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Inelastic versus total nucleon-nucleon cross section at large Nc
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In this paper, the implication of the extreme large Nc limit for nucleon-nucleon cross section is examined.
Starting from the Nc scaling of the S-matrix elements, a relation between the total inelastic and total cross sections
is derived for the regime in which the momenta are much larger than the QCD scale. A conceptual complication
arises from the fact that there is a tower of baryons, such as the �, with mass splittings from the nucleon which
go to zero at large Nc. Since these baryons are stable at large Nc, the meaning of elasticity must be modified.
Processes which only transform nucleons to these baryons are considered elastic; processes in which at least one
additional meson is produced are considered inelastic. It is shown that in the extreme large Nc limit, the total
inelastic cross section is exactly one eighth of the total cross section. In contrast, in the physical world of Nc = 3,
the total cross section for high-energy nucleon-nucleon scattering is dominated by inelastic processes.
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I. INTRODUCTION

The approach to quantum chromodynamics (QCD) based
on an expansion around the limit of an infinite number of
colors has attracted wide interest since its introduction in the
1970s [1,2]. Its attractiveness stems from the fact that many
aspects of the QCD simplify in the limiting case of Nc → ∞.
Moreover, to the extent that the physical world of Nc = 3
is close to the infinitely colorful world of Nc → ∞, one
can obtain useful phenomenological predictions following this
approach. Many qualitative and semiquantitative predictions
are possible since certain quantities are analytically calculable
in the leading order of the 1/Nc expansion. This is remarkable
since at present there is no known way to solve QCD even
at leading order in the ordinary expansion in powers of
the coupling constant. For example, it can be shown that
an emergent spin-flavor symmetry [3–8] arises for certain
baryon observables at large Nc, and this symmetry allows
for predictions of ratios of various physical quantities with
corrections which are known to be of relative order 1/Nc or
in favorable cases 1/N2

c [7,9]. The predictions of these tend to
describe the physical world remarkably well [10].

Recently, there has been interest in the implications of the
large Nc limit on nucleon-nucleon scattering. The spin-flavor
dependence of the inclusive differential cross section, that is,
the cross section for the nucleons to emerge at a fixed angle
with any number of mesons produced, was deduced in Ref. [11]
for the kinematic regime in which the incident momenta are
large compared to �QCD (or more precisely for the regime
of Witten kinematics [2] in which the incident velocity of
the nucleons is held fixed when Nc is taken large). Since the
mass of the nucleon is proportional to Nc, this automatically
yields kinematics with large momenta, even large compared
to the �QCD scale. The analysis of Ref. [11] follows from the
emergent symmetry discussed above. It was argued in Ref. [12]
that the total cross section should follow the same spin-flavor
dependence as the inclusive differential cross section.
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The development of an analytic formula for the total
nucleon-nucleon cross section in the extreme large Nc limit [in
which ln(Nc) � 1] in the Witten kinematics, which was done
in Ref. [13], represents an important theoretical breakthrough.
The result is

σtot = 2π

m2
π

ln2(Nc) . (1)

A general analysis of the assumptions underlying the deriva-
tion of Eq. (1) was presented in Ref. [14]; the key issue in
that work is the Nc scaling of the real and imaginary parts
of nucleon-nucleon S-matrix elements. It was argued that the
proper quantity to focus on is the logarithm of the S matrix. A
number of arguments strongly suggest that both the real and
imaginary parts of the logarithm of the S-matrix elements are
proportional to Nc. This work is a followup to these papers; a
new interesting result is derived determining a fraction of cross
section corresponding to inelastic processes, again restricted
to Witten kinematics and to the extreme large Nc limit. In
particular, we find the following relation to hold:

σin

σtot
= 1

8
. (2)

There are two important caveats to this result. The first
is that at large Nc, there is a tower of baryons with spin
equal to isospin which is degenerate with the nucleon, more
specifically, with the mass splitting proportional to 1/Nc. Thus,
reactions in which nucleons only transform to other members
of this degenerate multiplet of states and no other particles
(mesons) are emitted are considered elastic at large Nc. This
definition of elasticity is natural at large Nc. It is important
to note that only a few lowest states in the baryon multiplet
are relevant in the presented analysis and therefore we do
not need to worry about the fact that the mass splitting is
proportional to J 2/Nc and may become non-negligible as J
becomes large (comparable to Nc). The reason for this is the
fact that in order to excite a baryon by I = J = 1, a pion
exchange must occur; excitation of a nucleon to a state with
large I = J requires also a large number of pion exchanges
and therefore occurs at much shorter distance not affecting the
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total cross sections. The second caveat is that, like Eq. (1),
this formula only holds in the extreme large Nc limit in which
ln(Nc) � 1. This is not a computational problem, but rather
a problem if one thinks about phenomenological relevance of
obtained relations. Note that the world of Nc = 3 is far from
this limit. Thus, the result (while of considerable theoretical
interest) should not be expected to hold even approximately at
Nc = 3. Indeed, it does not.

II. CROSS SECTION CALCULATION

First, let us briefly summarize the basic properties of
nucleon physics in the large Nc limit, and their consequences
for our analysis. We also use this opportunity to set the notation
used in this paper. According to the standard Nc scaling rules
[2], the mass of the nucleon is proportional to Nc. The Witten
kinematic regime, which has a smooth large Nc limit, is the
one for fixed velocity; thus, the nucleon momentum is also of
order Nc. The self-consistency of a Schrödinger-type equation
in this regime requires also the strength of the interaction to
be of order Nc [15,16] while the range of the interaction is to
be kept finite. In summary,

M = NcM̃ , k = Nck̃ , V (r) = NcṼ (r). (3)

Characters with a tilde indicate the variables with the Nc

scaling removed; plain characters stand for the full quantities
(this notation is used throughout the paper). It directly follows
from Eq. (3) that the angular momentum l is also proportional
to Nc if one considers the semiclassical limit, in which the
impact parameter b is held fixed. Recall that the semiclassical
limit is appropriate at large Nc and Witten kinematics [13,14].

The key theoretical quantity determining the scattering
process is the elastic S matrix, where the meaning of elastic is
defined as above. The incident and final states depend on the
spin and flavor configurations of the baryons; let us label one
such configuration by A. The two-body states also depend on
the angular momentum l. Thus, a two-body elastic S-matrix
element is specified by Selastic

A,l;A′l′ . We note that in the collision
of nucleons, the total angular momentum j rather than orbital
one l is conserved; so, the S matrix is not diagonal in l. This
technicality, however, does not alter the leading Nc behavior
discussed in this work.

The limit in which we are interested is Nc → ∞. This limit
considered in the kinematic regime specified by scaling (3)
corresponds to the semiclassical approximation to quantum
mechanics. Of course, the actual problem of interest, the
nucleon-nucleon scattering at large momentum, is inherently a
field-theoretical problem; it is possible to create other particles
(mainly mesons). However, this can be captured in a quantum
mechanical language by considering a potential with nonzero
imaginary part which is matched to the results of field theory.
On the one hand, the imaginary part leads to a violation
of unitarity and a loss of flux; on the other hand, it is
precisely what one expects during inelastic processes, i.e.,
the flux is lost from an elastic channel into other channels
(for example, a state with nucleons and pions). Since we
are not interested in the specifics of inelastic channels, the
use of the quantum mechanics with a complex potential is

sufficient. The appropriateness of this approach was discussed
more extensively in Ref. [14].

The starting point of our discussion is the observation that
the logarithm of the S matrix for the elastic processes is
proportional to Nc in the large Nc limit [14] for k, l, and l′
of order Nc. A precise way to state this is that eigenvalues of
the elastic S matrix can be written as real and imaginary phase
shifts. For our purposes, it is useful to write the j th eigenvalue
of the S matrix sj (k̃) in terms of the respective phase shifts:

sj (k̃) = exp
(−2δIm

j (k̃) + 2i δRe
j (k̃)

)
= exp

(−2Nc δ̃Im
j (k̃) + 2iNc δ̃Re

j (k̃)
)
, (4)

where the indices Im and Re indicate the imaginary and real
parts of the phase shift, respectively. The imaginary part of the
phase shift parametrizes the loss of flux into inelastic channels.

The quantity of interest in this work is the inelastic cross
section. We consider the case in which the initial nucleons
are in some configuration that we label A. In a partial wave
expansion, the general expression for inelastic scattering is
given by

σA
in = π

k2

∑
l

(2l + 1)

(
1 −

∑
l′,A′

∣∣Selastic
l,A;l′,A′

∣∣2

)

≈ π

k2

∫
dl2

(
1 −

∑
l′,A′

∣∣Selastic
l,A;l′,A′

∣∣2

)
, (5)

where the second form is valid in the regime where many
partial waves contribute, as they do at large Nc in Witten
kinematics. Inserting Eq. (4) and changing variables to an
integration over an impact parameter b = l/k yields

σA
in = π

∫
db2

⎛
⎝1 −

∑
j

∣∣vj

A,Ncbk̃

∣∣2
e−4Nc δ̃Im

j (k̃)

⎞
⎠ , (6)

where v
j

A,Ncbk̃
is the A,l = Ncl̃ component of the j th nor-

malized eigenvector of the elastic S matrix. Since they are
normalized, ∑

j

∣∣vj

A,Ncbk̃

∣∣2 = 1. (7)

In the formal large Nc limit, the factor in parentheses in
Eq. (6) is equal to one for all values of b. Since the region
of integration in b2 extends to infinity, this implies that the
inelastic cross section diverges at large Nc. In a sense, this
is not surprising since the classical cross section is always
infinite unless the potential has a strictly finite support, and
the large Nc regime corresponds to the semiclassical one. The
interesting question is as to how the cross section diverges. We
know that, for any finite value of Nc, the cross sections are
finite. The reason for this concerns an ordering of limits. At
sufficiently large impact parameter b, the effective absorptive
potential goes to zero, while at sufficiently large Nc it goes to
infinity. Thus, for any b at sufficiently large Nc, the factor in
parentheses in Eq. (6) is arbitrarily close to unity. However,
for any finite Nc at sufficiently large b, it is arbitrarily close to
zero. Thus, at very large but finite Nc, one expects the factor
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to be essentially unity for the region of small b and essentially
zero when b → ∞ with a crossover somewhere in-between.

For now, let us suppose that the crossover regime is
narrow, that is, the characteristic width of the crossover region
is parametrically small compared to size of the region for
which the factor in parentheses in Eq. (6) is nearly unity.
In that case, the factor can be modeled by a Heaviside step
function θ (b2 − b2

0) where b0 parametrizes the location where
the crossover takes place: the system looks like a black-disk
scattering. Thus,

σA
in ≈ πb2

0. (8)

It is easy to see that this does in fact happen and that b0 ≈
ln(Nc)/(2mπ ) [13,14].

The key point is that the overall strength of the effective
absorptive potential scales as Nc and its longest-ranged
contribution is of two-pion range [14]; it causes an exponential
dropoff which goes as exp(−2mπb) times some subexponen-
tial function. As was shown in Ref. [14], when the imaginary
part of the potential is of order Nc, then the scaling of Eq. (4)
holds. On the other hand, when the scale of the imaginary
potential is small, the Born approximation for the partial wave
is valid and the imaginary part of the phase shift is proportional
to the imaginary potential itself. Clearly, at large Nc, the
transition region is determined by the longest-range part of
the interaction since shorter-range contributions will exponen-
tiate away, leaving the interaction strength parametrically of
order Nc.

The factor 2mπ in the exponential dropoff is crucial for the
difference between total cross section derived in Ref. [13] and
inelastic cross section derived here leading to Eq. (2); let us
therefore briefly review the origin of this factor (for a more
thorough explanation, we refer the reader to Ref. [14]). In a
conventional meson-exchange model, the interaction between
baryons is mediated via mesons. Since we are interested
only in total (inelastic) cross section, only the longest-range
contribution, in other words lightest intermediate meson, is
relevant. At large Nc, just as at Nc = 3, the lightest mesons are
pions. Elastic scattering is dominated by one-pion exchange,
however, it is kinematically forbidden to create a new meson
when only one-meson exchange is considered. The first order
where inelasticity appears is the two-pion exchange; therefore,
the exponential dropoff is dominated by a factor of 2mπ . Recall
that we are interested only in the longest-range part of the
interaction and therefore we can neglect the exchange of other
possible mesons (pion and eta, for example).

Returning to the formula for the inelastic cross section, one
expects the transition region to be centered on a value of b = b0

for which the effective absorptive potential is of order N0
c since

in this region the phase shift is neither parametrically large
yielding the factor in parentheses in Eq. (6) to be effectively
unity nor small yielding it close to zero. Since the dominant
scaling at large b goes exponentially, one expects b0, the center
of the transition region, to satisfy

Nc exp(−2mπb0) ∼ 1. (9)

To make this statement more concrete, we will solve for b0

using Nc exp(−2mπb0) = c, where c is an arbitrary constant of
order unity. This yields b0 = − ln(c)/(2mπ ) + ln(Nc)/(2mπ ).

Consider the extreme large Nc limit in which ln(Nc) � 1.
In that case, ln(Nc)/(2mπ ) dominates parametrically over
ln(c)/(2mπ ) and b0 is well approximated by ln(Nc)/(2mπ ).

What is left to be shown is that the width of the crossover
region is parametrically small compared to b0 and thus the
approximation using Heaviside step function in Eq. (6) is
justified. This is clearly true in the extreme large Nc limit
since the width of the crossover region is of order N0

c . To
see this, note that the transition region can be defined as a
region in which the potential (for a given finite value of Nc)
goes from a very large number of order unity (yielding large
absorption and black-disk behavior) to a very small number of
order unity (yielding essentially no absorption). This happens
over a few e-folds since the functional form of the potential
is exponential; one e-fold is characterized by changes of b of
order 1/(2mπ ), which is independent of Nc. Thus, the ratio of
the width of the crossover region to b0 scales as 1/ ln(Nc). In
the extreme large Nc limit, this is negligible.

Thus, we see that

σA
in = π

4m2
π

ln2(Nc) (10)

for any initial spin-flavor state A. Comparing with Eq. (1)
immediately yields Eq. (2). From the derivation it should
be apparent that corrections to Eq. (2) are expected to be of
relative order 1/ ln(Nc).

It is easy to understand why the ratio of the inelastic to the
total cross section in Eq. (2) is 1/8. Note that the characteristic
range of the inelastic scattering is 2mπ while for the elastic
scattering it is mπ ; the longest-range elastic interaction is
dominated by one-pion exchange whereas inelastic channels
emerge at the level of two-pion exchange. Hence, the effective
b0 for elastic scattering is twice that for the inelastic one.
Since the cross section depends on b2

0, a factor of 4 emerges in
the difference between the total (1) and inelastic (10) cross
sections. There is an additional factor of 2 coming from
extremely forward diffractive scattering which is purely elastic
and has no classical analog.

III. DISCUSSION

Naturally, the question of the phenomenological relevance
of the obtained results arises since the world is not Nc = ∞ but
rather Nc = 3. The total cross section predicted by Eq. (1) is
σtot ≈ 150 mb, which is 50% more than the recent observation
from LHC [17] at

√
s = 7 TeV: σ EXP

tot ≈ 100 mb. Considering
the crudeness of the extreme large Nc limit, the prediction for
the total cross section is in the right ballpark. The situation
for the inelastic-to-total ratio is much worse. The total cross
section at high energies is dominated by the inelastic processes;
at LHC, the ratio is approximately 3/4. It is in complete
disagreement with Eq. (2) since it predicts the dominant
portion of the total cross section to be elastic; the fraction
of the inelastic cross section is expected to be only 1/8.
The theoretical result does not match the observation even
qualitatively. The obvious discrepancy between the large Nc

results and the observation is, however, not that surprising.
Formally, the relations (1), (2), and (10) hold in the extreme
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large Nc limit, specifically for ln(Nc) � 1, which is clearly
not the case for Nc = 3. However, regardless of the lack
of immediate phenomenological significance, the ability to
calculate the total cross section as well as its inelastic
component analytically is very interesting from the point of
view of theoretical analysis.
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[14] T. D. Cohen and V. Krejčiřı́k, Phys. Rev. C 88, 054003 (2013).
[15] D. B. Kaplan and M. J. Savage, Phys. Lett. B 365, 244 (1996).
[16] D. B. Kaplan and A. V. Manohar, Phys. Rev. C 56, 76 (1997).
[17] The TOTEM Collaboration et al., Europhys. Lett. 96, 21002

(2011).

024003-4

http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(74)90154-0
http://dx.doi.org/10.1016/0550-3213(79)90232-3
http://dx.doi.org/10.1016/0550-3213(79)90232-3
http://dx.doi.org/10.1016/0550-3213(79)90232-3
http://dx.doi.org/10.1016/0550-3213(79)90232-3
http://dx.doi.org/10.1103/PhysRevLett.52.87
http://dx.doi.org/10.1103/PhysRevLett.52.87
http://dx.doi.org/10.1103/PhysRevLett.52.87
http://dx.doi.org/10.1103/PhysRevLett.52.87
http://dx.doi.org/10.1103/PhysRevD.30.1795
http://dx.doi.org/10.1103/PhysRevD.30.1795
http://dx.doi.org/10.1103/PhysRevD.30.1795
http://dx.doi.org/10.1103/PhysRevD.30.1795
http://dx.doi.org/10.1016/0370-2693(93)91635-Z
http://dx.doi.org/10.1016/0370-2693(93)91635-Z
http://dx.doi.org/10.1016/0370-2693(93)91635-Z
http://dx.doi.org/10.1016/0370-2693(93)91635-Z
http://dx.doi.org/10.1016/0370-2693(93)91637-3
http://dx.doi.org/10.1016/0370-2693(93)91637-3
http://dx.doi.org/10.1016/0370-2693(93)91637-3
http://dx.doi.org/10.1016/0370-2693(93)91637-3
http://dx.doi.org/10.1103/PhysRevD.49.4713
http://dx.doi.org/10.1103/PhysRevD.49.4713
http://dx.doi.org/10.1103/PhysRevD.49.4713
http://dx.doi.org/10.1103/PhysRevD.49.4713
http://dx.doi.org/10.1103/PhysRevD.51.3697
http://dx.doi.org/10.1103/PhysRevD.51.3697
http://dx.doi.org/10.1103/PhysRevD.51.3697
http://dx.doi.org/10.1103/PhysRevD.51.3697
http://dx.doi.org/10.1103/PhysRevC.86.024003
http://dx.doi.org/10.1103/PhysRevC.86.024003
http://dx.doi.org/10.1103/PhysRevC.86.024003
http://dx.doi.org/10.1103/PhysRevC.86.024003
http://dx.doi.org/10.1103/PhysRevD.62.077901
http://dx.doi.org/10.1103/PhysRevD.62.077901
http://dx.doi.org/10.1103/PhysRevD.62.077901
http://dx.doi.org/10.1103/PhysRevD.62.077901
http://dx.doi.org/10.1103/PhysRevC.65.034011
http://dx.doi.org/10.1103/PhysRevC.65.034011
http://dx.doi.org/10.1103/PhysRevC.65.034011
http://dx.doi.org/10.1103/PhysRevC.65.034011
http://dx.doi.org/10.1103/PhysRevC.85.024001
http://dx.doi.org/10.1103/PhysRevC.85.024001
http://dx.doi.org/10.1103/PhysRevC.85.024001
http://dx.doi.org/10.1103/PhysRevC.85.024001
http://dx.doi.org/10.1103/PhysRevLett.108.262301
http://dx.doi.org/10.1103/PhysRevLett.108.262301
http://dx.doi.org/10.1103/PhysRevLett.108.262301
http://dx.doi.org/10.1103/PhysRevLett.108.262301
http://dx.doi.org/10.1103/PhysRevC.88.054003
http://dx.doi.org/10.1103/PhysRevC.88.054003
http://dx.doi.org/10.1103/PhysRevC.88.054003
http://dx.doi.org/10.1103/PhysRevC.88.054003
http://dx.doi.org/10.1016/0370-2693(95)01277-X
http://dx.doi.org/10.1016/0370-2693(95)01277-X
http://dx.doi.org/10.1016/0370-2693(95)01277-X
http://dx.doi.org/10.1016/0370-2693(95)01277-X
http://dx.doi.org/10.1103/PhysRevC.56.76
http://dx.doi.org/10.1103/PhysRevC.56.76
http://dx.doi.org/10.1103/PhysRevC.56.76
http://dx.doi.org/10.1103/PhysRevC.56.76
http://dx.doi.org/10.1209/0295-5075/96/21002
http://dx.doi.org/10.1209/0295-5075/96/21002
http://dx.doi.org/10.1209/0295-5075/96/21002
http://dx.doi.org/10.1209/0295-5075/96/21002



