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Cluster structures and monopole transitions in positive parity states of 16O are investigated based on the
generator coordinate method calculation of an extended 12C+α cluster model. The ground and excited states of
a 12C cluster are taken into account by using 12C wave functions obtained with the method of antisymmetrized
molecular dynamics. The 0+

2 state of 16O and its rotational members, the 2+
1 and 4+

1 states, are described well by
the cluster states dominated by the 12C(0+

1 )+α structure. Above the 12C(0+
2 )+α threshold energy, I obtain a 0+

state having the 12C(0+
2 )+α cluster structure, which is considered to be a candidate for the 4α cluster gas state.

The band structures are discussed based on the calculated E2 transition strength. Isoscalar monopole excitations
from the ground state are also discussed.
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I. INTRODUCTION

Cluster structure is one of the essential features of nuclei as
well as a mean-field feature. Well-developed cluster structures
have been known, in particular, in excited states of stable light
nuclei and also discovered in unstable nuclei. In recent years,
a new type of cluster state, an α cluster gas state, has been
suggested in light Z = N nuclei [1–7]. It has been proposed
that 2α and 3α cluster gas states are realized in the 0+

1 state
of 8Be and the 0+

2 state of 12C, where all α clusters are almost
freely moving in a dilute density like a gas. It is a challenging
problem to search for such cluster gas states in other nuclei. For
instance, the possibility of α cluster gas states in Z = N = 2n
nuclei up to 40Ca was discussed in a systematic study with a
nonmicroscopic cluster model, which suggested that α cluster
gases may appear in the energy region near the corresponding
n-α breakup threshold consistently with the Ikeda threshold
rule [3]. Cluster gas states including non-α clusters or those
around a core nucleus were also suggested in excited states of
11B, 8He, and 10Be [8–15].

Recently, the search for the 4α cluster gas state in excited
states of 16O has been performed in experimental and theo-
retical works [5,6,16]. The semimicroscopic 4α calculation
by Funaki et al. suggested that the 16O(0+

6 ) state near the
4α threshold has the large 12C(0+

2 ) + α component and is a
candidate for the dilute 4α cluster gas state [5,6]. It is also
an interesting problem to assign band members of the cluster
gas state to clarify the property of the cluster gas, especially,
stability against rotation as discussed in Refs. [17,18].

16O is a double closed-shell nuclei and its ground state is
dominated by p-shell closed configuration, while there exist
many excited states that are difficult to be described by a simple
shell model. Semimicroscopic and microscopic 12C+α cluster
models [19–21] were applied to study excited states of 16O and
it has been shown that many excited states can be described
by 12C+α cluster structures. For instance, in the calculation
with the 12C+α orthogonality condition model (OCM) [19], a
semimicroscopic cluster model [22], the 0+

2 state of 16O and its
rotational band members, the 2+

1 and 4+
1 states, are described by

the cluster state having the dominant 12C(0+
1 )+α component.

Moreover, the 16O(0+
3 ) state is considered to mainly have the

12C(2+
1 )+α component. These results are supported also by

4α-OCM calculations [5,6,23]. Thus, many excited states up to
∼14 MeV are considered to be weak-coupling 12C+α cluster
states having large components of 12C(0+

1 )+α, 12C(2+
1 )+α,

and so on. The cluster structures of these excited states are
supported by the experimental data of E2 and monopole
transition strengths as well as the α-decay widths [19,20,24].

Above these 12C+α cluster states, a 4α cluster state was
predicted at the energy near the 4α and 12C(0+

2 )+α threshold
energies by Funaki et al. with the 4α-OCM [5,6]. This state
has the large 12C(0+

2 )+α component, that is, the 3α cluster
gas state of the 12C(0+

2 ) with an additional α around the 3α
gas. The large occupation probability of 4 α particles in the
same 0S and low-momentum orbit was demonstrated by the
analysis of the 4α-OCM wave function.

In spite of the success of those calculations with the
semimicroscopic cluster models such as the 12C+α-OCM
and the 4α-OCM, there is no microscopic calculation that
can reproduce the excitation energies of the cluster states
in 16O. The microscopic calculations with the resonating
group method (RGM) [25] and the generator coordinate
method (GCM) [26] of 12C+α cluster models [20,21] failed
to reproduce the experimental excitation energy of the 0+

2
at 6.05 MeV. They largely overestimated it by a factor 2–3
as Ex(0+

2 ) ∼ 16 MeV. One of the most crucial problems in
microscopic calculations using effective nuclear forces for 16O
is the underbinding problem of 12C relative to 16O, or in other
words, the overbinding problem of 16O relative to 12C.

My aim is to investigate cluster structures of excited states
of 16O. In particular, I search for a highly excited 0+ state
having the 12C(0+

2 )+α structure, which may be the candidate
for the 4α gas state. I perform the GCM calculation of an
extended 12C+α model. In the present calculation, I adopt
the 12C wave functions obtained with the variation after
the parity and angular-momentum projections (VAP) in the
framework of antisymmetrized molecular dynamics (AMD)
[27,28]. As shown in the previous works on 12C [29,30],
the AMD+VAP calculation succeeded in describing well the
structures of ground and excited states of 12C, such as the
developed 3α-cluster structure in the excited states as well
as the ground state properties. The binding energy of 12C
was improved because of the energy gain of the spin-orbit
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force due to the mixing of p3/2-shell configurations. I use the
same effective nuclear force used in the previous study of 12C,
that it, the MV1 force [31] containing the phenomenological
three-body repulsive force to avoid the overshooting problem
of the binding energy in heavier nuclei. To take into account
the ground and excited states of 12C I superpose the 12C
AMD wave functions and approximately perform the double
projection, that is, the angular-momentum projection of the
subsystem 12C and that of the total system. Isoscalar monopole
excitations in 16O are also discussed.

This paper is organized as follows. In the next section, I
explain the formulation of the present calculation. The results
are shown in Sec. III, and isoscalar monopole excitations are
discussed in Sec. IV. Finally, a summary and outlook are given
in Sec. V.

II. FORMULATION

A. 12C(AMD)+αGCM calculation for 16O

The ground and excited states of 16O are described by
using an extended 12C+α cluster wave function. To describe
intercluster motion, the distance d between the mean positions
of 12C and α centers is treated as the generator coordinate,
and the 12C+α wave functions with different d values are
superposed. The α cluster is written by the (0s)4 harmonic
oscillator wave function �α(3S/4) which is localized around
the position 3S/4 with S = (0,0,d). The 12C cluster is localized
around −S/4 and described by the superposition of AMD wave
functions.

An AMD wave function for the 12C cluster localized around
the origin is given as follows:

�AMD
12C (Z) = 1√

AC!
AC{ϕ1,ϕ2,...,ϕAC

}, (1)

ϕi = φXi
χiτi, (2)

φXi
(rj ) =

(
2ν

π

)4/3

exp

{
−ν

(
rj − Xi√

ν

)2
}

, (3)

χi =
(

1

2
+ ξi

)
χ↑ +

(
1

2
− ξi

)
χ↓. (4)

Here AC is the mass number of 12C, AC = 12, and the operator
AC is the antisymmetrizer of the AC nucleons. The wave
function �AMD

12C (Z) is written by a Slater determinant of single-
particle wave functions ϕi , each of which is given by a product
of the spatial (φXi

), the intrinsic spin (χi), and isospin (τi) func-
tions. The isospin function is fixed to be up (proton) or down
(neutron). The spatial part φXi

is written by the Gaussian wave
packet localized around the position Xi in the phase space.
Accordingly, an AMD wave function is expressed by a set of
variational parameters, Z ≡ {X1,X2, . . . ,XAC

,ξ1,ξ2, . . . ,ξAC
},

which expresses an AMD configuration of the 12C cluster. The
mean position {X1 + X2 + · · · + XAC

}/AC of 12C mass center
is set on the origin.

The 12C wave function is shifted from the origin to the
position −S/4 by shifting the Gaussian center parameters
Xi → Xi − S/4. The shifted 12C AMD wave function is
denoted by �AMD

12C (−S/4; Z). A wave function �AMD
12C (−S/4; Z)

corresponds to the 12C cluster around −S/4 having an intrinsic
wave function specified by the set of parameters Z. To
construct the angular-momentum eigenstate of the subsystem
12C projected from the intrinsic state, it is necessary to
superpose rotated states of the intrinsic wave function. For
a configuration Z = Z(k) (k is the label for the configu-
ration) of the 12C AMD wave function, I prepare rotated
states Rsub(�′)�AMD

12C (−S/4; Z(k)) of the subsystem 12C. Here
Rsub(�′) is the operator of the Euler angle �′ rotation of the
subsystem around −S/4. A wave function of 16O is given
by performing the antisymmetrization of all nucleons and the
parity and angular-momentum projections,

�JπK
12C+α(d,�′

j ,Z
(k))

= P Jπ
MKA

{
Rsub(�′)�AMD

12C (−S/4; Z(k)) · �α(3S/4)
}
. (5)

Here A is the antisymmetrizer for all sixteen nucleons and
P Jπ

MK is the parity(π ) and angular-momentum projection
operator for the total system.

I superpose 16O wave functions constructed from the 12C
AMD wave function and the α cluster wave function. Each
16O wave function is specified by the AMD configuration Z(k),
the rotation angle �′

j for the 12C cluster, and the intercluster
distance di . Then the final 16O wave function in the present
12C(AMD)+αGCM model is written as follows:

�
Jπ

n

AMD+αGCM =
∑

K,i,j,k

cJπ
n (K,i,j,k)�JπK

12C+α(di,�
′
j ,Z

(k)). (6)

The coefficients cJπ
n (K,i,j,k) for the Jπ

n state are treated as
independent parameters and they are determined by solving
the Hill-Wheeler equation as done in the GCM [26]. In
principle, the superposition of rotated states of the 12C
cluster is equivalent to the so-called “double projection,” in
which the angular-momentum projections are done for the
subsystem 12C and also for the total system. It corresponds to
taking into account different spin states of the 12C cluster.
In the practical calculation, however, I use only a limited
number of the rotation angle �′

j and it is an approximated
method of the double projection. By superposing several AMD
configurations of 12C, excited states as well as the ground state
of the 12C cluster are incorporated. The details of the AMD
configurations of 12C are explained later.

For general nuclei, I can consider the extended cluster
model “AMD+αGCM,” in which a core nucleus is written by
AMD wave functions and relative motion between an α cluster
and the core is taken into account by superposing core-α cluster
wave functions with various values of the distance d. Based on
a similar concept, core+n cluster models have been already
used to describe a valence neutron motion around the core
expressed by AMD wave functions in the studies of neutron-
rich nuclei. First a 10Be(AMD)+nGCM model without the
angular-momentum projection of the subsystem has been
adopted to 11Be [27], and recently, 30Ne(AMD)+nGCM and
12Be(AMD)+nGCM models have been applied to 31Ne and
13Be [32,33].
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B. Wave functions of 12C

In the previous work on 12C [29,30], the AMD+VAP
method has been applied to 12C and it has been proven
to describe well the structures of the ground and excited
states in 12C. To describe the 12C cluster in the present
12C(AMD)+αGCM calculation, I use the intrinsic wave
functions of 12C obtained with the AMD+VAP in Ref. [30].

I here briefly explain the AMD+VAP method [29,30].
More details of the method are described in Ref. [30]. As
mentioned before, the AMD wave function of 12C explained
in Eq. (1) is specified by the set of parameters, Z =
{X1,X2, . . . ,XAC

,ξ1,ξ2, . . . ,ξAC
}. In the AMD framework,

these are treated as variational parameters and determined
by the energy variation. In the AMD+VAP method, the
energy variation is performed after the spin-parity projection.
Namely, the parameters Xi and ξi(i = 1 ∼ A) are varied to
minimize the energy expectation value of the Hamiltonian,
〈�|H |�〉/〈�|�〉, with respect to the spin-parity eigenwave
function � = P Jπ

MK�AMD
12C (Z) projected from the AMD wave

function of 12C. Then the optimum AMD wave function
�AMD

12C (ZJπ
1 ), which approximately describes the intrinsic wave

function for the Jπ
1 state, is obtained. For higher Jπ

n states, the
variation is done for the component orthogonal to the lower
Jπ states. For each J (k)π(k)

n(k) , the optimum parameters Z(k) are
obtained. Here (k) is the label for the AMD configuration
for the J (k)π(k)

n(k) state. After the VAP procedure, final wave
functions for Jπ states are expressed by the superposition
of the spin-parity eigenwave functions projected from all the
intrinsic wave functions �AMD

12C (Z(k)) as

�
Jn,π
12C =

∑
K,k

c
Jπ

n
12C(K,k)

∣∣P ′Jπ
MK�AMD

12C (Z(k)), (7)

where the coefficients c
Jπ

n
12C(K,k) are determined by solving the

Hill-Wheeler equation, i.e., the diagonalization of the norm
and Hamiltonian matrices.

In the previous study of 12C, totally, 23 AMD con-
figurations �AMD

12C (Z(k)) (k = 1, . . . ,23) are obtained by

the energy variation for J (k)π(k)
n(k) = 0+

1 ,0+
2 ,0+

3 ,1+
1 ,2+

1 ,2+
2 ,2+

3 ,

. . . ,1−
1 ,2−

1 ,3−
1 , . . . , and they are adopted as basis wave

functions of the final wave functions of 12C. In the present
12C(AMD)+αGCM calculation, I adopt only three basis wave
functions to save the computational cost. In order to take into
account the ground and second 0+ states of 12C, I choose
two basis wave functions of J (k)π(k)

n(k) = 0+
1 ,0+

2 for k = 1,2. I

also adopt the basis wave function of J (k)π(k)
n(k) = 1−

1 for the
third basis wave function (k = 3) to reasonably reproduce the
energy levels of positive- and negative-parity states of 12C.
The intrinsic density of these three basis wave functions are
shown in Fig. 1. The ground state has the compact structure of
3α with a mixing of the p3/2-shell closure component, while
the 0+

2 and 1−
1 states show developed 3α cluster structures.

The energy levels of 12C obtained with the truncated model
space of three bases are shown in Fig. 2 compared with those
with full 23 basis wave functions and experimental ones. With
the truncation, I get reasonable reproduction of the energy
levels of many positive and negative parity states though the
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FIG. 1. (Color online) Density distribution of the intrinsic states
of (a) 12C(0+

1 ), (b) 12C(0+
2 ), and (c) 12C(1−

1 ) calculated with the
AMD+VAP [30]. The orientation of an intrinsic state is chosen so
as to satisfy 〈x2〉 � 〈y2〉 � 〈z2〉 and 〈xy〉 = 〈yz〉 = 〈zx〉 = 0. The
horizontal and vertical axes are set to the z and y axes, respectively.
Densities are integrated with respect to the x axis.

full 23 basis wave functions give better results, in particular,
for excited states. The reason for ∼2 MeV higher energies of
the 0+

2 and 1−
1 states with the three bases than those with the full

bases is that these states gain their energy by the superposition
of various configurations of the 3α cluster.

I also calculate the overlap N (16O(Jπ
n );12 C(0+

n ) + α; d) of
the 16O wave function obtained by the 12C(AMD)+αGCM
and the 12C(0+

n )+α wave function having a certain distance d,

�Jπ
12C(0+

n )+α
(d)

≡ n0P
Jπ
00 A

{∑
k

c
0+

n
12C(K = 0,k)P ′0

00�
AMD
12C (−S/4; Z(k))

×�α(3S/4)

}
, (8)

N (16O
(
Jπ

n

)
;12 C(0+

n ) + α; d
)

≡ ∣∣〈�Jπ
n

AMD+αGCM

∣∣�Jπ
12C(0+

n )+α
(d)

〉∣∣2
. (9)
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FIG. 2. Energy spectra of 12C calculated with the AMD+VAP
using three basis AMD wave functions �AMD

12C
(Z(k)) obtained by the

energy variation for J (k)π (k)
n(k) = 0+

1 ,0+
2 and 1−

1 with k = 1,2, and 3,
respectively, and that using the full 23 basis AMD wave functions.
The 0+

1 energy calculated with the 23 bases is adjusted to 0 and the
relative energies are plotted. The energies calculated using (1) one
basis (k = 1), (2) two bases (k = 1,2), (3) three bases (k = 1,2,3),
and (full) the full bases are shown. The excitation energies of the
experimental data are also shown.
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Here n0 is the normalization factor to satisfy∣∣〈�Jπ
12C(0+

n )+α
(d)

∣∣�Jπ
12C(0+

n )+α
(d)

〉∣∣2 = 1, (10)

and the �′ integration in the operator P ′0
00 of the J = 0 angular-

momentum projection of the subsystem is approximated by the
sum of the finite number mesh points, P ′0

00 = ∑
j Rsub(�′

j ).
In the present work, I calculate the overlap only with the
12C(0+

n )-cluster wave function because of the approximation
with the finite points of the Euler angle �′

j for the rotation of
subsystem 12C.

C. Parameters in numerical calculations

The width parameter ν of the 12C cluster is ν = 0.19 fm−2

which was used in the previous work on 12C in Ref. [30].
The width parameter of the α cluster is taken to be the same
value ν = 0.19 fm−2 because the center of mass motion can
be exactly extracted when a common width parameter is used
for all clusters.

For the intercluster distance between 12C and α, six points
di = 1.2,2.4,3.6, . . . ,7.2 fm are chosen. The choice of di �
7.2 fm corresponds to a kind of bound state approximation.
In the angular-momentum projection of the total system, the
integration of the Euler angle � = (θ1,θ2,θ3) is numerically
performed by the summation of mesh points (23,46,23) of the
angles (θ1,θ2,θ3).

For the intrinsic states of 12C labeled by (k), three
AMD configurations are adopted. For each intrinsic
state (k) at the distance di , seventeen rotated states
Rsub(�′

j )�AMD
12C (−S/4; Z(k)) (j = 1, . . . ,17) are constructed.

The Euler angle �′ = (θ ′
1,θ

′
2,θ

′
3) is chosen to be θ ′

1 =
(0,π/4,π/2,3π/4,π ) and θ ′

2 = (0,π/4,π/2,3π/4,π ). I omit
the points θ ′

2 = (5π/4,3π/2,7π/4) in the region π < θ ′
2 < 2π

to save the numerical cost. This is valid when the intrinsic
state has the symmetry such as an isosceles triangle 3α
configuration. θ ′

3 is fixed to be θ ′
3 = 0 because the rotation

θ ′
3 is effectively done by the K projection in the angular-

momentum projection of the total system because of the
rotational invariance of the α cluster. As for the K mixing,
I truncate the |K| � 4 components.

III. RESULTS

A. Effective nuclear interaction

In the present calculation of the 12C(AMD)+αGCM, I use
the same effective nuclear interaction with the same parameters
as those used in the previous calculation of 12C [30]. It is
the MV1 force [31] for the central force supplemented by
the two-body spin-orbit force with the two-range Gaussian
form the same as that in the G3RS force [34]. The Coulomb
force is approximated using a seven-range Gaussian form. The
Majorana, Bartlett, and Heisenberg parameters in the MV1
force are m = 0.62, b = 0, and h = 0, respectively, and the
spin-orbit strengths are taken to be uI = −uII = 3000 MeV.

B. Energy levels of 0+ states

In the preceding studies [5,6,19–21,23], developed cluster
structures were suggested in excited 0+ states of 16O. It
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FIG. 3. Excitation energies of 0+ states in 16O calculated with the
present 12C(AMD)+αGCM (AMD+αGCM) and those of the 4α-
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levels of 0+ states are taken from Refs. [16,35]. The 12C(0+

1 )+α and
12C(0+

2 )+α threshold energies are plotted by solid and dashed arrows,
respectively.

is considered that the ground state of 0+
1 is dominated by

the doubly closed-shell structure, while the 0+
2 state has the

12C(0+
1 )+α structure. The 0+

3 state is suggested to have the
12C(2+

1 )+α component. In the 4α-OCM calculation, it was
suggested that the 0+

4 mainly has the 12C(0+
1 )+α structure

with higher nodal behavior of α cluster around 12C and the
0+

5 contains the 12C(1−
1 )+α component. In the study with the

4α-OCM calculation by Funaki et al. [5,6], the 0+
6 state having

the 12C(0+
2 )+α structure was suggested and regarded as the 4α

cluster gas state. They proposed that the experimental 0+
6 state

at 15.1 MeV is a candidate for the 4α cluster gas state.
The energy levels of 0+ states of 16O up to the fifth 0+

state calculated with the 12C(AMD)+αGCM calculation are
shown in Fig. 3 compared with the experimental data. The
theoretical energy levels with other theoretical calculations,
4α-OCM [5,6] and 12C+α-OCM [19], are also shown.

In the present result, the ground state (0+
I ) has mainly the

doubly closed-shell structure with less development of cluster,
while the second 0+ state (0+

II ) is described mainly by the
developed 12C(0+

1 )+α structure. The cluster structure of the
0+

II state is consistent with that of the preceding works and
can be assigned to the experimental 0+

2 state at 6.05 MeV.
Above the second 0+ state, I obtain the third 0+ state (0+

III )
having further developed 12C(0+

1 )+α structure and the fourth
0+ state (0+

IV ) showing a feature of the 12C(2+
1 )+α structure.

The features of the 0+
III and 0+

IV states are consistent with
the 0+

4 and 0+
3 states in the 4α-OCM calculation [5,6,24],

respectively. The ordering of the 0+
III and 0+

IV is opposite to that
of the 4α-OCM calculation. If I assign the 0+

IV state to the 0+
3

at 12.05 MeV, the experimental level spacing between the 0+
2

and 0+
3 state is reproduced well by the present calculation. For

the 0+
III state, the dominant 12C(0+

1 )+α structure with an α far
from the 12C(0+

1 ) core is consistent with the 0+
4 state in the 4α-

OCM calculation which is assigned to the 0+
4 state at 13.6 MeV

from its relatively large width. The present calculation is a
bound state approximation, and it is difficult to discuss the
width in the present framework of AMD. Moreover, stability
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of this state should be checked carefully by taking into account
mixing of continuum states.

In the present calculation, I obtain the fifth 0+ state (0+
V )

having the developed 12C(0+
2 )+α structure. As discussed later,

it has a large 12C(0+
2 )+α component with an α cluster moving

around the 12C(0+
2 ) cluster in the S-wave channel and it is

consistent with the structure of the 4α cluster gas state in
the 0+

6 suggested by the 4α-OCM calculation. The 0+
V state

has a significant α-cluster amplitude about 4 ∼ 5 fm far from
the 12C(0+

2 ) core. This is the same region of the α-cluster
amplitude in the 12C(0+

2 ). Considering that the 12C(0+
2 ) has

the 3α cluster gas feature and the fourth α is moving in the
S wave in the same region of 3α clusters, the 0+

V state can be
regarded as a 4α cluster gas state similar to the 3α cluster gas in
the 12C(0+

2 ).
The 0+ energy spectra up to the 0+

V in the present result
correspond partially to the 0+ states suggested by the 4α-
OCM calculation. Considering the dominant component of
each state, the present 0+

II with the 12C(0+
1 )+α component,

the 0+
IV with the 12C(2+

1 )+α component, and the 0+
V with

the 12C(0+
2 )+α component correspond to the 0+

2 , 0+
3 , and

0+
6 states in the 4α-OCM. If I follow the assignments of

Ref. [6] for these states to the experimental 0+
2 , 0+

3 , and
0+

6 states, the level spacing between these three states (0+
II ,

0+
IV , and 0+

V ) in the present result are in good agreement
with the experimental one. The 0+

III state having the higher
nodal feature of 12C(0+

1 )+α may correspond to the 0+
4 in

the 4α-OCM, but the energy position is relatively lower
than the 0+

IV with the 12C(2+
1 )+α component, maybe, because

of the overestimation of the 12C(0+
1 )-12C(2+

1 ) level spacing in
the present model space constructed by three basis AMD wave
functions for the subsystem 12C. The present result shows the
state mixing in the 0+

III and 0+
IV states of the higher nodal

12C(0+
1 )+α and the 12C(2+

1 )+α components, indicating that
these two components almost degenerate energetically. The
details of the relative energy position of 0+ states can be
improved by taking into account full basis wave functions
for 12C. In the 4α-OCM, the 0+

5 state with the 12C(1−
1 )+α

component is suggested, but there is no corresponding 0+
state below the 0+

V state in the present calculation. I only
find the significant fraction of the 12C(1−

1 )+α components
in several 0+ states around Ex ∼ 20 MeV, a few MeV higher
than the 0+

V state, but I cannot identify the 12C(1−
1 )+α state as

a single 0+ state. The ordering of the 0+
II , 0+

IV , and 0+
V states

can be understood by the subsystem energy of the 12C(0+
1 ),

12C(2+
1 ), and 12C(0+

2 ). Similarly, the 12C(1−
1 )+α state could

be expected to exist in the energy region a few MeV higher
than the 12C(0+

2 )+α state from the energy difference of the
subsystem states, 12C(0+

2 ) and 12C(1−
1 ). Our result is consistent

with this naive expectation, but inconsistent with the 4α-OCM
calculation [6,23,24] which suggests the 12C(1−

1 )+α state at
the much lower energy assigned to the experimental 0+

5 from
the α-decay width and the monopole strength. Probably, some
effects could be missing in the present calculation.

The root-mean-square charge radii and monopole transition
matrices M(E0) for the 0+ states are shown in Table I.
The excited states tend to have large rms charge radii due
to developed cluster structures compared with that of the
ground state. In particular, the 0+

III state with the higher

TABLE I. The charge radii (Rc), E0 transition matrix elements
[M(E0)], and ratio (PE.W.) to the EWSR of the isoscalar E0 transition
that is 1/4 of the isoscalar monopole EWSR. The theoretical values
are those calculated with the present 12C(AMD)+αGCM, the 4α-
OCM [24], and the 12C+α-OCM [19]. The charge radius of a proton
0.887 fm [36] is used to evaluate the charge radii of 0+ states in 16O.
Experimental data are taken from Refs. [35–37].

State Ex (MeV) Rc (fm) M(E0) (e fm2) PE.W. (%)

12C(AMD)+αGCM
0+

I 0.0 2.9
0+

II 8.5 3.5 4.0 5.4
0+

III 12.5 3.9 3.5 6.4
0+

IV 14.0 3.5 6.0 20
0+

V 17.1 3.8 1.4 1.4

Exp.
0+

1 0 2.70
0+

2 6.05 3.55(0.21) 3.5
0+

3 12.05 4.03(0.09) 9.1
0+

4 13.6
0+

5 14.01 3.3(0.7) 6.3
0+

6 15.1

4α-OCM
0+

1 0 2.7
0+

2 6.37 3 3.9 4
0+

3 9.96 3.1 3.9 6.3
0+

4 12.56 4 2.4 3
0+

5 14.12 3.1 2.6 3.9
0+

6 16.45 5.6 1.0 0.7
12C+α-OCM

0+
1 0 2.5

0+
2 6.57 2.9 3.88 4.8

0+
3 10.77 2.8 3.5 6.4

nodal 12C(0+
1 )+α structure and 0+

V state with the 12C(0+
2 )+α

structure have about 1 fm larger radii than the ground state.
The radius of the 0+

V state is smaller than the 0+
6 state of the

4α-OCM calculation. It may come from the smaller radius
of 12C(0+

2 ) with the 3-basis AMD+VAP calculation than that
with the 3α-OCM calculation [38]. Namely, the rms matter
radius of 12C(0+

2 ) is 3.2 fm in the 3-basis AMD+VAP result
(3.3 fm in the full 23-basis AMD+VAP) and 4.31 fm in the
3α-OCM calculation.

Those excited states with developed cluster structures also
have significant monopole transition strength from the ground
state. The transition strength to the 0+

V state is relatively
smaller than those to the lower 0+ states. The present result is
consistent with that of the 4α-OCM calculation in Ref. [24].
Detailed discussion of isoscalar monopole excitations is given
in the next section.

C. E2 transition strength and band assignment

As mentioned above, the present result suggests the
12C(0+

2 )+α structure in the 0+
V state which is regarded as

the candidate for the 4α cluster gas state. By analyzing
the calculated E2 transition strength, I consider rotational
band members from the 12C(0+

2 )+α structure. The calculated
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FIG. 4. (Color online) Calculated E2 transition strength in 16O
obtained with the 12C(AMD)+αGCM. States having strong E2
transition with 60 < B(E2) < 100 e2 fm4, 100 < B(E2) < 200 e2

fm4, and 200 < B(E2) e2 fm4 are connected by dotted, thin
(blue), and thick (red) lines, respectively. (a) J π = 0+,2+,4+ spectra
and 4+ → 2+ and 2+ → 0+ transitions. (b) J π = 0+,1+,2+,3+,4+

spectra and J + → (J − 1)+ transitions. The solid thick lines in
the energy spectra are energy levels having significant 12C(0+

2 )+α

component.

E2 transition strength is shown in Fig. 4. The experimental
and theoretical B(E2) values for low-energy states are listed
in Table II. For the lowest 12C(0+

1 )+α cluster band consisting
of the 0+

2 , 2+
1 , and 4+

1 states, the present 12C(AMD)+αGCM
calculation reproduces reasonably the strong intraband E2
transitions within a factor 2. Twice larger B(E2) values than
the experimental data may suggest ∼ 20% overestimation
of the rms radii of these states which may come from the
higher energy position relative to the 12C(0+

1 )+α threshold.
For the second 2+ state (2+

II ), the significant E2 transition
to the ground state and the strong transition to the (0+

III ) are

TABLE II. E2 transition strength in 16O. B(E2) values calculated
with the present 12C(AMD)+αGCM and those with the 12C+α-OCM
[19]. Experimental data are taken from Ref. [35].

B(E2) (e2 fm4)

Initial Final Exp. Ref. [19]

2+(6.92) 0+(0) 7.4±0.2 2.48
2+(6.92) 0+(6.05) 65±7 60.1
2+(9.84) 0+(0) 0.07±0.007 0.489
2+(9.84) 0+(6.05) 2.9±0.7 4.64
2+(11.5) 0+(0) 3.6±1.2 1.43
2+(11.5) 0+(6.05) 7.4±1.2 1.38
4+(10.4) 2+(6.92) 156±14 96.2

Present
2+

I 0+
I 3.2

2+
I 0+

II 177
2+

II 0+
I 45

2+
II 0+

II 2.3
2+

III 0+
I 0.08

2+
III 0+

II 1.4
2+

IV 0+
I 3.1

2+
IV 0+

II 0.1
4+

I 2+
I 290

because it has the higher nodal 12C(0+
1 )+α component and is

regarded as the rotational member of the 0+
III as seen in the

overlap amplitude in Fig. 6. Considering that the 0+
III state

may correspond to the 0+
4 state, the energy position of this

band might be underestimated relatively to other excited states
in the present calculation. If I adjust the 0+

III state to the 0+
4

energy, 13.6 MeV, the band member 2+
II state is expected to

appear around Ex = 15 MeV, but there is no corresponding
2+ state with strong E2 transition to the ground state in the
experimental data. The stability of the members of the higher
nodal 12C(0+

1 )+α state should be carefully checked by taking
into account the coupling with continuum states. If I exclude
the 2+

II from the low-energy spectra and assign the third and
the fourth 2+ states (2+

III and 2+
IV ) obtained in the present

calculation to the 2+
2 and 2+

3 states, the calculated B(E2) values
are in reasonable agreement with the experimental ones.

In the energy region around Ex ∼ 20 MeV, I find 2+ states
and 4+ states having rather strong (sequential) E2 transition
strength toward the 0V state. In this energy region, there are
several 2+ and 4+ states having non-negligible component of
the 12C(0+

2 )+α structure. I also obtain another 0+ state with
some 12C(0+

2 )+α component at 20.3 MeV, a few MeV above
the 0V state. In Fig. 4, the energy levels of these states are
shown by solid lines. E2 transition strength is fragmented
among them as shown in the figure.

Figure 5 shows the overlap of those states with the
12C(0+

2 )+α wave function as function of the intercluster
distance d. The 0+

V state has more than 60%12C(0+
2 )+α com-

ponent at dα = 4–5 fm. As the spin increases, the 12C(0+
2 )+α

component decreases and seems scattered into several 2+ and
4+ states. It may imply that the structure changes; in other
words, the state mixing occurs in the rotation of the 12C(0+

2 )+α
structure.
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FIG. 5. (Color online) The overlap of the excited 16O states with
the 12C(0+

2 )+α wave function as a function of the intercluster distance
d defined in Eq. (9). The calculated overlap for the 0+ states at 17.1
and 20.3 MeV, 2+ states at 18.9, 19.3, and 21.5 MeV, and 4+ states
at 18.9, 19.9, 20.4, 21.6, 22.6, and 23.0 MeV, which have significant
12C(0+

2 )+α component, is shown.

I also show in Fig. 6 the overlap with the 12C(0+
1 )+α wave

function in the member states of the rotational bands starting
from the 0+

II and 0+
III states. As seen in the figure, the lower

band build on the 0+
II has the 12C(0+

1 )+α structure and the
higher band from the 0+

III shows the higher nodal feature of
the 12C(0+

1 )+α structure. The overlap with the 12C(0+
1 )+α

wave function in these states does not depend so much on the
spin and it is still significant even in the 4+ states.
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FIG. 6. (Color online) The overlap of the 16O states with the
12C(0+

1 )+α wave function as a function the intercluster distance d

defined in Eq. (9). The overlap for the 0+
II at 8.5 MeV, 2+ at 9.6 MeV,

and 4+ at 12.4 MeV in the 12C(0+
1 )+α band, and the 0+

III at 12.5 MeV,
2+ at 13.1 MeV, and 4+ at 15.5 MeV in the higher nodal 12C(0+

1 )+α

band is shown.

Thus, the situation is quite different between the 12C(0+
1 )+α

cluster bands and the 12C(0+
2 )+α bands. The instability of the

12C(0+
2 )+α states in the rotation is not surprising because the

12C(0+
2 ) cluster is considered to be the 3α cluster gas and such

a gas state should not be a rigid but fragile one differently from
the 12C(0+

1 ) cluster.
Consequently, it is difficult to clearly identify the band

members of the 12C(0+
2 )+α cluster state; however, considering
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FIG. 7. (Color online) (a) Theoretical excitation levels of 16O
calculated with the 12C(AMD)+αGCM (circles). Excited states
with significant 12C(0+

2 )+α component are shown by red triangles
and squares. States connected by the lines are those which can
be connected to the 4+ states with the 12C(0+

2 )+α component by
the strong (sequential) transitions. Squares indicate possible band
assignment for the 12C(0+

2 )+α cluster states. Circles show the band
members of the 12C(0+

1 )+α cluster structure starting from the 0+
II

state. (b) Experimental excitation energies of the candidate states
for the 12C(0+

2 )+α cluster states observed by the 12C(12C,8Be+8Be)
and the 12C(16O, 4α) reactions [39,40], and those of the band members
of the 12C(0+

1 )+α structure [35].

the relatively strong E2 transition strength and similarity of
the d dependence of the 12C(0+

2 )+α overlap, I propose a
possible assignment that the 2+ state at 19.3 MeV and 4+
at 21.6 MeV can be regarded as the band members from the
0+

V state, and the 2+ state at 21.5 MeV and 4+ at 23.0 MeV are
interpreted as members of the band staring from the 0+ state at
21.3 MeV. The excitation energies are plotted as a function of
the spin J (J + 1) in Fig. 7. Square points indicate the assigned

states, triangles show the states with significant 12C(0+
2 )+α

component, and circles show the rotational members of the
12C(0+

1 )+α band starting from the 0+
II state. Reflecting the

structure change, the slope of the energy for J (J + 1) does
not show the linear dependence but it becomes gentle with the
increase of spin. I also show in Fig. 7 the experimental energy
levels of the excited states observed in the 12C(12C,8Be+8Be)
and the 12C(16O, 4α) reactions [39,40], which are considered
to be candidates for the 12C(0+

2 )+α cluster states [17]. The
calculated energies of the 12C(0+

2 )+α states measured from
the 12C(0+

2 )+α threshold in the present result qualitatively
agree with those of the experimental data.

IV. ISOSCALAR MONOPOLE EXCITATION

As discussed recently, isoscalar monopole (ISM) excitation
in the low-energy part gives important information on cluster
structures of excited states in light nuclei [24,41]. As is well
known, the isoscalar giant monopole resonances (ISGMRs)
in heavy nuclei have been observed as a single peak and
described by the collective breathing mode. The systematics
of the peak position has been discussed in association with
the nuclear compressibility. In light nuclei such as 12C and
16O, however, it has been revealed by the (e,e′) and (α,α′)
scattering experiments [42,43] that the ISM strength is strongly
fragmented and significant fraction of the energy-weighted
sum rule concentrates on a few states in a low-energy region.
Recently, Yamada et al. discussed the ISM excitation in 16O
and showed that the significant ISM strength at the low-energy
part up to Ex ∼ 16 MeV can be described well by the monopole
excitation to the cluster states [24]. It was argued that two
different types of monopole excitation exist in 16O, that is, the
monopole excitation to cluster states dominating the strength
in the lower-energy part and that of the mean-field type
1p-1h excitation yielding the strength in the higher-energy
part 16 � Ex � 40 MeV.

In principle, these two modes are not decoupled from but
should couple to each other because the cluster excitation
partially involves the 1p-1h excitation. Indeed, the monopole
strength is partially described by the breathing type radial
oscillation of four α clusters as suggested by a simple
calculation to study the monopole oscillation using the time-
dependent AMD and fermionic molecular dynamics (FMD)
models [44]. Therefore, it is expected that the low-lying cluster
states feed the strength of a part of the ISGMR strength
originally concentrating at the higher energy region.

Although the cluster model calculations such as the 4α-
OCM are useful to describe the cluster excitation, they are
not enough to describe the mean-field type 1p-1h excitation
because frozen 4α clusters are assumed. Also the present
calculation of the 12C(AMD)+α may not be sufficient for the
1p-1h excitation because an α cluster around 12C is assumed
in the model though twelve nucleon dynamics is incorporated
in the wave function of the 12C AMD wave functions.
Instead of cluster model calculations, mean-field calculations
including particle-hole excitations such as the random phase
approximation (RPA) have been applied to investigate ISGMR.
In the RPA calculations for 16O [45–48], it was found that
monopole strength spreads out and has a multipeak structure
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with the centroid around Ex = 20 ∼ 25 MeV. They describe
the experimental strength in the high-energy region Ex �
16 MeV measured by (α,α′) scattering. However, the peak
structure with the significant fraction of the energy-weighted
sum rule (EWSR) in the low-energy part is not reproduced by
the mean-field calculations.

To take into account the coexistence of cluster and mean-
field features in the ISM excitation, I extend our present frame-
work of the 12C(AMD)+αGCM by incorporating the 1p-1h
type excitations on the top of the approximate ground state
wave function obtained by the 16O(AMD+VAP) calculation.
After explaining the additional basis wave functions, I discuss
the monopole transition in 16O.

A. AMD+VAP calculation of 16O and the shifted AMD method

The present method of the 12C(AMD)+αGCM is suitable
mainly to describe various types of cluster excitation. To take
into account the 1p-1h excitation, I perform the AMD+VAP
calculation for 16O and consider small variations of single-
particle wave functions from the obtained ground state
wave function. In a similar way to Eq. (1) for 12C, an AMD
wave function for 16O is written by a Slater determinant of 16
single-nucleon Gaussian wave packets,

�AMD
16O (Z) = 1√

A!
A{ϕ1,ϕ2,...,ϕA}. (11)

In the AMD+VAP method, the energy variation is done with
respect to the spin-parity eigen wave function P Jπ

MK�AMD
16O (Z).

After the AMD+VAP calculation for 16O, I get the op-
timum AMD solution �AMD

16O (Z0) which is approximately
regarded as the intrinsic wave function of the ground state.
Here Z0 indicates the set of optimized parameters Z0 =
{X0

1,X
0
2, . . . ,X

0
A,ξ1, . . . ,ξA}.

Then, I vary the spatial part of each single-particle wave
function from the AMD wave function, �AMD

16O (Z0), by
shifting a Gaussian center of the ith single-particle wave
function, X0

i → X0
i + δeσ (σ = 1,2,3). (e1, e2 and e3 are

the three-dimension unit vectors.) For all single-particle
wave functions, I consider a small shift to three directions
independently, namely, A × 3 kinds of shifted wave
functions �AMD

16O (Z′
0(i,σ )) (i = 1, . . . ,A and σ = 1,2,3)

with Z′
0(i,σ ) ≡ {X0

1
′
, . . . ,X0

i

′ + δeσ , . . . ,X0
A

′
,ξ1, . . . ,ξA}.

Here X0
A

′
is chosen to be X0

A

′ = X0
A − δeσ /A to take into

account the recoil effect. By using the linear combination of
1 + 16 × 3 = 49 wave functions, the original wave function
�AMD

16O (Z0) and the shifted ones �AMD
16O (Z′

0(i,σ )), 1p-1h
excitations in the intrinsic frame are incorporated. I fix the
spin orientations ξi and consider the 1p-1h excitations mainly
for the spatial part. For excited 0+ states of 16O, I superpose the
spin-parity eigenstates projected from those wave functions,
P Jπ

MK�AMD
16O (Z0) and P Jπ

MK�AMD
16O (Z′

0(i,σ )). The coefficients of
each basis wave functions are determined by diagonalizing the
norm and Hamiltonian matrices. By adopting a small enough
value for the shift parameter δ, I perform the small amplitude
limit calculation with the AMD framework. In the present
work, I take the parameter δ = 0.1 which is small enough
to get the δ-independent result after the diagonalization.

I call this calculation “16O(shifted AMD)”. If arbitrary
variation of the single-particle wave functions is taken into
account, the small-amplitude calculation in the intrinsic frame
contains 1p-1h excitation modes and corresponds to the RPA
calculation. However, in the present calculation based on the
shifted AMD, the variation of a single-particle wave function
is restricted only in the shift of Gaussian wave packet and
the spin variation is omitted. It means that the model space of
the shifted AMD partially covers the model space of 1p-1h
excitations. Owing to the spin and parity projections, higher
order excitations beyond 1p-1h such as the coupling of the
single-particle excitation with the rotational mode can be
contained in the present framework of the shifted AMD.

In addition to the 16O(shifted AMD) calculation, I also
perform the hybrid calculation of 12C(AMD)+αGCM and
16O(shifted AMD) by superposing all basis wave functions.
The coefficients are determined again by the diagonalization.

B. Monopole transitions

The strength function of the ISM excitation from the ground
state of 16O is

S(E) ≡ δ(E − En)|M(IS0,0+
1 → 0+

n )|2, (12)

M(IS0,0+
1 → 0+

n ) = 〈0+
n |

16∑
i=1

r2
i |0+

1 〉. (13)

For the isoscalar excitation, this is 4 times as much as the
isoscalar E0 strength function defined in Refs. [42,43]. The
EWSR of the ISM transition is∑

n

(En − E1)|M(IS0,0+
1 → 0+

n )|2 = 2�
2

m
16〈r2〉, (14)

where 〈r2〉 is the mean-square matter radius of the ground
state,

〈r2〉 = 1

16
〈0+

1 |
16∑
i=1

r2
i |0+

1 〉. (15)

In the results of the 12C(AMD)+αGCM, the 16O(shifted
AMD), and the hybrid of 12C(AMD)+αGCM and 16O(shifted
AMD), the energy-weighted sum of the ISM strength for all
excited states is 93%, 87%, and 95% of the EWSR value,
respectively.

Since the present calculation is the bound state approx-
imation where coupling with continuum states is omitted,
all excited states are discrete states without escaping width.
Nevertheless, the monopole strengths calculated in the bound
state approximation may be helpful to discuss the gross struc-
ture of the monopole strength and also useful to analyze the
contribution from each mode qualitatively, provided that such
characteristic modes of monopole excitations as collective
breathing modes and cluster excitation ones keep their features
under the coupling with continuum states. For quantitative
discussions of monopole strength function such as the energy
position and width of monopole resonances in the high-energy
region, one should carefully take into account the coupling
with continuum states.

I calculate the ISM transition matrix element M(IS0) for
0+

n states of the 12C(AMD)+αGCM, the 16O(shifted AMD),
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and the hybrid full calculations. The calculated ISM transition
strength [B(IS0) = |M(IS0)|2] is shown in the histogram in
Fig. 8, where the strength |M(IS0)|2 for 0+

n states in each
energy bin is summed up.

In the 12C(AMD)+αGCM result, the significant strength
exists in the low-energy part for the 0+

II , 0+
III , and 0+

IV states
having the 12C(0+

1 ,2+
1 )+α cluster structures. They exhaust

∼30% of the EWSR. Such a large fraction in the low-energy
part (Ex � 16 MeV) is comparable to the 4α-OCM calculation
where ∼20% of the EWSR exists in the Ex � 16 MeV part
[24].

In the result of the 16O(shifted AMD) calculation, the ISM
transition strength shows the two-peak structure around Ex ∼
20 MeV, one below and the other above Ex = 20 MeV. The
lower and the higher peaks exhaust about 20% and 40%
of the EWSR, respectively. The lower peak is understood
as the motion of one α cluster against the 12C core, namely,
the coherent mode of four single-particle motions against the
residual 12 nucleons. This mode originates in the ground state
α correlation around the 12C core contained in the AMD+VAP
result of 16O(0+

1 ). The EWSR ratio for the lower peak is the
same order of the EWSR ratio for the cluster states with the
12C(0+

1 ,2+
1 )+α cluster structures in Ex � 16 MeV calculated

with the 12C(AMD)+αGCM. On the other hand, the higher
peak around 25 MeV corresponds to the breathing mode which
can be described by the coherent isotropic single-particle
motions. This peak consists of two excited states which almost
degenerate within 1 MeV. Comparing with the RPA and
the second RPA calculations [46,48] that show three bump
structure having spreading widths, the present calculation
describes only three simple states without fragmentation,
maybe because of the restriction of the present model space.

The full calculation using the hybrid model space of
the 12C(AMD)+αGCM and the 16O(shifted AMD) shows
qualitatively similar features of the 12C(AMD)+αGCM cal-
culation. Namely, there exist three peaks corresponding to
the cluster states in the low-energy part (Ex � 16 MeV)
exhausting ∼25% of the EWSR, and the concentration of the
strength around the peak-like structure slightly above 20 MeV.
Quantitatively, the monopole strengths of 0+ states in the low-
energy part are somehow different between two calculations.
In particular, the strengths of the third and fourth states (0+

III

and 0+
IV ) having the higher nodal 12C(0+

1 )+α component and
the 12C(2+

1 )+α one change because these two components mix
to each other in the present calculation. Qualitatively, however,
the effect of 1p-1h excitation modes to the monopole strengths
for cluster states is minor. This result is consistent with the
work by Suzuki and Hara with the calculation of the 12C+α
cluster and symplectic mixed basis [49].

Comparing the results of the 12C(AMD)+αGCM, the
16O(shifted AMD), and the full hybrid calculations, it is
found that there is no significant difference of the EWSR
ratios of the low-energy and high-energy parts among three
calculations. This implies that two modes around ∼20 MeV
obtained in the 16O(shifted AMD) are involved in excited
states of the 12C(AMD)+αGCM. That is, the higher peak
of the collective breathing mode corresponds to the peak-like
structure slightly above 20 MeV in the 12C(AMD)+αGCM
and the full calculation, while the lower mode for the 12C-α
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FIG. 8. Isoscalar monopole transition strength function. The
theoretical B(IS0) calculated with (a) the 12C(AMD)+αGCM,
(b) the 16O(shifted AMD), and (c) the hybrid of 12C(AMD)+αGCM
and 16O(shifted AMD). In the histogram the strength in each energy
bin is summed up. The experimental B(IS0) (fm4) converted from the
B(E0) measured by (e,e′) scattering for the 0+ states at 6.05 MeV,
12.05 MeV, and 14.01 MeV are also shown by stars in the third
panel (c). (d) The experimental data measured by (α,α′) scattering. I
multiply the data from Ref. [43] by a factor 2 in panel (d).

024302-10



CLUSTER STATES AND MONOPOLE TRANSITIONS IN 16O PHYSICAL REVIEW C 89, 024302 (2014)

motion is fragmented in the lowest three excited 0+ states
with the 12C(0+

1 ,2+
1 )+α cluster structures. Namely, I can

make the following conclusions regarding the origins of
isoscalar monopole excitations: In the mean-field type 1p-1h
excitation described by the shifted AMD, there exist two
modes around Ex ∼ 20 MeV. The lower mode corresponds to
the 12C-α relative motion and the higher one is the collective
breathing mode. The former is described by the coherent
mode of four single-particle motions against residual 12
nucleons and the latter is the coherent isotropic mode of
all single-particle motions in the shifted AMD calculation.
Because of the coupling with the cluster excitation, the lower
mode is fragmented into several cluster states in Ex � 16 MeV
while lowering the energy centroid. The strength of the higher
breathing mode is somehow spread and also its energy centroid
is lowered to contribute to the strength around Ex ∼ 20 MeV.
The present result is consistent with the suggestion of two
different-type excitation modes in the isoscalar monopole
transitions in 16O by Yamada et al. in Ref. [24].

The ISM transition strength has been observed by (α,α′)
scattering [43]. The measured strength for the 0+ states at
12 and 14 MeV is smaller than the that observed by (e,e′)
scattering by a factor 2–4. Moreover, their measurement in
the energy region 11 < Ex < 40 MeV yields only ∼50% of
the E0 EWSR. These facts may suggest possible ambiguity
of the normalization in the ISM strength measured by (α,α′)
scattering. I multiply the experimental data by a factor 2 and
show the values in Fig. 8(d) to compare the shape of the
strength function with our result. Comparing the result of the
full calculation with the experimental data, it is shown that
the strength for the 0+

III and 0+
IV states at 13 and 15 MeV

may describe the peaks in the 11 < Ex < 16 MeV of the
experimental data. The significant strength in the higher region
around 20 MeV is considered to correspond to the bump
structures in the regions 16 < Ex < 20 MeV and/or 20 <
Ex < 25 MeV. The calculated strengths are not fragmented
as much as the experimental ones, maybe because of the
limitation of the present model space.

V. SUMMARY AND OUTLOOK

Cluster structures and monopole transitions in posi-
tive parity states of 16O were investigated based on the
12C(AMD)+αGCM calculation. The lowest three excited 0+
states (0+

II , 0+
III , and 0+

IV ) have the 12C(0+
1 ,2+

1 )+α cluster
structures. The 0+

II with the 12C(0+
1 )+α structure and its

rotational band members qualitatively reproduce the properties
such as energy levels and E2 and monopole transition strengths
for the experimental 0+

2 , 2+
1 , and 4+

1 states, which have been
considered to be the 12C(0+

1 )+α cluster band. As far as I know,
the present calculation is the first microscopic calculation that
can describe reasonably the excitation energies of these excited
states.

In the present calculation, I obtained the fifth 0+ state (0+
V )

having the developed 12C(0+
2 )+α structure. Because of the

feature that an α cluster is moving in the L = 0 wave around
the 12C(0+

2 ), it is regarded as the 4α cluster gas state similar to
the 3α cluster gas in the 12C(0+

2 ). This state may correspond

to the 0+
6 state of the 4α cluster gas state suggested in the

4α-OCM by Funaki et al. [5,6].
With the analyses of the E2 transition strength and

the 12C(0+
2 )+α component, I considered band members of

the 12C(0+
2 )+α cluster state. Around Ex ∼ 20 MeV, there

are several 2+ and 4+ states having some component of
12C(0+

2 )+α. The E2 transition strength is fragmented among
them. The present result suggests that the structure changes;
in other words, the state mixing occurs in the rotation of the
12C(0+

2 )+α cluster structure. This makes it difficult to assign
clearly the 12C(0+

2 )+α band members in high spin states. This
feature is different from that of the 12C(0+

1 )+α cluster band
and may originate in the 3α cluster gas feature of the 12C(0+

2 )
that might be fragile in the rotation.

The isoscalar monopole excitation was discussed with
the 12C(AMD)+αGCM and also with the hybrid calculation
of the 12C(AMD)+αGCM and 16O(shifted AMD). In the
strength of both calculations, there exist three peaks for the
cluster states in the low-energy part (Ex < 16 MeV). This
is consistent with the preceding work with the 4α-OCM
calculation [24]. I also found the concentration of the strength
around the peak-like structure slightly above Ex ∼ 20 MeV,
which originates in the collective breathing mode. Comparing
the hybrid calculation with the 16O(shifted AMD) calculation,
I make the following conclusions regarding the origins of
isoscalar monopole excitations: In the mean-field type 1p-1h
excitation described by the shifted AMD, there exist two
modes around Ex = 20 MeV. The lower mode corresponds to
the 12C-α relative motion and the higher one is the collective
breathing mode. The former is described by the coherent
mode of four single-particle motions against the residual 12
nucleons and the latter is the coherent isotropic mode of all
single-particle motions in the shifted AMD calculation. In the
hybrid calculation, because of the coupling with the cluster
excitation, the lower mode is fragmented into several cluster
states in Ex < 16 MeV while lowering the energy centroid.
The higher-energy breathing mode is somehow spread and
its energy centroid is lowered to contribute to the strength
around Ex ∼ 20 MeV. The present result is consistent with
the suggestion of two different-type excitation modes in the
isoscalar monopole transitions in Ref. [24].

The present calculation is a bound state approximation. The
stability of the excited states should be studied in more detail by
taking into account coupling with continuum states. Also for
the quantitative discussion of monopole strength function, it is
important to consider the coupling with continuum states. I also
should reexamine the choice of the effective interaction and the
interaction parameters for quantitative reproduction of energy
levels. In the present work, I used the same phenomenological
effective nuclear forces as those used in the previous work
on 12C. The energy spectra of 16O may be improved by fine
tuning of the interaction parameters. However, I have some
difficulty in completely reproducing the binding energies of α,
12C, and 16O as well as the energy spectra of the subsystem 12C
simultaneously with such phenomenological effective nuclear
interaction. Ab initio calculation based on realistic nuclear
force is one of the promising tools for quantitative prediction
of energy spectra of 16O, though applications of ab initio
calculations to cluster states are still limited.
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