density-weighted velocity curl (d). See explicit
expressions for the patterns in Appendix B.

Being isoscalar, the residual interaction downshifts by energy
both �∇ · �j and �∇ × �j . In the CM region, the maxima are
shifted from 30–35 MeV to 24–28 MeV. The RPA distributions
correspond to the strength functions exhibited in Fig. 2 with
the TM at ∼7 MeV, increased vorticity at 12–15 MeV and
25–30 MeV, and irrotational CM at ∼25 MeV.

Note that, after switch to RPA, both �∇ · �j and �∇ × �j
become weaker in the GDR region 10-15 MeV. For the first
glance, this result looks surprising. However both isovector
GDR and isoscalar spurious c.m. motion are basically the
collective Tassie modes with suppressed �∇ · �j and �∇ × �j .
Then panels (c) and (d) actually show the rest of �∇ · �j and
�∇ × �j not yet washed out by the dominant Tassie collective
dipole motion. In other words, the collective Tassie motion can
significantly damps the current curls and divergencies initially
produced by single-particle excitations. Instead, the CM and
TM are not the Tassie modes and thus survive in the RPA case.
The plots (c,d) show that CM determined by �∇ · �j [see Eq. (9)]
is concentrated at ∼25 MeV while TM determined by �∇ × �j
[see Eq. (8)] is distinctive at ∼7 MeV. Some �∇ × �j strength
still remains at 12–15 MeV.

In Fig. 8, the smoothed E1(T = 0) form factors (35)
for the values of interest are presented. Namely, the values
�∇ · �j , �∇ × �j , j+, and ρ0 �∇ × �v (pertinent for CM, TM,
RW, and HD strengths) are considered. Unlike the above
transition coordinate-energy maps, the form factors are direct
constituents of (e,e′) cross section and their inspection may
suggest the most optimal transfer momenta k to observe desir-
able modes. As seen from Fig. 9, the observation of �∇ · �j and
�∇ × �j , and thus related CM (∼25 MeV) and TM (∼7 MeV),
requests rather large momenta, 0.8 fm−1 < k < 1.6 fm−1,
which testifies that CM and TM are mainly concentrated in the
nuclear interior. Instead the form factors for j+, and ρ0 �∇ × �v
are maximal for lower momenta, 0.6 fm−1 < k < 1.1 fm−1,
which points to their more surface character. Note that j+ has
strict maxima in both low-energy TM and high-energy CM
regions. The form-factors for ρ0 �∇ × �v and �∇ × �j are similar,

FIG. 9. (Color online) The E1(T = 1) RPA formfactors (35) in
208Pb for divergence (a) and curl (b) of the current. See explicit
expressions for the patterns in Appendix B.

though the former is a bit stronger and shifted to lower k.
The difference at low k arises because these two form factors
are mainly distinguished by the coordinate dependence of
the density ρ0(r), which is maximal at the nuclear surface
(=low k).

For comparison, in Fig. 9, the isovector E1(T = 1) RPA
form factors for �∇ · �j and �∇ × �j are depicted. It is seen that
they are weaker than in the T = 0 channel. The reason is
again related to the dominant collective Tassie mode. Indeed,
within the Goldhaber-Teller model [29], the GDR is essentially
the Tassie mode. Hence we have the strong suppression of
�∇ · �j and �∇ × �j . Nevertheless, in Fig. 10, the GDR region
still has noticeable �∇ · �j and �∇ × �j at 12–13 MeV. This
signals that the actual GDR is a combination of the Goldhaber-
Teller [29] (Tassie mode) and Steinwedel-Jensen [40] (beyond
Tassie mode) flows. There are hints of the isovector TM at
11–13 MeV. The isovector CM is not seen. Perhaps it is shifted
above the energy 35 MeV [as compared to the unperturbed
1ph CM strength at 29–35 MeV, depicted in Fig. 8(a)]. A
comparison of Figs. 9 and 10 shows that the T = 0 channel is
more suitable for the experimental search of TM and CM than
the T = 1 one.

V. DISCUSSION

The strength functions, flow patterns, coordinate-energy
maps, and form factors exhibited above show that j+ compo-
nent of the current has no any essential advantage over j− as
the vorticity indicator. Indeed both components: i) are peaked
in TM (basically vortical) and CM (basically irrotational)
regions, ii) have curls and divergences of the same order of
magnitude in TM region. This indicates that j+ or j− alone
cannot be a relevant measure of the vorticity. However, such
a measure can be designed as a proper combination of j+ or
j−. The toroidal mode is a natural case of such design. This
transversal mode is free from the longitudinal part arising in
the long-wave approximation (LWA) and its flow has a clear
curl-like character.

As shown above, implementation of HD characteristics, like
the velocity transition density δ�v, is not convenient because of
their unphysical behavior at the nuclear surface and beyond.
To demonstrate the HD vorticity, it is better to use the toroidal
flow which gives a similar vorticity and is well behaved near
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the nuclear surface. Altogether, the numerical arguments favor
TM as a measure of the vorticity.

For further discussion of nuclear vorticity, it is worth to
define criteria for the vortical nuclear current. These could be:
i) rotational flow pattern closely corresponding to the HD view,
ii) decoupling from the CE i.e. transversal (divergence-free)
character of the current. Such vortical nuclear current has to
dominate in the TM which is mainly vortical and vanish in the
CM whose flow pattern is mainly irrotational.

The above requirement ii) is closely related to the definition
of the independent current component (ICC) [4,16] which,
together with electric longitudinal (reduced to the nuclear den-
sity) and magnetic transversal components, should constitute
a complete set describing the charge and current distributions
in the nucleus. There are at least two ways to define ICC.

The first way to determine ICC is proposed by Heisen-
berg [16] and later Rawenthall and Wambach [4]. Here the
decomposition of the current transition density

δ �j (�r) = −i
∑
λμ

aλμ (jλλ−1(r) �Y ∗
λλ−1μ + jλλ+1(r) �Y ∗

λλ+1μ)

(36)

in terms of j− = jλλ−1(r) and j+ = jλλ+1(r) is used. The
component j+ is claimed CE-unrestricted despite the CE (2)
actually couples the radial parts of δρλ, j−, and j+:

ωδρλ(r) = −
√

λ

2λ + 1

(
d

dr
− λ − 1

r

)
jλλ−1(r)

+
√

λ + 1

2λ + 1

(
d

dr
+ λ + 2

r

)
jλλ+1(r). (37)

The claim is based on the analysis of the multipole moments
given from the right and left sides of Eq. (37). The moments
for δρλ and j− are coupled,

ω

∫
drrλ+2δρλ(r) =

√
λ(2λ + 1)

∫
drrλ+1jλλ−1(r), (38)

while j+ moments fully vanish. For this reason, j+ is
considered as CE-unrestricted and thus suitable to represent
ICC and nuclear vorticity [4]. Following this prescription, the
vorticity of the nuclear current is fully determined by its j+
component.

By our opinion, this prescription is not good at least for
the following reasons. First, the vanishing of j+ moments
decouples j+ from CE only in the integral sense while
preserving the local coupling (37). In other words, �∇ · �j+(�r)
is not locally zero. Indeed in Fig. 5(e) the field �∇ · �j+(�r)
is locally strong. However it has different sign at z > 0
and z < 0 and thus can vanish being integrated. Second,
following Eq. (15), j+ contributes to CM, which suggests
a considerable vortical fraction in CM flow. At the same
time, we know that CM is basically irrotational and has the
gradient-like velocity [10]. Third, our numerical analysis of
TM/CM strengths and curl/divergences of the current does not
reveal any essential advantage of j+ over j− as the vorticity
indicator. Altogether, the ansatz [4] to use j+ as a measure of
the vorticity and ICC looks doubtful.

Another (and more natural) way to define ICC has been
proposed by Dubovik et al. [5]. Here the electric current
transition density is decomposed into the longitudinal and
transversal components,

δ �j (�r) = δ �j‖(�r) + δ �j⊥(�r), (39)

δ �j‖(�r) = �∇φ(�r), δ �j⊥(�r) = �∇ × �∇ × (�rχ (�r)), (40)

where φ(�r) and χ (�r) are some scalar functions. As compared
to the prescription [4,16], this way looks more logical for the
search of CE-unrestricted divergence-free ICC. Now we get
δ �j⊥ as the natural ICC candidate from very beginning.

The current components can be expanded in the basis of

eigenfunctions �J(κ)
λμk(�r) (κ = −, 0,+) of the vector Helmholtz

equation (the similar expansion is familiar for the vector-
potential, see, e.g., [41]). Then the transversal component reads

δ �j⊥(�r) =
∑
λμk

�J(+)
λμk(�r) m

(+)
λμ (k), (41)

where m
(+)
λμ (k) are electric transversal form factors and inte-

gration by k is assumed, In the LWA (k → 0), the transversal
component is reduced to the longitudinal one. After subtraction
of the LWA part from δ �j⊥, we get at k > 0 the toroidal current
density. The transversal character of the toroidal current is
also seen from Eqs. (7) and (24). Being independent from
δ �j‖ and thus decoupled from CE, the toroidal current can be
considered both as ICC [5] and relevant vortical part of the
complete nuclear current. Unlike the prescription [4,16], this
vortical current is built from both j+ and j− components, see,
e.g., (24). Its vorticity corresponds to HD one, see Sec. II C.
Besides, the relevance of the TM current as a measure of
the vorticity is confirmed by our numerical analysis of flow
patterns. Altogether, our analysis shows that just TM and its
current are best representatives of the nuclear vorticity.

Finally note that for more detailed study of the nuclear
vorticity, it is desirable to go beyond RPA by taking into
account the coupling to complex configurations, see, e.g.,
the relevant extensions [11,42–46]. Note that, for the proper
treatment of anharmonic effects, inclusion only of two-phonon
configurations may not be enough. The impact of higher
configurations and exact record of the Pauli principle are
also necessary, see discussion [46,47]. All these factors make
anharmonic models very complicated. Anyway, before per-
forming these involved investigations, a mere RPA exploration
is desirable and this is just our case.

VI. CONCLUSIONS

The problem of nuclear vorticity in isoscalar E1 excita-
tions (toroidal and compression modes—TM and CM) was
scrutinized within the Skyrme RPA with the force SLy6. A
representative set of characteristics (strength functions, flow
pattern for currents and velocities, curls and divergences
of the current and its components, coordinate-energy maps
and form factors) was inspected. Analysis of curls �∇ · �j
and divergences �∇ × �j of the nuclear current, as direct
indicators of the vortical/irrotational flow and coupling to the
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continuity equation (CE), was especially important. Note that
the isovector GDR (within the Goldhaber-Teller model [29])
and isoscalar spurious c.m. motion, being the Tassie collective
modes, have vanishing contributions to �∇ · �j and �∇ × �j .
Instead, the TM and CM do not belong the Tassie modes and
for them the curls and divergences are indeed very instructive.

The numerical and analytical analysis shows that, unlike the
prescription [4,16], the nuclear vorticity is better described not
by j+ component of the nuclear current but by its transversal
toroidal part [5] composed from both j+ and j− components.
The toroidal motion is well decoupled from the continuity
equation, closely corresponds to the hydrodynamical picture
of the vorticity, and provides a reasonable criterion of the
vortical/irrotational flow in toroidal and compression modes
in the E1(T = 0) channel.
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APPENDIX A: CURLS AND DIVERGENCIES

The curl and divergence of the current E1 transitions
densities read

�∇ × δ �jν
1 (�r) = i[rot j ]ν(r) �Y ∗

11, (A1)

where

[rot j ]ν(r) =
√

2

3

d

dr
jν

10(r) +
√

1

3

[
d

dr
+ 3

r

]
jν

12(r) (A2)

and

�∇ · δ �jν
1μ(�r) = i[div j ]ν(r) Y ∗

1 , (A3)

where

[div j ]ν(r) =
√

1

3

d

dr
jν

10(r) −
√

2

3

[
d

dr
+ 3

r

]
jν

12(r). (A4)

The velocity transition density can be decomposed like the
current one (17):

δ�vν
1μ(�r) = [

vν
10(r) �Y ∗

10μ(�̂r) + vν
12(r) �Y ∗

12μ(�̂r)
]
, (A5)

with

vν
10(r) = jν

10(r)

ρ0(r)
, vν

11(r) = jν
11(r)

ρ0(r)
. (A6)

Then

�∇ × δ�vν
1μ(�r) = i[rot v]ν(r) �Y ∗

11, (A7)

�∇ · δ�vν
1μ(�r) = [div v]ν(r) Y ∗

1 (A8)

with

[rot v]ν(r) =
√

2

3

d

dr
vν

10(r) +
√

1

3

[
d

dr
+ 3

r

]
vν

12(r), (A9)

[div v]ν(r) =
√

1

3

d

dr
vν

10(r) −
√

2

3

[
d

dr
+ 3

r

]
vν

12(r). (A10)

APPENDIX B: INTEGRAL AND
AVERAGE CHARACTERISTICS

The flows in Figs. 4–6 represent the integral vec-
tor variables (28) in {x,y = 0,z} cartesian plane, i.e.,
�A(�r) = Ax(x,y = 0,z)�ex + Az(x,y = 0,z)�ez. In particular,

variables (28) include

�j → �Aν(�r) = δ �jν(�r), (B1)

�j10 → �Aν(�r) = jν
10(r) �Y ∗

10, (B2)

�j12 → �Aν(�r) = jν
12(r) �Y ∗

12, (B3)

�∇ × �j → �Aν(�r) = [rot j ]ν(r) �Y ∗
11, (B4)

�∇ × �j10 → �Aν(�r) =
√

2

3

d

dr
jν

10(r) �Y11, (B5)

�∇ × �j12 → �Aν(�r) =
√

1

3

[
d

dr
+ 3

r

]
jν

12(r) �Y ∗
11, (B6)

�v → �Aν(�r) = δ�vν(�r), (B7)

ρ0(r) �∇ × �v → �Aν(�r) = ρ0(r)[rot v]ν(r) �Y ∗
11. (B8)

The values in Eqs. (B1)–(B3), (B4)–(B6), and (B7),(B8) are
taken from expressions (17), (A1),(A2), and (A5)–(A7),(A9),
respectively.

The scalar divergences in Figs. 4–6 involve the values

�∇ · �j → Bν(�r) = [div j ]ν(r)Y ∗
1 , (B9)

�∇ · �j10 → Bν(�r) =
√

1

3

d

dr
jν

10(r)Y ∗
1 , (B10)

�∇ · �j12 → Bν(�r) = −
√

2

3

[
d

dr
+ 3

r

]
jν

12(r)Y ∗
1 , (B11)

ρ0(r) �∇ · �v → Bν(�r) = ρ0(r)[div v]ν(r)Y ∗
1 (B12)

from expressions (A3),(A4) and (A8),(A6),(A10). The di-
vergences are depicted in the figures as circles of the area
proportional to B(x,y = 0,z). The filled (open) circles mean
the positive (negative) variable.

Further, Figs. 7–9 give the average radial-energy maps (30)
and form factors (35) using the values

�∇ × �j → Cν(r) = [rot j ]ν(r), (B13)

�∇ · �j → Cν(r) = [div j ]ν(r) (B14)

taken from expressions (A2) and (A4).
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