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The response to the addition of a � hyperon is investigated for the deformed states such as superdeformation
in 41

� Ca, 46
� Sc, and 48

� Sc. In the present study, we use the antisymmetrized molecular dynamics model. It is
pointed out that many kinds of deformed bands appear in 45Sc and 47Sc. Especially, it is found that there exists
superdeformed states in 45Sc. By the addition of a � particle to 40Ca, 45Sc, and 47Sc, it is predicted, for the first
time, that the superdeformed states exist in the hypernuclei 41

� Ca and 46
� Sc. The manifestation of the dependence

of the �-separation energy on nuclear deformation such as spherical, normal deformation, and superdeformation
is shown in the energy spectra of 41

� Ca, 46
� Sc, and 48

� Sc hypernuclei.
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I. INTRODUCTION

One of the main purposes to study the structure of hyper-
nuclei is to investigate nuclear responses when a � particle
is added to the nucleus. Since a � hyperon is free from the
nuclear Pauli principle, we have many interesting phenomena
in hypernuclei. For example, in light p-shell hypernuclei with
A � 10, it was pointed out that the � participation gives rise
to more bound states and the appreciable contraction of the
system (this stabilization is called the “gluelike” role of the
� particle) by the cluster model [1–3]. In heavier p-shell
(A � 10) and sd-shell � hypernuclei, there is a huge variety
of nuclear structure, because they have both α-clustering and
(compacting and/or deformed) shell-model-like structures. For
example, in 13

� C, we found the dynamical contraction of the
clustering states as much as 30% by addition of a � hyperon,
while in the compacting shell-model-like state, there was
almost no dynamical shrinkage [4,5].

It is also interesting to investigate the difference of the �-
separation energy (B�) between the cluster and shell-model-
like states. For example, in 13

� C, it is found that the B� is smaller
in the clustering state than in the compacting shell-model-like
states by more than 3 MeV [4]. In 20

� Ne, it is predicted that the
B� is larger in the shell-model-like ground state than in the
negative-parity cluster state [6]. However, this result is differ-
ent from the cluster model calculation [7]. Therefore it is im-
portant to reveal differences of B� depending on the structures.

Let us consider the heavier nuclei with 20 � A � 40. It is
of interest to investigate nuclear response when a � particle
is injected into such heavier nuclei. In these nuclei, there
are various interesting phenomena such as the coexistence
of spherical, normal-deformed (ND), and clustering states in
the low-lying energy regions. Therefore it is expected that
a � particle generates the hypernuclear states with various
structures and modifies them. For example, it is pointed out
that the shrinking effect of α-clustering states will appear by
adding a � particle [8,9]. It is predicted that the shape of
29
� Si is changed to be spherical by a � particle, whereas the
corresponding core nucleus 28Si is oblately deformed [10].

It is interesting to study structure of Sc isotopes, because
of the coexistence of spherical and normal-deformed states.
Many authors studied the structure of odd Sc isotopes, in which
the positive-parity and negative-parity bands coexist near the
ground state. This is inconsistent with the naive shell-model
picture which suggests only the negative-parity states near the
ground state. For example, 45Sc has the degenerated positive-
parity state 3/2+ near the ground state (7/2−) with �E =
12 keV. In 47Sc, the positive-parity state 3/2+ lies at only
0.77 MeV above the ground state 7/2−. The occurrence of the
low-lying positive-parity states can be explained as a proton
2-particle 1-hole (2p-1h) state in the Nilsson model [11–14].
In other words, it could be said that the low-lying positive-
parity states are deformed, while the ground states 7/2− are
almost spherical. By adding a � hyperon to them, it is expected
that the low-lying excitation spectra will be modified in Sc
� hypernuclei, because the B� will be different depending
on the deformation. Especially, in the case of the hyperon
in the s wave, it is predicted that the �-separation energy
B� becomes larger for the spherical state than the deformed
state [6,10,15–17]. Therefore, the addition of a � particle
will affect the low-lying spectra of Sc isotopes, and hence we
expect that Sc isotopes are suited to verify the dependence of
B� on nuclear deformation, which is one of the purposes of
this study.

Another interesting issue in � hypernuclei with A ∼ 40 is
to study the low-lying states with very large deformation, i.e.,
superdeformed (SD) states. It is considered that the SD state
is related with the appearance of large shell gaps at a 2 : 1 axis
ratio of the nuclear deformation for specific particle numbers.
Recently, many SD bands are investigated and identified in
nuclei with A ∼ 40 [18–20]. For example, in 40Ca, a SD band
is confirmed by the observation of the Kπ = 0+ band built
on the 0+

3 state lying at 5.21 MeV, while its ground state
is spherical due to the double closed-shell structure [19,21].
It is expected that in some Sc isotopes, the SD states will
appear in the low-lying regions, which could be accessed by
the 24Mg +24 Mg reaction fusion-evaporation experiment at
the Grand Accélérateur National d’Ions Lourds (GANIL) [22].
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The second purpose of the present study is the differ-
ence of B� which indicates a difference of deformations.
To investigate it, we perform antisymmetrized molecular
dynamics (AMD) calculations for 40Ca, 45Sc, and 47Sc and the
corresponding � hypernuclei. The AMD model was applied
successfully to several normal nuclei with A ∼ 40 such as
40Ca [23,24] to reveal the structure of the SD states without
assumptions on nuclear deformations and clustering. In this
study, we apply the same AMD framework as done in Ref. [24]
so as to predict the existence of the ND and SD bands
in 45Sc and 47Sc. In the hypernuclear study, an extended
version of the AMD model for hypernuclei (HyperAMD) is
applied to investigate the hypernuclear SD states. It was known
that the HyperAMD succeeded in describing the low-lying
structure of p- and sd-shell � hypernuclei combined with the
generator coordinate method (GCM) [9]. Thus the HyperAMD
is confirmed as a powerful tool to study the structure of the
� hypernuclei with A ∼ 40 having various deformations. It is
very important to use a reliable �N interaction for calculations
of B� values. We adopt here the �N G-matrix interaction
derived from the extended soft-core (ESC) model [25], which
reproduces B� values of � hypernuclei systematically [26].
The present study is very much motivated by an experimental
project at the Thomas Jefferson National Accelerator Facility
(JLab) which is planned to produce from s shell with A ∼ 4
up to A ∼ 208� hypernuclei by the (e,e′K+) reaction. There
is high expectation to observe the SD states in 46

� Sc and 48
� Sc

by the 46Ti (48Ti) (e,e′K+) at JLab.
This paper is organized as follows: In the next section, we

explain the theoretical framework of HyperAMD. In Sec. III,
the changes of the � single-particle energy as a function of
quadrupole deformation are presented. The difference of the
�-separation energy in 41

� Ca among the ground ND and SD
states is also discussed in this section. In Sec. IV, the existence
of the hypernuclear SD states and the changes of the excitation
spectra are discussed for 46

� Sc and 48
� Sc. The final section

summarizes this work.

II. FRAMEWORK

In this study, we apply the HyperAMD combined with the
generator coordinate method (GCM) [9] to 41

� Ca, 46
� Sc, and

48
� Sc hypernuclei.

A. Hamiltonian and variational wave function

The Hamiltonian used in this study is given as

Ĥ = ĤN + Ĥ� − T̂g, (1)

ĤN = T̂N + V̂NN + V̂Coul, (2)

Ĥ� = T̂� + V̂�N . (3)

Here, T̂N , T̂�, and T̂g are the kinetic energies of nucleons,
a � hyperon, and the center-of-mass motion, respectively.
We use the Gogny D1S interaction [27] as an effective
nucleon-nucleon interaction V̂NN . In 45Sc and 47Sc, we tune
the spin-orbit interaction of Gogny D1S to reproduce the

observed excitation energy of the 3/2+
1 state of 45Sc. The

Coulomb interaction V̂Coul is approximated by the sum of seven
Gaussians. We use the G-matrix interaction as a �N effective
interaction V̂�N .

The intrinsic wave function of a single � hypernucleus
composed of a core nucleus with mass A and a � hyperon
is described by the parity-projected wave function, �π =
P̂ π�int, where P̂ π is the parity projector and �int is the intrinsic
wave function given as

�int = �N ⊗ ϕ�, �N = 1√
A!

det{φi(rj )}, (4)

φi =
∏

σ=x,y,z

(
2νσ

π

) 1
4

exp
{ − νσ (r − Zi)

2
σ

}
χiηi, (5)

ϕ� =
M∑

m=1

cmχm

∏
σ=x,y,z

(
2νσ

π

) 1
4

e−νσ (r−zm)2
σ , (6)

χi = αiχ↑ + βiχ↓, χm = amχ↑ + bmχ↓, (7)

ηi = proton or neutron, (8)

where φi is the ith nucleon single-particle wave packet
consisting of spatial, spin χi , and isospin ηi parts. The
variational parameters are the centroids of Gaussian Zi

and zm, width parameters νσ , spin directions αi , βi , αm,
and βm, and coefficients cm. We approximately remove the
spurious center-of-mass kinetic energy in the same way as
Ref. [6].

B. Variation with constraint on nuclear quadrupole
deformation β

The energy variation is performed under the constraint
on nuclear matter quadrupole deformation parameter β in
the same way as our previous works [6,9]. By the frictional
cooling method, the variational parameters in �π for the �
hypernucleus and �π

N for the core nucleus are determined for
each β, and the resulting wave functions are denoted �π (β)
and �π

N (β), respectively. It is noted that the nuclear quadrupole
deformation parameter γ is optimized through the energy
variation for each β. By using the wave functions �π (β)
and �π

N (β), we calculate the parity-projected intrinsic energies
defined as

Eπ
hyp(β) = 〈

�π (β)
∣∣Ĥ ∣∣�π (β)

〉
/〈�π (β)|�π (β)〉, (9)

Eπ
cor(β) = 〈

�π
N (β)

∣∣Ĥ ∣∣�π
N (β)

〉
/〈�π

N (β)|�π
N (β)〉, (10)

for the � hypernucleus and the core nucleus, respectively.
It is found that the � hyperon dominantly occupies an

s wave in the hypernuclear states, because no constraint is
imposed on the � single-particle wave function in the present
calculation. Combined with the parity projection, we obtained
two kinds of configurations in which the � hyperon couples
to the positive- and negative-parity states of the core. Here

024310-2



SUPERDEFORMED � HYPERNUCLEI WITH . . . PHYSICAL REVIEW C 89, 024310 (2014)

these two are denoted �+
N ⊗ � and �−

N ⊗ �, respectively, in
the following discussions.

C. Angular-momentum projection and generator
coordinate method

After the variational calculation, we project out an eigen-
state of the total angular momentum from the hypernuclear
states,

�Jπ
MK (βi) = 2J + 1

8π2

∫
d�DJ∗

MK (�)R̂(�)�π (βi). (11)

The integrals are performed numerically over three Euler
angles �.

The wave functions �Jπ
MK (βi) which have the same parity

and angular momentum but have different K and nuclear
quadrupole deformation βi are superposed (GCM). Then the
wave function of the system is written as

�Jπ
α = cα�Jπ

MK (β) + c′
α�Jπ

MK ′ (β ′) + · · · , (12)

where the quantum numbers except for the total angular mo-
mentum and the parity are represented by α. The coefficients
cα , c′

α , . . . are determined by the Hill–Wheeler equation.

D. Analysis of wave function

It is convenient to define the � single-particle energy ε� as

ε�(β) = 〈
�π (β)

∣∣Ĥ�

∣∣�π (β)
〉
/〈�π (β)|�π (β)〉 (13)

to discuss how the � binding energy changes for increasing
the nuclear deformation.

We also calculate the energy gain B� of each state Jπ in a
hypernucleus from the corresponding state of the core nucleus
as follows:

B� = E
(
AZ (jπ )

) − E
(
A+1
� Z (Jπ )

)
. (14)

Here, E(AZ(jπ )) and E(A+1
� Z(Jπ )) respectively represent the

total energies of the jπ state of the core nuclei and the
corresponding Jπ state of the hypernuclei. B� shows
the �-separation energy for each state of hypernuclei.

To analyze the nucleon configurations for the wave func-
tions on energy curves, we calculate the number of the
deformed harmonic oscillator quanta for protons (Np) and
neutrons (Nn) in the same way as Refs. [28,29]. The number
operators are defined as

N̂p(n) =
∑

i

∑
σ=x,y,z

(
p2

σ i

4�2νσ

+ νσ r2
σ i − 3

2

)
, (15)

where summation over i runs all protons (neutrons) [28]. Here
the expectation values of N̂ξ , Nξ = 〈�π

N |N̂ξ |�π
N 〉/〈�π

N |�π
N 〉

are calculated for the parity-projected states of the core nuclei.
We introduce the overlap between the GCM wave function

�Jπ
α and �Jπ

MK (β),

OJπ
MKα(β) = ∣∣〈�Jπ

MK (β)
∣∣�Jπ

α

〉∣∣2
. (16)

Since the GCM overlap OJπ
MKα(β) shows the contributions

from �Jπ
MK (β) to each state Jπ , it is useful to estimate the

nuclear quadrupole deformation β of each state. Namely, we

regard β corresponding to the maximum GCM overlap as
the nuclear deformation of each state. We call the deformed
states with β < 0.5 ND, and those with β � 0.5 SD. Detailed
discussions about ND and SD will be performed in the next
section.

E. �N effective interaction

It is reasonable to use an effective �N interaction in
our model where short-range and tensor correlations are not
included. The G-matrix theory makes it possible to derive a
realistic effective interaction in a model space, starting from
a free-space interaction. Baryon-baryon interaction models of
the SU(3) flavor-octet baryons have been developed with use
of YN scattering data and also hypernuclear information. One
of them is the extended-soft-core (ESC) model [25] by the
Nijmegen group, and the latest version is called ESC08c [30].
Almost all hypernuclear data are reproduced consistently by
ESC08c. In this study, we use the YN G-matrix interaction
(YNG) derived from ESC08c. The YNG is obtained in nuclear
matter and represented in a three-range Gaussian form:

G(r; kF ) =
3∑

i=1

(
ai + bikF + cik

2
F

)
exp

( − r2/β2
i

)
. (17)

Here, an interaction strength in each �N state depends on a nu-
clear Fermi momentum kF , reflecting the density-dependence
of the G matrix in nuclear medium. It should be noted that
the �N -�N coupling term included in ESC08c is renor-
malized into the �N -�N part of the G-matrix interaction,
giving rise to the important part of the density dependence.
Values of parameters (ai,bi,ci) and βi are given in the
Appendix.

In the case of using the YNG interaction, decisively
important is how to treat its kF dependence in a struc-
ture calculation. In Ref. [26], the averaged-density approx-
imation (ADA) was demonstrated to be very reliable to
reproduce spectra of � hypernuclei with YNG interac-
tions, where kF values in YNG were obtained from ex-
pected values of nuclear density distributions by � wave
functions.

According to the ADA treatment, the kF value is calculated
for each configuration of 41

� Ca, 46
� Sc, and 48

� Sc by using the
wave function �π (β0), where β0 corresponds to the maximum
of the GCM overlap. It is found that the obtained kF values
are the same for the �−

N ⊗ � and �+
N ⊗ � states of each

Sc hypernuclei. Finally, we take kF = 1.26 fm−1 for 41
� Ca,

kF = 1.29 fm−1 for 46
� Sc, and kF = 1.30 fm−1 for 48

� Sc in the
GCM calculations.

III. DIFFERENCE OF B� AMONG THE SPHERICAL,
NORMAL-DEFORMED, AND SUPERDEFORMED

STATES IN 41
� Ca

First, we show the results of 40Ca and 41
� Ca. Because

there exist the ND and SD states in 40Ca, it is of interest
to discuss the difference of the �-separation energy in 41

� Ca.
Here we briefly explain the properties of the deformed
states of 40Ca. It is observed that in 40Ca there exist
the ND and SD bands built on the 0+

2 (at 3.35 MeV)
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FIG. 1. (Color online) (a) Energy curves as a function of the nuclear quadrupole deformation β for 40Ca (dotted) and 41
� Ca (solid).

Deformation parameter γ is optimized through the energy variation for each β. Open circles show the deformations β of the 0+ and 1/2+

states calculated by the GCM corresponding to the energy curves. (b) � single-particle energy defined by Eq. (13) for 41
� Ca. (c) Calculated

energies of the 0+ states in 40Ca (dotted) and 1/2+ states in 41
� Ca (solid). The values in parentheses are the calculated excitation energies from

the ground states of 40Ca and 41
� Ca in MeV, respectively.

and 0+
3 (5.21 MeV) states, respectively [19,21]. The SD

band is considered to have the [(sd)−4(pf )4]π [(sd)−4(pf )4]ν
configuration, while the configuration of the ND band is
[(sd)−2(pf )2]π [(sd)−2(pf )2]ν [19,31,32]. Our results for 40Ca
shown in Fig. 1 are identical to those reported in Ref. [24],
since the same theoretical model and effective interaction
are applied. The energy curve of 40Ca as a function of the
deformation parameter β [dotted line in Fig. 1(a)] shows
the spherical-energy minimum having the sd closed-shell
configuration, which corresponds to the ground state. It also
shows two well-determined local energy minima at β = 0.35
and β = 0.55 which correspond to the ND and SD states of
40Ca mentioned above, respectively.

Furthermore, in Fig. 1(a), we show the energy curve of
41
� Ca, which is similar in that of 40Ca. In Fig. 1(b), the �
single-particle energies with respect to nuclear quadrupole
deformation β are illustrated. We see that the � single-particle
energy ε�(β) varies depending on β, i.e., ε� has the minimum
at β = 0 and becomes shallower as β increases. This means
that a � hyperon is most deeply bound to the spherical-shape

TABLE I. Calculated excitation energy Ex in MeV, matter
quadrupole deformation β and γ (deg), and rms radii (fm). The B�

defined by Eq. (14) is also listed in unit of MeV for 41
� Ca.

J π Ex (MeV) β γ (deg) rrms (fm) B�

41
� Ca 1/2+

1 0.00 0.10 0 3.38 19.45
1/2+

2 9.24 0.40 27 3.47 19.15
1/2+

3 11.41 0.55 13 3.58 18.01
40Ca 0+

1 0.00 0.12 12 3.39
0+

2 8.94 0.40 28 3.50
0+

3 9.97 0.60 17 3.63

FIG. 2. (Color online) Same as Figs. 1(a) and 1(b), for 45Sc and
47Sc and the corresponding hypernuclei. Open circles show the
deformation β of the corresponding states obtained after the GCM
calculation.
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FIG. 3. (Color online) Numbers of the deformed harmonic os-
cillator quanta Np (solid) and Nn (dashed), defined by Eq. (15),
calculated from the wave functions on the energy curves shown in
Figure 2. Panels (a) and (b) [(c) and (d)] correspond to the negative-
and positive-parity states of 45Sc (47Sc).

core nucleus, which is consistent with the previous works for
p- and sd-shell hypernuclei such as 13

� C and 21
� Ne [6,15].

The difference of ε� will lead to the difference of B� and
affect the excitation spectra of � hypernuclei. To investigate
it, we perform the GCM calculation for 40Ca and 41

� Ca by
using the wave functions on the energy curves. Figure 1(c)
and Table I show the calculated energies of three 1/2+ states
of 41

� Ca, in which a � in s orbit is coupled to the ground, ND,

FIG. 4. (Color online) (a)–(c) Intrinsic density distributions of
the negative-parity spherical, ND1, and ND2 states in 45Sc and 46

� Sc,
respectively. In each panel, contour lines show the nuclear density,
while the color plots present the distribution of �. Values β and γ are
deformations of each state determined by the GCM overlap. (d), (e)
Same as panels (a)–(c) but for the positive-parity ND1 and SD states
of 45Sc and 46

� Sc.

and SD 0+ states of 40Ca. We also calculate the B�, defined
by Eq. (14), for each state. It is found that the �-separation
energy for the ground state 1/2+

1 is B� = 19.45 MeV which
is consistent with the empirical formula of B� [33]. The B�

is the largest for the spherical ground state, 19.45 MeV, and
smallest for the SD 1/2+

3 state, 18.01 MeV. We see the energy
difference about 1.4 MeV between the spherical and SD states.

Let us see the changes of radii and deformation by the �
addition. As shown in Table I, we do not have any difference
in radii and deformations for the ground and ND states. On
the other hand, in the SD state, it is seen that shrinkage of the
radius by about 1.4% and the reduction of nuclear quadrupole
deformation.

IV. SCANDIUM HYPERNUCLEI

In odd Sc isotopes, it has been discussed, from the late
1960s, that the disappearance of the magic number N = 20
and the coexistence of the different deformations in the
ground-state energy region, i.e., the appearance of the low-
lying positive-parity states due to the promotion of a proton
from the sd shell [11–14,34–37]. Furthermore, it is expected
that many-particle–many-hole (mp-mh) states exist within the
small excitation energy. Especially, Sc isotopes could have
largely deformed states with a similar nucleon configuration
to the SD states of 40Ca. In this section, we focus on the
response of the � addition to 45Sc and 47Sc.

A. Many-particle–many-hole and superdeformed states

In 45Sc and 47Sc, we calculate the energy curves as a
function of β for the negative- and positive-parity states. In
Figs. 2(a)–2(d), it is found that three (two) energy curves
with the different minima are obtained for the negative-parity
(positive-parity) state. As shown in Fig. 2(a), we obtain
one spherical energy minimum and two ND minima with
different deformations in the negative-parity states of 45Sc
and 46

� Sc. In Fig. 2(b), we predict the ND and SD minima
as the positive-parity states of 45Sc and 46

� Sc, while only
ND minima are obtained in 47Sc and 48

� Sc. To analyze the
nucleon configuration of these energy curves, we calculate the

TABLE II. Same as Table I but for 46
� Sc and 48

� Sc and correspond-
ing nuclei.

J π Ex (MeV) β γ (deg) rrms (fm) B� (MeV)

46
� Sc spherical 4−

1 0.00 0.15 2 3.51 19.95
ND2 2−

4 2.47 0.45 35 3.61 19.66
SD 1+

2 3.85 0.50 30 3.61 19.52
45Sc spherical 7/2−

1 0.00 0.17 0 3.51
ND2 3/2−

3 2.18 0.45 35 3.62
SD 3/2+

2 3.41 0.50 30 3.64
48
� Sc spherical 4−

1 0.00 0.15 8 3.53 20.12
ND2 3−

5 5.98 0.45 59 3.63 19.69
ND2 0+

1 3.96 0.35 15 3.59 19.88
47Sc spherical 7/2−

1 0.00 0.15 8 3.54
ND2 5/2−

3 5.55 0.45 59 3.65
ND2 1/2+

1 3.72 0.40 17 3.63
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FIG. 5. (Color online) (a) Calculated energies of the ground and deformed states corresponding to the spherical, ND2, and SD minima of
45Sc and 46

� Sc shown in Figs. 2(a) and 2(b). (b) Same as panel (a) but for the spherical and ND2 minima of 47Sc and 48
� Sc shown in Figs. 2(c)

and 2(d).

numbers of the deformed harmonic oscillator quanta Np and
Nn, defined by Eq. (15), using the wave functions on each
energy curve. The Np (Nn) shows the sd-shell closed and/or
particle-hole configurations of the protons (neutrons). In Fig. 3,
it is found that the wave functions on each energy curve have
the same nucleon configuration. Since the lowest value allowed
by the Pauli principle is Np = 33 and Nn = 42 (Np = 33
and Nn = 48) for 45Sc (47Sc), the spherical minimum of 45Sc
(47Sc) should have the [(pf )1]π [(pf )4]ν ([(pf )1]π [(pf )6]ν)
configuration. In Fig. 3, we see that the Np and/or Nn values
of the other curves, ND1, ND2, and SD, in 45Sc and 47Sc
are different from the Pauli-allowed values, which indicates
that these energy curves have mp-mh configurations. Among
them, the energy curve denoted as SD in Fig. 2(b) is considered
to have the [(sd)−3(pf )4]π [(sd)−2(pf )6]ν configuration, in
which the proton configuration is similar to that of the SD states
in 40Ca. Furthermore, to see the deformation of ND1, ND2,
and SD in 45Sc visually, we illustrate the density distributions
of them in Fig. 4. We see the large quadrupole deformation
as β increases. By the addition of a � particle to these states,

it is expected that the �-separation energy B� is different
depending on the deformations as discussed for 41

� Ca.
Next, we calculate the energy curves of 46

� Sc and 48
� Sc, and

the � single-particle energy ε� as function of β. The solid
curves in Figs. 2(a)–2(d) show that the � hyperon generates
the energy curves of 46

� Sc and 48
� Sc corresponding to the core

nuclei. Figures 2(e)–2(h) show the ε� as a function of β for the
negative- and positive-parity states of 46

� Sc and 48
� Sc, and it is

found that the behavior of ε�(β) is quite similar to that in 41
� Ca.

To discuss the difference of the �-separation energy B�,
we perform the GCM calculation for 45Sc and 47Sc and the
corresponding hypernuclei. Here we focus on the ground,
SD, and largely deformed ND states, which correspond to
the spherical, SD, and ND2 minima shown in Figs. 2(a)–2(d),
respectively. Figure 5 and Table II show the B� of the spherical
and deformed states of 46

� Sc and 48
� Sc. In Fig. 5 and Table II,

it is found that B� is the largest in the spherical states in
46
� Sc and 48

� Sc. And it is also found that B� becomes smaller
as the nuclear quadrupole deformation β is increased. This
trend of B� is consistent with the behavior of ε�(β) shown

FIG. 6. (Color online) Calculated excitation spectra of 45Sc and 46
� Sc.
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TABLE III. Calculated B(E2) (e2 fm4) values for 45Sc and 47Sc.
Values in parentheses are observed data.

45Sc 47Sc

Ji Jf B(E2) Ji Jf B(E2)

Spherical Spherical
11/2−

1 7/2−
1 56 (108 [38]) 11/2−

1 7/2−
1 37

15/2−
1 11/2−

1 33 (<818 [38]) 3/2−
1 7/2−

1 87
3/2−

1 7/2−
1 132 5/2−

2 3/2−
1 6

1/2−
1 3/2−

1 111 5/2−
2 7/2−

1 1
5/2−

3 1/2−
1 69 9/2−

1 5/2−
2 7

5/2−
3 3/2−

1 20 9/2−
1 7/2−

1 7
ND1(−) ND1(−)
5/2−

1 3/2−
2 558 5/2−

1 3/2−
2 319

7/2−
2 3/2−

2 218 7/2−
2 3/2−

2 263
7/2−

2 5/2−
1 325 7/2−

2 5/2−
1 238

9/2−
1 5/2−

1 331 9/2−
2 5/2−

1 204
9/2−

1 7/2−
2 203 9/2−

2 7/2−
2 52

ND2(−) ND2(−)
5/2−

2 3/2−
3 263 7/2−

3 5/2−
3 542

7/2−
3 3/2−

3 34 9/2−
3 5/2−

3 153
7/2−

3 5/2−
2 172 9/2−

3 7/2−
3 457

9/2−
2 5/2−

2 120 11/2−
2 7/2−

3 259
9/2−

2 7/2−
3 230 11/2−

2 9/2−
3 350

11/2−
2 7/2−

3 61
11/2−

2 9/2−
2 36

13/2−
1 9/2−

2 19
13/2−

1 11/2−
2 126

ND1(+) ND1(+)
5/2+

1 3/2+
1 320 5/2+

1 3/2+
1 237

(360+332
−180[13]) (432+570

−293[13])
7/2+

1 3/2+
1 133 (62 [38]) 7/2+

1 3/2+
1 136

7/2+
1 5/2+

1 199 (111+81
−58[13])

(115+251
−91 [13]) 7/2+

1 5/2+
1 156

9/2+
1 5/2+

1 185 (179 [38]) 9/2+
1 5/2+

1 159
9/2+

1 7/2+
1 118 9/2+

1 7/2+
1 52

(57+65
−35[13]) ND2(+)

11/2+
1 7/2+

1 214 (216 [38]) 3/2+
2 1/2+

1 493
11/2+

1 9/2+
1 84 5/2+

2 1/2+
1 515

13/2+
1 9/2+

1 205 (151 [38]) 5/2+
2 3/2+

2 192
13/2+

1 11/2+
1 50 7/2+

2 3/2+
2 639

15/2+
1 11/2+

1 208 (223 [38]) 7/2+
2 5/2+

2 61
15/2+

1 13/2+
1 42 9/2+

2 5/2+
2 772

SD(+) 9/2+
2 7/2+

2 92
5/2+

2 3/2+
2 545 11/2+

1 7/2+
2 704

7/2+
2 3/2+

2 547 11/2+
1 9/2+

2 16
7/2+

2 5/2+
2 55

9/2+
2 5/2+

2 835
9/2+

2 7/2+
2 268

11/2+
2 7/2+

2 749

in Figs. 2(e)–2(h), and is quite similar to the 41
� Ca shown in

Fig. 1.
Let us discuss the changes of matter radii and nuclear

deformations by adding a � hyperon. In Table II, we see
the almost no change of the matter rms radius and the
nuclear quadrupole deformation β of each state by adding
a � hyperon. Hence, a � hyperon does not change the radius
and deformations of nuclear part significantly in 46

� Sc and 48
� Sc.

TABLE IV. The electric quadrupole moment (Q in units of e fm2)
of the 7/2− and 3/2+ states in 45Sc and 47Sc. The values in parentheses
are the observed data.

45Sc 47Sc

J π Q J π Q

7/2− −15 (−22.0−0.2
−0.2 [39]) 7/2− −13 (−22+3

−3 [39])
3/2+ +18 (+28+5

−5 [40]) 3/2+ +16

B. Excitation spectra

We discuss the excitation spectra of 45Sc and 47Sc and the
corresponding hypernuclei, which are shown in Figs. 6 and 7.
It is noted that all states shown in Figs. 6 and 7 are bound,
because the lowest threshold energies of 45Sc and 47Sc are
6.9 MeV (44Ca + p) and 8.5 MeV (46Ca + p), respectively.
Corresponding to 45Sc (47Sc), the lowest threshold of 46

� Sc
(48
� Sc) is 45

� Ca + p (47
� Ca + p) and the threshold energy is

expected to be higher than 6.9 MeV (8.5 MeV) in 46
� Sc

(48
� Sc). In 45Sc and 47Sc, by the GCM calculation, we obtain

many excited states as shown in Figs. 6(a) and 7(a). By the
GCM-overlap analysis, the negative- and positive-parity states
of 45Sc and 47Sc are assigned as spherical, ND1, ND2, and
SD states, depending on the major components of the wave
function in the curves in Figs. 2(a)–2(d). For example, in 45Sc,
the states denoted as spherical in Fig. 6(a) are dominantly
generated by the wave functions on the spherical minimum
shown in Fig. 2(a). Similarly, the ND1 minimum shown in
Fig. 2(a) dominantly contributes the positive-parity ND1 states
in Fig. 6(a). Corresponding to the SD curve, the SD states
appear in 45Sc. In Table III, it is found that the ND1, ND2, and
SD states in each nucleus are connected by the large B(E2)
values, which is a clear sign of the existence of the rotational
bands. In 45Sc, it is expected that the existence of the SD
and ND bands can be confirmed by the observations of the
inter- and intraband transitions such as B(E2) through the
24Mg + 24Mg fusion-evaporation reaction experiment [22].

Figure 6(b) shows the calculated excitation spectra of 46
� Sc.

It shows that the ground and excited states of 46
� Sc with a �

hyperon are obtained corresponding to the spherical, ND1,
ND2, and SD states of 45Sc. Focusing on the SD states of 46

� Sc,
it is found from Fig. 6 and Table II that the SD states are shifted
up by about 440 keV. We see the similar shift up of the other de-
formed states. For example, the 3/2−

3 (ND2) state of 45Sc with
β = 0.45 is shifted up in 46

� Sc by about 290 keV. These shifts
reflect the difference of B� shown in the left panel of Fig. 5.

In 48
� Sc, we predict the existence of the ND1 and ND2

states with various deformations. It is found, from Fig. 7(b)
and Table II, that the addition of a � hyperon causes the similar
modification of the excitation spectra as 46

� Sc, in which the �
hyperon shifts the largely deformed states up. For example,
Table II shows that the excitation energy of the 5/2−

3 with
β = 0.45 is shifted up by 430 keV in 48

� Sc. In this way, we find
that the shifted energy is larger as β increases.

C. Response to 7/2− and 3/2+ states by addition of � particle

Here, we focus on the ground and low-lying states 7/2−
1 and

3/2+
1 of 45Sc. It is well known experimentally that the 3/2+

1
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FIG. 7. (Color online) Same as Fig. 6 but for 47Sc and 48
� Sc.

state lies slightly higher than the 7/2−
1 state and the energy

difference between them is 12 keV. This is inconsistent with the
shell-model picture, in which a 3/2+ state should be located
at a few MeV with respect to the ground state 7/2−

1 . This
inconsistency has been extensively discussed theoretically.
Then, we understand in terms of deformation by the Nilsson
model as follows [11–14]: as increasing deformation, the
Nilsson Kπ = 3/2+ state from the d3/2 becomes close to
the Kπ = 1/2− state from the 0f7/2. As a result, the 3/2+
state becomes lower and very close to the ground state 7/2−.
We found that deformation in the 3/2+

1 state is larger than that
in the 7/2−

1 state. The calculated quadrupole deformations of
7/2−

1 and 3/2+
1 are β = 0.17 and β = 0.27, respectively. The

difference of the deformations between them is also seen in the
Q momentum and B(E2) strength. The calculated Q momenta
of the 7/2−

1 and 3/2+
1 states are listed in Table IV and are not

inconsistent with the observed data within the error bars.
It is expected that the responses to � participation in the

7/2−
1 and 3/2+

1 states are different due to the difference in their
deformations. In 46

� Sc, calculated B� in the 1+
1 and 2+

1 states
is 19.71 MeV, while B� in the 3−

1 and 4−
1 states is 19.95 MeV,

since the �-separation energy B� in more-deformed states is
smaller than that in less-deformed states. As a result, as shown

in Fig. 8(a), the 1+
1 and 2+

1 states are shifted up with respect to
the 3−

1 and 4−
1 states and the energy difference is much larger

by ∼0.2 MeV. The same behavior is seen in 47Sc and 48
� Sc

[see Fig. 8(b)], and the increase of the excitation energies is
also around 0.2 MeV. In Fig. 8, we see energy splitting for
the ground-state doublet, 3−

1 -4−
1 , and for the excited doublet,

1+
1 -2+

1 , are quite different from each other. The reason is as
follows: The number of protons in the highest orbit (pf shell)
in the 7/2−

1 state is one, while that in the 3/2+
1 state is two.

The energy splitting in the 7/2−
1 state comes from the spin-spin

term in the �N interaction between one proton and � in a 0s
orbit. If we use an even-state spin-spin term for 3−

1 -4−
1 state,

the ground states of 46
� Sc and 48

� Sc is 3−. When we use the
odd-state spin-spin term, due to the attraction of the triplet
state than the singlet state, 4− becomes the ground state. As
a result, the energy splitting for the 4−

1 − 3−
1 doublet is about

90 keV. On the other hand, the spin of two protons in the 3/2+
1

state is 0 (spin antiparallel). Then, the spin-spin part is almost
canceled out and the energy splitting for the 1+

1 − 2+
1 double

state is negligibly small.
If we could observe these energy differences experimen-

tally, it would be helpful to obtain information on the �N spin-
dependent part. However, since these two energy splittings

FIG. 8. (Color online) (a) The ground (7/2−
1 ) and the lowest positive-parity states (3/2+

1 ) of 45Sc and the corresponding states in 46
� Sc. (b)

Same as panel (a) but for 47Sc and 48
� Sc.
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TABLE V. Parameters of �NG-matrix interaction represented
by the three range Gaussian forms given in Eq. (17) in the case of
ESC08c. ai [MeV], bi [MeV · fm], ci [MeV · fm2], and βi [fm] are
given for each i.

βi 0.5 0.9 2.0

1E

ai −3892.0 471.5 −1.756
bi 7401.0 −1132.0 0.0
ci −2821.0 446.4 0.0

3E

ai −2135.0 229.7 −1.339
bi 4705.0 −727.1 0.0
ci −1939.0 319.8 0.0

1O

ai 1785.0 103.6 −0.7956
bi 9.656 14.47 0.0
ci −16.57 14.57 0.0

3O

ai 1838.0 −13.82 −1.001
bi −1966.0 −233.9 0.0
ci 682.7 192.8 0.0

are less than 100 keV, they might be difficult to observe
experimentally.

V. SUMMARY

We have studied the deformations of 40Ca, 45Sc, and 47Sc,
and those of the corresponding hypernuclei. For 45Sc and
47Sc, the deformed-basis AMD + GCM was adopted; the
same model was applied to investigate the ND and SD bands
of 40Ca in Ref. [24]. We also investigated the ND and SD
states of 41

� Ca, 46
� Sc, and 48

� Sc using the HyperAMD. As the
effective interactions, the Gogny D1S was adopted for the NN
sector, and the latest version of the ESC08c �N potential was
employed. Major points to be emphasized are as follows:

(i) In 40Ca, we obtained three 0+ states corresponding
to the observed spherical ground, ND, and SD states,
which are identical to those reported in Ref. [24]. By
addition of a � particle to these states, it was found that
the calculated �-separation energy B� was depending
on the degree of deformations: B� = 19.45 MeV for
the ground state (1/2+

1 ), B� = 19.15 MeV for the ND
state (1/2+

2 ), and B� = 18.01 MeV for the SD state
(1/2+

3 ) in 41
� Ca.

(ii) In the core nuclei 45Sc and 47Sc, we obtained many ex-
cited states with different (β,γ ) deformations, which
have mp-mh configurations. Among these states, we
predicted for the first time that 45Sc had SD states in
which protons had the same configuration as the SD

TABLE VI. Same as Table V but for the SLS and ALS parts.

βi 0.4 0.8 1.2

SLS
ai −11470.0 299.3 −2.386
bi 21880.0 −744.1 0.0
ci −8962.0 294.4 0.0

ALS
ai 2084.0 9.536 1.851
bi −1549.0 32.55 0.0
ci 578.1 −14.52 0.0

states of 40Ca. By addition of a � particle, the resultant
hypernuclei 46

� Sc and 48
� Sc had mp-mh states with a �

in an s orbit. Furthermore, we found that the calculated
B� also depended on the degree of deformation: for
example, in 46

� Sc, B� in the SD state was 19.52 MeV,
while B� = 19.95 MeV in the ground state.

(iii) We focused on the level structure of 7/2−
1 and 3/2+

1
states in 45Sc and 47Sc; these two states were close to
each other. Since the deformation β of each state was
different, the calculated B� was different from each
other. As a result, the corresponding states (1+

1 and
2+

1 ) in 46
� Sc and 48

� Sc were shifted up with respect to
the 3−

1 and 4−
1 states.

To see the above interesting phenomena in 46
� Sc and

48
� Sc, we hope to perform high-resolution experiments,
46Ti(e,e′K+)46

� Sc and 48Ti(e,e′K+)48
� Sc at JLab in the future.
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APPENDIX: PARAMETERS OF YNG-ESC08C
INTERACTION

As for the YN interaction employed in this paper, we used
the YNG interaction derived from ESC08c. The parameters
ai , bi , ci , and βi in Eq. (17) are summarized in Tables V
and VI for the central, symmetric spin-orbit (SLS), and anti-
symmetric spin-orbit (ALS) parts of the G-matrix interaction,
respectively.
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