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Qα values in superheavy nuclei from the deformed Woods-Saxon model
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Masses of superheavy (SH) nuclei with Z = 98–128, including odd and odd-odd nuclei, are systematically
calculated within the microscopic-macroscopic model based on the deformed Woods-Saxon potential. Ground
states are found by minimizing energy over deformations and configurations. Pairing in odd particle-number
systems is treated either by blocking or by adding the BCS energy of the odd quasiparticle. Three new parameters
are introduced which may be interpreted as the constant mean pairing energies for even-odd, odd-even, and
odd-odd nuclei. They are adjusted by a fit to masses of heavy nuclei. Other parameters of the model, fixed
previously by fitting masses of even-even heavy nuclei, are kept unchanged. With this adjustment, the masses of
SH nuclei are predicted and then used to calculate α-decay energies to be compared to known measured values.
It turns out that the agreement between calculated Qα values with data in SH nuclei is better than in the region
of the mass fit. The model overestimates Qα for Z = 111–113. Ground state (g.s.) configurations in some SH
nuclei hint to a possible α-decay hindrance. The calculated configuration-preserving transition energies show
that in some cases this might explain discrepancies, but more data are needed to explain the situation.
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I. INTRODUCTION

Most of the currently known heaviest nuclei, in particular
all beyond Z = 114, decay via a sequence of α particle
emissions [1–7]. Energy release in an α decay of a nucleus
with Z protons and N neutrons, Qα(Z,N ), is directly related
to nuclear masses

Qα(Z,N ) = M(Z,N ) − M(Z − 2,N − 2) − M(2,2). (1)

Hence energies Eα
1 measured in a chain of α decays provide a

link between masses of parent and daughter nuclei if they
can be identified as g.s. to g.s. transitions. They can also
determine a newly created nuclide when Eα of one of the
consecutive decays matches the value characteristic of an
already known parent isotope. Besides providing a hint for
the identification of new elements, Qα values are the main
factor determining the half-life with respect to the α decay.
Since these half-lives directly relate to the detection pattern,
a possibly accurate determination of Qα is important for the
search for new elements. Finally, although many masses of
SH isotopes are unknown, this observable provides a test of a
local dependence of theoretical masses on Z and N .

While the calculations of masses for even-even nuclei
are readily available in the literature, similar systematic
calculations for the odd and odd-odd systems are less frequent.
Here, we report such calculations for heavy and SH nuclei
within the microscopic-macroscopic model based on the
deformed Woods-Saxon potential [8]. This model was widely
applied to many problems of nuclear structure over many
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1The α particle energy is in direct relationship with Q value

Eα = A−4
A

Qα where A is the mass number.

years. Recently, in a version adjusted to heavy nuclei [9],
we used it to reproduce data on first [10], second [11], and
third barriers [12,13] and on second minima [14] in actinides
and to predict ground states and saddle points in superheavy
nuclei up to Z = 126 [15]. The general motivation of our
study is to sharpen predictions of the model, i.e., masses, Qα

values and fission barriers, by accounting for sufficiently many
deformations (which, for technical reasons, was not always
practical in the past). The results obtained up to now reveal
the importance of including some deformations, neglected in
the previous calculations. This concerns especially studies of
first, second, and third fission barriers. In the region of SH
nuclei, the predicted abundance of triaxial saddle points for
Z � 120 [15,16] calls into question all calculations assuming
axial symmetry done previously.

In the present paper we continue along this line by extending
our model, which up to now was applied mainly to even-even
nuclei, to odd and odd-odd nuclei. To be sure, the Woods-
Saxon model was used for odd SH nuclei previously, see for
example [17–19]. However, there are important differences
between the present study and the previous ones: a different
version of macroscopic energy giving different results, more
restricted equilibrium shapes and fewer nuclei were studied
in [17,18]; the study of ground and excited states in [19] was
performed solely without blocking.

In extending the model we prefer to keep all essential
parameters fixed in [9] unchanged. The extension of the
microscopic part consists in calculating the shell and pairing
correction energy for a system with an odd number of nucleons.
This is done in two ways, differing by a treatment of the odd
particle. The macroscopic part is modified by including an
additional average pairing energy contribution, different for
even-odd, odd-even, and odd-odd nuclei. These contributions
are chosen as constants and fixed by a fit to the masses of
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translead nuclei known in 2003, in analogy to the fit for
even-even nuclei done in [9]. After that, the ground states
of 1364 nuclei, from Z = 98 to Z = 128, are determined
by energy minimization over configurations with zero or
one blocked particle over axially symmetric deformations.
The α-decay energies of SH nuclei calculated from these
masses are compared to the measured values, including recent
isotopic chains for Z = 117 [20]. This allows to appreciate the
performance of the model outside the region of the original fit
and to discuss some possible structure effects. We also make
comparisons with results of some other models.

A description of our model and calculations is given in
Sec. II. The results are presented and discussed in Sec. III.
Finally, the conclusions are summarized in Sec. IV.

II. THE MODEL

Our microscopic-macroscopic model is based on a de-
formed Woods-Saxon potential [8]. In this study we focus
on nuclear ground states. Therefore, it is possible to confine
analysis to axially symmetric shapes defined by the following
equation of the nuclear surface:

R(θ ) = c({β})R0

[
1 +

∑
λ=2

βλ0Yλ0(θ )

]
, (2)

where c({β}) is the volume-fixing factor and R0 is the radius
of a spherical nucleus. For the macroscopic part we used the
Yukawa plus exponential model [21]. With the aim of adjusting
the model especially for heavy and superheavy nuclei, three
parameters of the macroscopic energy formula and the pairing
strengths were determined in [9] by a fit to masses of even-
even nuclei with Z � 84 and N > 126 as given in [22]. These
parameters were used since then in all our calculations.

For systems with odd proton or neutron (or both), a standard
treatment is that of blocking. Considered configurations
consist of an odd particle occupying one of the levels close
to the Fermi level and the rest of the particles forming a paired
BCS state on the remaining levels. The ground state is found by
looking for a configuration (blocking particles on levels from
the tenth below to tenth above the Fermi level) and deformation
giving the energy minimum. In the present study, we used this
procedure including mass-symmetric deformations β2,β4,β6,
and β8, i.e., the four-dimensional minimization is performed
by the gradient method and, for the check, on the mesh of
deformations:

β20 = −0.30 (0.02) 0.32,

β40 = −0.08 (0.02) 0.18,
(3)

β60 = −0.10 (0.02) 0.12,

β80 = −0.10 (0.02) 0.12.

Both sets of results are consistent; lower energies from the
gradient method are treated as final. The used deformation
set should provide for a fair approximation, except for the
region of light isotopes of elements between Rn and light
actinides, which show octupole deformation in their ground
states. The values of parameters from [9] were left unchanged
for even-even nuclei. For the rest, we introduced three new

parameters—additive constants which may be interpreted as
corrections for the mean pairing energy in even-odd, odd-even,
and odd-odd nuclei. These parameters were fixed by a fit to
the masses of odd-even, even-odd, and odd-odd Z � 82 and
N > 126 nuclei taken from [23].

It is known that the blocking procedure often causes an
excessive reduction of the pairing gap in systems with odd
particle number. One device to avoid an excessive even-odd
staggering in nuclear binding was to assume stronger (typically
by ∼ 5%) pairing interaction for odd-particle-number systems,
see [24]. Since the main predictions of this work are Qα values
in which the effect of stronger pairing in parent and daughter
nuclei partially cancels out, we postpone for the future a
more elaborate treatment of this effect. Instead, we performed
another calculations of nuclear masses without blocking. Shell
(and pairing) correction energy of a configuration with an odd
neutron (or proton) was taken as a sum of the quasiparticle
energy of a singly occupied level

√
(ε − λ)2 + �2 and the

shell (and pairing) correction calculated without blocking. The
latter quantity, as well as the pairing gap � and the Fermi
energy λ, are calculated for the odd number of particles, but
with the double occupation of all levels. This prescription was
used before in [19]. It gives results similar to those obtained
when calculating �, λ, and the shell (and pairing) correction
for the even system with one particle less. The calculation
without blocking is much simpler and we were able to perform
a seven-dimensional minimization over axially symmetric
deformations β20,β30,β40,β50,β60,β70, and β80. Therefore,
these results should be reliable also for light actinides. As
we preferred to avoid a new fit of the macroscopic model
parameters, also for this model we introduced three additive
constants (energy shifts) for even-odd, odd-even, and odd-odd
nuclei which minimize the rms deviation in each of the groups
of nuclei.

A. Odd-odd nuclei

Structure of odd-odd nuclei is more complicated than that
of odd-A systems. If we disregard collective vibrations, the
ground state configuration is a result of coupling the unpaired
neutron and proton to a total angular momentum. The energy
ordering of coupled configurations is usually attributed to a
residual neutron-proton interaction Vnp. In spherical nuclei it
is summarized by the empirical Nordheim rule [25].

In deformed, axially symmetric nuclei, in which the
projection of the single-particle angular momentum on the
symmetry axis � is a good quantum number, the n-p coupling
can give two configurations with K = |�p ± �n|. According
to the empirical Gallagher-Moszkowski rule [26], the one
energetically favoured is the spin triplet state. The spin
structure of both n and p single particle orbitals shows which
K configuration will be the lower one. A collective rotational
band is built on each of two bandheads. Energies of the band
members with angular momentum I are usually presented
as [27]

E(I,K) = E(n,p) + �
2

2J [I (I + 1) − K2]

+EK + (−)I δK,0(E0 + Ea), (4)
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TABLE I. Statistical parameters of the fit to masses in the model
with blocking in separate groups of even-even, odd-even, even-odd,
and odd-odd heavy nuclei: the number N of nuclei in the group, the
energy shift h, the average discrepancy 〈|Mexp − M th|〉, the maximal
difference max|Mexp − M th

f |, the rms deviation δrms. Experimental
data taken from [23]. All quantities are in MeV, except for the number
of nuclei N .

N e-e o-e e-o o-o
74 56 69 53

h 0.000 1.013 0.824 1.703
〈|M th − Mexp|〉 0.212 0.340 0.356 0.566
max |M th − Mexp| 0.833 0.836 1.124 1.387
δrms 0.284 0.425 0.435 0.666

where E(n,p) represents the mean-field energy of a band-
head configuration, the second term is the rotational energy,
EK is the diagonal matrix element of Vnp, the last term,
combined of the Newby shift E0 and the diagonal Coriolis
term Ea for �n = �p = 1/2, occurs only for K = 0 bands
and splits them into two sub-bands. In such a formula,
all off-diagonal matrix elements of the interaction Vnp and
of the rotor-plus-two-particles Hamiltonian are neglected.
From the experimental data in rare earth and actinide re-
gions, the Newby shifts E0 and Gallagher-Moszkowski shifts,
defined as �EGM = EK< − EK> = �

2�</J + Ebh(K<) −
Ebh(K>), were extracted [27,28]. The former are usually less
than 50 keV, while the latter amount to 100–300 keV.

The above information is incorporated in mass formulas
by defining some average (i.e., configuration-independent)
neutron-proton energies for odd-odd nuclei. Their role is
to account for the shift in the g.s. energy with respect to
the value calculated with blocking or quasiparticle method
that would simulate on average the terms beyond E(n,p) in
Eq. (4). For example, in [29], the additional binding δnp is
included which amounts to ∼200 keV for odd-odd actinides.
Although this term is A dependent in [29], one can see that
the difference in it between actinides and superheavy nuclei
is around 20 keV. Therefore, as we confine here our model
to heavy and superheavy nuclei, we assume constant average
neutron-proton and average pairing energies. This leaves three
constants: hoe, heo, and hoo (see Tables I and II) that can
be fit to odd-A and odd-odd nuclei; they correspond to the
parameters �̄n, �̄p, and �̄n + �̄p − δnp of the model used
in [29]. Thus, we calculate the mass of an odd-odd nucleus
within the blocking method by adding 1.703 MeV to the

TABLE II. The same as in Table I but for the method without
blocking.

N e-e o-e e-o o-o
74 56 69 53

h 0.000 −0.751 0.268 0.234
〈|M th − Mexp|〉 0.187 0.460 0.273 0.295
max |M th − Mexp| 0.652 1.398 0.892 0.853
δrms 0.251 0.551 0.343 0.366

micro-macro energy of the optimal configuration. This cor-
responds to the neutron-proton energy of hoe + heo − hoo =
134 keV (Table I).

Since the g.s. configurations must be energetically favored,
the parent and daughter energy shifts EK will cancel in large
part in Qα values.

B. Configuration hindrance of α transitions

Considering a comparison of measured and calculated
α-decay energies, it is important to observe the hindrance
of α transitions between different configurations in odd-A
and odd-odd nuclei. Although a degree of this hindrance is
surely configuration-dependent, if strong enough, it can hide
the true Qα value when only a few transitions are detected in
experiment. At present, this is the situation in many heaviest
nuclei.

One can consult the known data to see the magnitude
of hindrance. For example, the isotopes 251Fm, 253No, and
255Rf decay primarily to the 9/2− parent g.s. configurations in
daughters, which lie at the excitation energy of 200–400 keV,
with probabilities, respectively, 87% [30], 96% [31], and
>90% [32]. In 82% of cases, 249Cf decays to the 9/2− parent
configuration; the 7/2+ g.s. in 245Cm daughter is populated
only in 2.5% of cases [33]. In the decay of 251Cf, the hindrance
of the g.s. to g.s. transition (1/2+ → 9/2−) results in the g.s.
band in daughter receiving ∼15% of cases; 2.6% of those
decays goes to the g.s. [34]. Much reduced K-hindrance is
seen in the decay of 249Bk (7/2+): more than 90% of decays
goes to the g.s. rotational band in 245Am, built on the 5/2+
configuration, in that 6.6% to the g.s. [35].

Motivated by these examples, to set an upper limit for an
underestimate of Qα , we also calculate apparent Qα values
taking the parent g.s. configuration as the final state in daughter.
Such a value is smaller than the true Qα by the excitation of
the parent g.s. configuration in the daughter. Gallagher shifts
also mostly cancel in such transition energies.

α

FIG. 1. (Color online) Qα values for U (Z = 92) nuclei:
circles—experiment, squares—model with blocking, triangles—
model without blocking.
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α

FIG. 2. (Color online) As in Fig. 1, but for Np (Z = 93) isotopes.

III. RESULTS AND DISCUSSION

The quality of the mass fit is summarized in Tables I and II
where the deviations from the experimental masses are given
for each of the four groups of nuclei. The data are taken
from [23], also for even-even nuclei. Statistical parameters
of the fit for this group are different in Tables I and II because
of different deformations included. Deviations in Table II
slightly differ from those in [9] because we used here a larger
number of data from [23]. One can observe that the model
with blocking is worse for even-odd and odd-even systems
than for the even-even ones; the quality deteriorates further for
odd-odd systems. A different situation occurs for the results
without blocking: the worst case are the odd-even systems;
odd-odd masses are rather well described. The differences in
δrms between groups of nuclei may show a need to refit some
of the parameters fixed for even-even nuclei, but this requires
more study.

One can observe that our local fit is better that those
resulting from the self-consistent models. For example, after
adding to the typical Skyrme forces the phenomenological
Wigner term, microscopic contact pairing force and correction
for spurious collective energy, the root-mean square deviation
equal 0.58 MeV has been obtained in a global calculation,
see Refs. [36,37]. In another Hartree-Fock-Bogoliubov (HFB)
model [38], aimed at fitting simultaneously masses and fission
data, a phenomenological correction for collective vibrations
allowed to obtain the rms deviation of 0.729 MeV. Recently
HFB calculations via refitting to the 2012 Atomic Mass

TABLE III. Effect of octupole deformations within blocking
method.

M th β20 β30 β40 β50 β60 β70 β80

225U 25.490 0.134 0.123 0.074 0.045 0.012 0.011 −0.004
225U 26.081 0.157 − 0.107 − 0.044 − −0.009
221Th 14.878 0.110 0.092 0.073 0.045 0.022 0.028 −0.001
221Th 16.387 0.110 − 0.083 − 0.039 − −0.022

TABLE IV. Effect of octupole deformations within quasiparticle
method.

M th β20 β30 β40 β50 β60 β70 β80

225U 26.463 0.131 0.114 0.074 0.044 0.014 0.015 −0.003
225U 27.278 0.151 − 0.103 − 0.039 − −0.015
221Th 15.778 0.103 0.093 0.069 0.047 0.021 0.030 −0.002
221Th 17.247 0.104 − 0.077 − 0.038 − −0.012

Evaluation (AME) and varying the symmetry coefficients gave
in the best case a value of 0.54 MeV rms [39].

Macroscopic-microscopic global calculations of nuclear
masses made by Moller and co-workers [29] give the rms
error 0.669 MeV for nuclei ranging from oxygen to hassium
and 0.448 MeV in the case of nuclei above N = 65. A
phenomenological formula with the 10 free parameters by
Duflo and Zuker [40,41] gives mass estimates with the
0.574 MeV rms error. Recently, authors of [42] achieved the
rms deviation of 0.34 keV in a fit to masses of 2149 nuclei,
however, at the cost of including many corrections with often
a rather obscure physical meaning.

The calculated and measured Qα values for U and Np
isotopes are shown in Figs. 1 and 2. They illustrate the
quality of the model for nuclei from the region of the fit.
We did not choose the best cases; on the contrary, the values

α
α

(a)

(b)

FIG. 3. (Color online) Qα values calculated with blocking vs
experimental data. Explicit values, including the source for the
experimental data, are given in Table V.
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TABLE V. Results of the calculations with blocking. In successive columns are given: proton number Z, neutron number N , mass number
A, parent quadrupole deformation β20, experimental value Qexp

α from [43], [6,20] (O), [7] (R) and [44] (*), calculated g.s. to g.s. values
Qα(g.s. → g.s.), the parent g.s. configuration π{�}P (g.s.) specified by the parity and �-quantum numbers (multiplied by 2, P—protons, N—
neutrons), the daughter g.s. configuration π{�}D(g.s.) and the calculated decay energy Qα(π{�}P = π{�}D) for the configuration-preserving
transition.

Z N A β20 Qexp
α Qα(g.s. → g.s.) π{�}P (g.s.) π{�}D(g.s.) Qα(π{�}P = π{�}D)

P N P N

119 178 297 −0.10 12.64 −1 −3 12.57
118 176 294 −0.09 11.81 12.09
117 177 294 −0.09 11.12O 11.32 −3 1 −5 1 11.25
117 176 293 −0.09 11.36O 11.53 −3 −5 11.45
116 177 293 −0.08 10.68 10.80 1 1 10.80
116 176 292 −0.08 10.77 10.92
116 175 291 0.08 10.89 11.01 1 5 10.89
116 174 290 −0.09 10.99 11.14
115 175 290 −0.08 10.42O 10.41 −5 1 −7 5 10.11
115 174 289 −0.09 10.69O 10.60 −5 −3 10.56
115 173 288 0.08 10.70R 10.76 −1 5 −3 5 10.54
115 172 287 −0.11 10.74 11.01 −5 −3 10.61
114 175 289 0.09 9.97 10.00 1 −15 9.93
114 174 288 0.09 10.07 10.32
114 173 287 0.09 10.16 10.44 5 5 10.44
114 172 286 −0.12 10.37 10.80
113 173 286 0.09 9.89O 10.13 −7 5 −1 5 9.68
113 172 285 0.14 10.33O 10.45 −3 11 10.27
113 171 284 0.14 10.30R 10.52 −3 5 −9 5 10.34
113 170 283 0.15 11.09 −3 −3 11.09
113 169 282 0.21 10.78 11.22 −1 1 −3 5 10.71
113 168 281 0.21 11.56 −1 −3 11.34
113 167 280 0.21 11.60 −1 5 −3 3 11.25
113 166 279 0.21 12.02 −1 −3 11.81
113 165 278 0.21 11.85 12.33 −1 3 −3 −13 11.56
112 173 285 0.11 9.32 9.48 −15 5 9.35
112 172 284 0.13 9.77
112 171 283 0.13 9.67* 9.91 5 9 9.91
112 170 282 0.14 10.69
112 169 281 0.20 10.46 11.07 1 5 10.78
112 168 280 0.19 11.38
112 167 279 0.20 11.45 5 3 11.31
112 166 278 0.20 11.86
112 165 277 0.21 11.62 12.21 3 −13 11.66
111 171 282 0.14 9.49 −1 5 11 9 9.24
111 170 281 0.15 10.36 11 11 10.36
111 169 280 0.16 10.15R 10.77 −9 5 11 5 10.03
111 168 279 0.20 10.52 11.13 −3 11 10.57
111 167 278 0.21 10.85 11.18 −3 5 11 3 10.51
111 166 277 0.21 11.64 −3 11 11.11
111 165 276 0.21 11.98 −3 3 11 −13 10.95
111 164 275 0.22 12.06 −3 11 11.56
111 163 274 0.22 11.48 11.91 −3 −13 11 9 10.60
111 162 273 0.23 11.23 −3 11 10.73
111 161 272 0.23 11.20 11.28 −3 7 11 9 10.76
110 169 279 0.18 10.19 9 5 10.03
110 163 273 0.22 11.37 11.49 −13 9 10.52
110 162 272 0.23 10.75
110 161 271 0.23 10.87 10.80 9 7 10.77
110 160 270 0.23 11.12 11.38
110 159 269 0.23 11.51 11.61 9 −11 11.44
110 158 268 0.23 11.94
110 157 267 0.24 11.78 12.11 3 1 12.10
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TABLE V. (Continued).

Z N A β20 Qexp
α Qα(g.s. → g.s.) π{�}P (g.s.) π{�}D(g.s.) Qα(π{�}P = π{�}D)

P N P N

109 169 278 0.19 9.69O 9.78 11 9 −1 5 9.27
109 167 276 0.21 10.10R 10.17 11 5 −5 3 9.46
109 166 275 0.21 10.67 11 −5 9.79
109 165 274 0.21 11.01 11 3 −5 −13 9.63
109 164 273 0.22 11.11 11 −5 9.98
109 163 272 0.22 11.02 11 −13 −5 9 9.03
109 162 271 0.23 10.27 11 −5 9.00
109 161 270 0.23 10.18 10.33 11 9 −5 7 9.01
109 160 269 0.23 10.95 11 −5 9.58
109 159 268 0.23 11.18 11 9 −5 −11 9.62
109 158 267 0.23 11.56 11 −5 10.17
109 157 266 0.24 11.00 11.73 11 3 −5 1 10.32
108 167 275 0.21 9.44 9.26 5 3 9.12
108 166 274 0.22 9.55
108 165 273 0.22 9.73 9.89 3 −13 9.44
108 164 272 0.23 9.80
108 163 271 0.23 9.72 −13 9 8.72
108 162 270 0.23 9.05 8.87
108 161 269 0.24 8.91 9 7 8.82
108 160 268 0.24 9.62 9.51
108 159 267 0.24 10.04 9.75 7 −11 9.63
108 158 266 0.24 10.35 10.04
108 157 265 0.25 10.47 10.17 −11 3 10.15
108 156 264 0.24 10.59 10.58
108 155 263 0.25 10.73 10.67 1 1 10.67
107 167 274 0.21 8.93 8.61 −1 5 −5 3 8.44
107 166 273 0.22 8.83 −5 9 8.79
107 165 272 0.22 9.16 −5 3 9 −13 8.71
107 164 271 0.23 9.49 9.10 −5 9 8.96
107 163 270 0.23 9.06 9.09 −5 −13 9 9 7.92
107 162 269 0.23 8.26 −5 9 7.93
107 161 268 0.24 8.33 −5 9 9 7 7.87
107 160 267 0.24 8.92 −5 9 8.45
107 159 266 0.24 9.15 −5 7 9 −11 8.56
107 158 265 0.24 9.45 −5 9 8.93
107 157 264 0.25 9.57 −5 −11 9 3 9.00
107 156 263 0.25 9.99 −5 9 9.44
107 155 262 0.25 10.32 10.11 −5 1 9 1 9.54
107 154 261 0.24 10.50 10.43 −5 9 9.89
107 153 260 0.25 10.40 10.88 −5 1 9 −9 9.68
106 165 271 0.22 8.83 3 −13 8.42
106 163 269 0.22 8.70 8.75 −13 9 7.79
106 162 268 0.23 7.89
106 161 267 0.24 7.91 9 7 7.84
106 160 266 0.24 8.43
106 159 265 0.25 8.62 7 −11 8.51
106 158 264 0.25 8.92
106 157 263 0.25 9.40 9.02 −11 3 8.98
106 156 262 0.25 9.60 9.49
106 155 261 0.25 9.71 9.60 3 1 9.52
106 154 260 0.25 9.90 9.95
106 153 259 0.25 9.80 10.35 1 −9 9.57
105 158 263 0.25 8.26 9 −7 8.17
105 157 262 0.25 8.33 9 −11 −7 3 8.23
105 156 261 0.25 8.85 9 −7 8.73
105 155 260 0.25 8.94 9 3 −7 1 8.81
105 154 259 0.25 9.62 9.32 9 −7 9.18
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TABLE V. (Continued).

Z N A β20 Qexp
α Qα(g.s. → g.s.) π{�}P (g.s.) π{�}D(g.s.) Qα(π{�}P = π{�}D)

P N P N

105 153 258 0.25 9.50 9.72 9 1 −7 −9 8.75
105 152 257 0.25 9.21 9.03 9 −7 8.83
105 151 256 0.25 9.34 8.98 9 −9 −7 7 8.74
104 159 263 0.24 7.85 7 −11 7.74
104 157 261 0.25 8.65 8.37 −11 3 8.30
104 156 260 0.25 8.83
104 155 259 0.25 8.97 3 1 8.87
104 154 258 0.25 9.19 9.28
104 153 257 0.25 9.08 9.66 1 −9 8.75
104 152 256 0.25 8.93 8.93
104 151 255 0.25 9.06 8.90 −9 7 8.83
103 157 260 0.25 8.12 −7 −11 −1 3 7.60
103 156 259 0.25 8.57 −7 −1 8.10
103 155 258 0.25 8.90 8.78 −7 3 −1 1 8.12
103 154 257 0.25 9.04 −7 −1 8.50
103 153 256 0.25 9.45 −7 1 −1 −9 8.00
103 152 255 0.25 8.56 8.70 −7 −1 8.20
103 151 254 0.25 8.82 8.65 −7 −9 −1 7 8.07
103 150 253 0.25 8.92 9.10 −7 −1 8.65
103 149 252 0.25 9.16 9.25 −7 7 −1 5 8.62
102 155 257 0.26 8.48 8.08 3 1 7.97
102 154 256 0.25 8.58 8.36
102 153 255 0.26 8.43 8.72 1 −9 7.79
102 152 254 0.25 8.23 8.05
102 151 253 0.25 8.41 8.01 −9 7 7.90
102 150 252 0.25 8.55 8.53
102 149 251 0.25 8.75 8.73 7 5 8.48
101 157 258 0.26 7.27 7.09 −1 −11 7 3 6.80
101 156 257 0.26 7.56 7.49 −1 7 7.19
101 155 256 0.26 7.54 −1 3 7 1 7.13
101 154 255 0.26 7.91 7.79 −1 7 7.38
101 153 254 0.26 8.14 −1 1 7 −9 6.78
101 152 253 0.26 7.57 7.53 −1 7 6.99
101 151 252 0.26 7.50 −1 −9 7 7 6.82
101 150 251 0.25 7.96 8.05 −1 7 7.42
101 149 250 0.25 8.29 −1 7 7 5 7.37
101 148 249 0.25 8.44 8.54 −1 7 7.86
101 147 248 0.25 8.82 −1 5 7 1 7.87
101 146 247 0.25 8.76 8.81 −1 7 8.12
101 145 246 0.25 8.89 8.78 −1 1 7 −7 8.04

calculated with blocking for the Np isotopes are systematically
overestimated. Calculations without blocking are clearly better
for this isotopic chain. In uranium nuclei, both calculations
agree well with the data for N > 136. For smaller N , there
are quite large discrepancies. In the case of the model with
blocking (but not the other one) these may come from
discarding the reflection asymmetry.

To check the effect of the octupole deformation we have
chosen the nucleus 225U (see Fig. 1). We added deformations
β30,β50,β70 to the original grid and conducted the seven-
dimensional minimization using the method with blocking.
The reflection-asymmetric deformations of the found mini-
mum were β30 = 0.122,β50 = 0.045,β70 = 0.010 and β30 =
0.089,β50 = 0.043,β70 = 0.030 in the parent and daughter

nuclei, respectively. They reduce the g.s. energy by 0.6
MeV in the parent nucleus and by about 1.5 MeV in the
daughter. This leads to the increase in α-decay energy by
about 0.8 MeV, giving Qα = 8.2 MeV which agrees very well
with the measured 8.00 MeV. Final results for 225U (together
with the corresponding results of the quasiparticle method) are
summarized in Tables III and IV. It is likely that the results with
blocking would improve also for some other neutron deficient
nuclei.

For a set of 204 nuclei from the region of the fit one
can compare the calculated and experimental Qα values. The
average deviation 〈|Qexp

α − Qth
α |〉 amounts to 326 keV for the

calculation with blocking and 225 keV for the quasiparticle
method; the rms deviations are, respectively, 426 and 305 keV.
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α

FIG. 4. (Color online) As in Fig. 1, but for Lr (Z = 103) isotopes.
Additionally, transition energies to the parent g.s. configuration in
daughter, calculated with blocking, are shown as open squares.

Thus, the quasiparticle method gives a better agreement with
experimental Qα values in the region of the fit.

Starting with Fig. 3, we present the predictive part of
the model: most of the masses of SH nuclei involved in
α-decay energies were not included in the fit. The Qα values
calculated with blocking are compared to experimental data
in Table V. We used mostly the data from [43], but in a few
cases relied on other sources. In particular, the Qα values in
chains 293,294117 were based on [6,20] and deduced from the
upper range of energies Eα when such a range exceeded the
energy resolution of the detector (see Table II in [6]). The Qα

values are shown for a wider range of N in Fig. 3, separately
for even- and odd-Z nuclei. In Figs. 4–7 the values calculated
with and without blocking are shown vs experimental data for
Z = 103,107,108,113 nuclei. One should bear in mind that
calculated decay energies are independent of the fitted energy
shifts (average pairing energies), denoted h in Tables I and II.

The calculated Qα vs N plots (Fig. 3) show a pronounced
rise for N overstepping 184 and smaller ones at N = 152
and 162. They signal particularly well bound systems at these
neutron numbers. The first one is connected with the magic
spherical configuration (not yet tested by experiment) and
the other two with the particularly stable prolate deformed

α

FIG. 5. (Color online) As in Fig. 4, but for Bh (Z = 107) isotopes.

α

FIG. 6. (Color online) As in Fig. 4, but for Hs (Z = 108) isotopes.

configurations, corresponding to prominent gaps in the s.p.
spectrum—see Fig. 10. One can notice that the maximum
around N = 162 becomes wider for larger Z and some other
maxima appear between N = 160 and 184, especially for Z �
120. On average, Qα values increase with Z at constant N . A
larger than average increase is predicted above Z = 108 for
N � 170 and is related to the deformed proton subshell—see
Fig. 10. It is visible in Fig. 3 as a larger gap between the plots
for fixed Z, especially between Z = 108 and Z = 110. A
number of smaller proton shell effects is predicted for limited
ranges of N , like for Z = 114 around N = 180.

The rise in Qα when going through N = 152 is supported
by the data for Z � 100, but is much more gentle than the
one calculated with blocking. A jump in Qα across the closed
“subshell” is much reduced in calculations without blocking,
see Figs. 4–7. In the data, transition energy increases for at
least two successive neutron numbers (this means for 153 and
154). The increase in Qα above N = 162 is best seen in the
data for Hs and Ds in Fig. 3, and roughly consistent with
calculations; it is smaller than predicted for Rg. The proton
shell effect at Z = 108 is seen in the data, but slightly smaller
than calculated.

The Qα values are reasonably well reproduced for
Z = 100–106 nuclei, where they can be larger or smaller
than the experimental ones. Decay energies are slightly

α

FIG. 7. (Color online) As in Fig. 4, but for Z = 113 isotopes.
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underestimated for Z = 108 and systematically overestimated
for Z = 111,112,113. For nuclei with Z � 101, the mean
deviation 〈|Qth

α − Q
exp
α |〉 and rms deviation are equal to,

respectively, 217 keV and 274 keV in the calculation with
blocking and 196 and 260 keV in the calculation with
the quasiparticle method. Thus, both methods give similar
deviations which are smaller than in the region of the fit.
Among 88 experimental Qα values in Table V, seven differ
from the calculated ones by more than 0.5 MeV. In all cases the
calculated values are too large. Five cases: 277,281Cn, 279,280Rg,
and 266Mt (the one with the largest deviation of 730 keV) signal
the above-mentioned overestimation of Qα which somehow
tends to disappear for the heaviest known parent nuclei (see
Table V). A similar overestimate results from the calculation
without blocking. For two other cases, the N = 153 isotones
of Rf and Sg (as well as of No, Db, and Bh), the calculation
without blocking gives results consistent with the experimental
values. Thus, these two cases, as well as results for other
N = 153 isotones, should be understood as a specific failure
of the calculation with blocking, described previously—the
overshooting of the Qα value just above the semimagic gap
N = 152 (see Figs. 4–7). We have also checked the effect
of a moderate 10% increase in the pairing strengths on the
Qα values within the method of blocking in the seven cases
mentioned above. It turns out that such a change mostly lowers
Qα values by less than 100 keV and increases one of them by
nearly 200 keV.

In trying to understand these results one has to remember
that the g.s. to g.s. transitions are assumed in calculations. As
mentioned in Sec. II, a predominance of transitions from the
parent g.s. to an excited state in the daughter nucleus may
result in attributing an apparent Qα value lower than the true
one. If one assumes that the α decay proceeds to the parent
g.s. configuration in the daughter, one obtains energies shown
in the last column in Table V. It may be seen that energies
of these configuration-preserving transitions are reduced es-
pecially for particle numbers corresponding to one particle
above a closed subshell. Predicted energies of configuration-
preserving transitions are also shown in Figs. 4–7
for four isotope chains. A particularly large, about 2 MeV

α
α

FIG. 8. (Color online) Excitation of the parent g.s. configuration
in daughter nucleus calculated with blocking, equal to the predicted
difference in transition energies, as a function of N for Z = 109,
111, 113.

α
α

FIG. 9. (Color online) As in Fig. 8, but for Z = 103, 105, 107.

excitation of the parent configuration occurs in the daughter
of 272Mt; the excitation of about 1.5 MeV occurs for Z = 103,
N = 153. These excitations, equal to the differences between
g.s.→g.s. and configuration-preserving transition energies,
Q

g.s. −>g.s.
α − Q

g.s. −>ex
α , are shown in Figs. 8 and 9. The

particle numbers Z = 103,109 and N = 153,163 correspond
to s.p. orbitals lying just above the large gaps.

This is illustrated in Fig. 10, where neutron and proton
s.p. energies are shown vs β20. The deformation β40 was

-9.0

-5.0(a)

(b)
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FIG. 10. Single-particle levels for neutrons (top) and protons
(bottom) for Z = 109, N = 163. To roughly follow ground-state
minima, deformation β40 = 0 for β20 < 0, then decreases linearly
down to −0.08 at β20 = 0.2 and then linearly rises to −0.05 at
β20 = 0.26. Positive (negative) parity levels are drawn with solid
(dashed) lines; quantum numbers π,K are given to the right.
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α
α

FIG. 11. Correlation between calculated parent-daughter defor-
mation difference and the excitation of the parent g.s. configuration
in daughter nucleus.

chosen to roughly follow g.s. minima around Z = 109,
N = 163 (β2 = 0.22, β4 = −0.08): oblate minima for Z � 115
correspond to small β4, prolate minima for Z = 106,107 have
β4 ≈ −0.05. As other deformations, differences in β4 between
isotopes and Z and N dependence are omitted, Fig. 10 can
serve only a general orientation. It may be seen, that above
N = 162 and Z = 108 the Woods-Saxon model predicts two
intruder orbitals: neutron Kπ = 13/2− and proton 11/2+.
Similarly, the intruder neutron Kπ = 11/2− and proton 9/2+
orbitals lie above N = 152, Z = 102. In general, such orbitals
could combine spins and form a high-K isomer; for Z = 109,
N = 163, our model predicts such a configuration as a ground
state. A substantial hindrance of the g.s. to g.s. α decay could be
expected in such case. Then, it is also not excluded that the g.s.
decay would be so hindered, that the α decay would proceed
from an excited state. Only future experimental data may show
whether considering such a possibility will be necessary.

The predicted neutron and proton g.s. configurations are
given in Table V, both for parent and daughter nuclei. They
can be compared to the measured ones only in a few cases.

α

FIG. 12. (Color online) Qα values in a chain beginning at a
hypothetical nucleus Z = 119, A = 297, which contains the known
chain for 273117—models vs experiment.

α

FIG. 13. (Color online) As in Fig. 12, but for Z = 118, A = 295.

For example, the 3/2+ g.s. of 257No [45] is reproduced in
our calculation. On the other hand, the predicted ground
states in 255Lr and 101Md are interchanged with respect to
the experimental results [46]. Ground state spins and parities
evaluated from measurements in other Md, No, Lr, and Rf
isotopes are consistent with our calculations, except for the
measured or evaluated 7/2− ground states in Md. The proton
configurations predicted by the quasiparticle method are the
same as in Table V. Mostly it is also the case for neutrons,
except for the 155-th neutron being 1/2+ instead of 3/2+.
The g.s. configurations in odd-A actinides, calculated within
the Woods-Saxon model with the quasiparticle method, may
be found in [19].

The g.s. to excited state transitions could also result from
a deformation difference between parent and daughter. Such
changes happen for some Z � 114 parent nuclei (weakly
oblate to weakly prolate) and for parents with Z = 111–113,
N ≈ 169 (increase in prolate deformation). As can be seen
in Fig. 11, the correlation between calculated deformation
change and the excitation of the parent configuration in
daughter is weak for nuclei investigated here: a large difference
in quadrupole moments of the parent and daughter is not
accompanied by a large change in the transition energy.

α

FIG. 14. (Color online) As in Fig. 12, but for Z = 117, A = 294.
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 α

FIG. 15. (Color online) Calculated vs experimental α half-lives
for the decay chain of Z = 117, A = 294.

The results of the model can also be appreciated by compar-
ing successive transitions along the measured α decay chains.
For the recently measured 294117 and 294118 chains [20] this
is done in Figs. 13–15. The partially known decay chain for
a hypothetical nucleus 297119 is shown in Fig. 12. The data
were taken from [20,44] and some other sources [6,7].

After the successful synthesis of elements Z = 117 and
Z = 118, the hypothetical nucleus 297119 is a natural candidate
for the next synthesis experiment. One of the likely reactions
leading to this element seems to be 48Ca(252Es,3n)300−x119
see, e.g., [47]. Note, that this α-particle chain contains the
known decay chain of 293117 [20]. One can see that our results
reasonably agree with the experimental data and HFB-14
predictions [48]. However, for the nucleus 297119 our result is
close to the model of Moller et al. [50], which underestimates
Qα values for lighter nuclides in the chain.

Another comparison is given in Fig. 13 for the α-particle
chain starting at 295118. It may be seen that, compared to [50], a
similar or better (especially for 283112 and 287114) agreement
with the data is obtained by the present model. A similar
conclusion follows when comparing the present results to
the self-consistent calculations [48]. Note, that this α-particle
chain contains the well-known chain of element 291116.

As an example of odd-odd systems, the alpha-chain for
the nucleus 294117 is shown in Fig. 14. One may notice
a good agreement between our Qα values and the recently
reported experimental data [6,20]. The other models deviate
more from the measured Qα values in this chain. This has
an impact on the predicted alpha-decay lifetimes, as shown in
Fig. 15. For example, in case of the HFB-14 approach [48],
the half-life of 274Bh is overestimated by four orders of
magnitude while the one for 278Mt is underestimated by
three orders of magnitude. The half-lives resulting from [50]

are systematically overestimated as a consequence of the
underestimated Qα values. (The Viola-Seaborg–type formula
from [49] has been used to convert Qα to half-lives). In all
three discussed chains, our results are slightly overestimated.
At present, however, the explanation that the allowed decays go
to the excited states (lying slightly above the ground state), is
not excluded, especially in the context of recent spectroscopic
studies of element Z = 115 by Rudolph et al. [7].

IV. CONCLUSIONS

A systematic calculation of nuclear masses in the region of
superheavy nuclei, including odd and odd-odd systems, was
performed within the microscopic-macroscopic model with
the Woods-Saxon deformed potential. Two versions of the
model were used, with and without blocking. A fit in the
region of heavy nuclei was performed to fix three additional
parameters of the model, one for each group of odd-A and
odd-odd nuclei, while keeping all previous parameters as they
were used for even-even nuclei. Then, the Qα values were
calculated for SH nuclei as a prediction of the model to be
compared against the data. The quality of the prediction turns
out better than the quality of the model in the region of the fit:
in the version with blocking, the mean and rms deviations of
217 and 274 keV for 88 SH nuclei are smaller than 326 and
426 keV for the 204 nuclei from the fit region. The quasiparticle
method, clearly better in the region of the fit, for SH nuclei
gives similar mean and rms deviations of 196 and 260 keV as
the calculations with blocking.

Both versions of the model similarly overestimate Qα

values for Z = 111–113 and underestimate them, although
to a lesser extent, around Z = 107,108. At present, these
result should be treated with some care. Many of synthesized
SH isotopes are odd-A or odd-odd nuclei and in many
cases the statistics of Eα values is not large. Therefore it is
not completely clear whether some of those cases may be
explained by a hindrance of g.s. to g.s. transitions. The g.s.
configurations of some SH nuclei, especially those involving
high-K intruder orbitals, strongly hint to a possibility of
α-decay hindrance, for example, for Z = 109, N = 163.

As comparisons to other models show, the agreement with
data obtained here, without any parameter adjustment for Qα

and with a minimal adjustment for masses, is surely not worse.
This gives a confidence that some refinements, especially in
the treatment of pairing, may still moderately improve the
agreement with data.
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