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Spin constraints on nuclear energy density functionals
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The Gallagher-Moszkowski rule in the spectroscopy of odd-odd nuclei imposes a new spin constraint on the
energy functionals for self-consistent mean field theory. The commonly used parametrization of the effective
three-body interaction in the Gogny and Skyrme families of energy functionals is ill suited to satisfy the spin
constraint. In particular, the Gogny parametrization of the three-body interaction has the spin dependence opposite
to that required by the observed spectra. The two-body part has a correct sign, but in combination the rule is
violated as often as not. We conclude that a new functional form is needed for the effective three-body interaction
that can take into better account the different spin-isospin channels of the interaction.
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Nuclear energy density functionals have been very suc-
cessful for describing the ground-state properties of nuclei,
particularly the heavier nuclei with even numbers of neutrons
and protons. On the other hand, the theory has been more
difficult for nuclei with odd numbers of protons and/or
neutrons. Even-even nuclear ground states invariably have
nucleons paired off in the Kramers-degenerate orbitals, but
odd-nucleon systems require consideration of spin densities
and other time-odd densities in the functional. In condensed
matter physics, time-odd states such as odd-electron systems
are treated with extensions of the usual density functional
theory (DFT) to include spin densities [1] and currents [2]. In
nuclear physics, the situation is somewhat different in that
fundamental guidance on the energy functional is weaker.
Functionals are parameterized with the inclusion of spin-
dependent terms but one relies heavily on phenomenology to
determine the parameters. Up to now, the focus on even-even
nuclei has left aspects of the spin and current dependence of the
functionals less well tested. Namely, the self-consistent fields
generated by the densities are even under time reversal, so the
time-odd fields that are present in systems with odd number
of nucleons are not controlled at all. Since roughly 75% of all
nuclei have odd nucleon number and thus unpaired spins, it is
important to find a reliable DFT or an alternative to treat them.

Some aspects of the time-odd fields have been examined in
the literature [3–7], but important experimental information
has been ignored in determining the parameters in the
functionals. In particular, the spin dependence of the neutron-
proton interaction is crucial to determine ground-state spins of
odd-odd nuclei. We show in this communication that an energy
functional from the Gogny family of functionals strongly
violates an empirical rule for the determination of ground-state
spins. The Gogny functional has a very specific form for an
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effective three-body interaction which automatically has the
wrong sign for the spin dependence. The other leading family
of functionals, based on Skyrme’s parametrization, has the
same form for the spatial dependence of the effective three-
body interaction, and is likely to have the similar difficulties.
Indeed, it was shown long ago that the contact parametrization
could lead to instabilities in nuclear Hartree-Fock theory [4];
see also Ref. [8].

The rule that should be respected was formulated by
Gallagher and Moszkowski (GM) [9] for the quasipar-
ticle angular momentum couplings in strongly deformed
odd-odd nuclei. Under those conditions the components
of the angular momentum Kp,Kn of the odd nucleons along the
symmetry axis are good quantum numbers. The two possible
relative spin orientations, Kp + Kn and |Kp − Kn|, give rise
to two separate rotational bands having band-head angular
momentum J = |Kp ± Kn|. According to the rule [9,10], the
orientation with parallel intrinsic spins is the lower energy
band. As documented in a review of the GM rule [10], there
are only rare exceptions.

We have developed a computer code to find the Hartree-
Fock-Bogoliubov minima of the Gogny functional in axially
symmetric nuclei, treating time-odd fields including the spin-
dependent ones [11]. Applying the code to spin splittings in
deformed nuclei, we found that the predicted splittings violated
the GM rule more often than not. In retrospect, the result is
not too surprising because as stated earlier none of the energy
functionals in common use have been fitted to spin-dependent
properties.

We now examine the origin of the results. It is useful
to distinguish the two-body and three-body interactions that
are present in the functionals. In principle there are enough
degrees of freedom in the parametrization of the two-body
interaction to take into account the GM splittings. However,
the three-body interaction is essential for nuclear saturation
and, for computational simplicity, it has a very constrained
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FIG. 1. (Color online) Low-lying band heads in the spectra of the
nucleus 174Lu and odd-A neighbors: 173Lu (left), 173Yb (center), and
174Lu (right). Due to the inversion of the lowest proton quasiparticle
energies, the ground-state doublet in 174Lu is not the lowest two-
quasiparticle configuration in the calculated spectrum. Lower energy
calculated configurations are not shown.

parametrization. Namely, it is a density-dependent contact
interaction in both the Skyrme and Gogny functionals of the
form

t3(1 + x0P̂σ )δ(�r1 − �r2)ρ((�r1 + �r2)/2)α (1)

in the standard notation [12]. It is further restricted to the
parallel-spin interaction (x0 = 1) in the Gogny functionals.
It must be repulsive to saturate nuclear matter, but it cannot
have a significant antiparallel-spin component because that
channel requires an attractive interaction overall to produce
BCS pairing.

We first illustrate the problem with a well-known example,
the nucleus 174Lu. The odd nucleons in its ground band have
angular momenta and parities (Kp,Kn) = (7/2+,5/2−) for the
proton and neutron respectively. These correspond to Nilsson
orbitals [404] ↓p and [512] ↑n. The spins are parallel for
antiparallel orbital angular momentum, i.e., K = |Kp − Kn|.
Indeed, the ground-state band has Kπ = 1− in agreement with
the Gallagher-Moszkowski rule. The other coupling of angular
momenta, K = Kp + Kn = 6−, is associated with an excited
band with a band head at 171-keV excitation. The experimental
levels are compared with the HFB calculations in Fig. 1. We
first show the spectra of neighboring odd-A nuclei on the
left-hand and middle panels. In the middle one, the theory
confirmed the ground-band assignment of a quasiparticle
in the [512] ↑n Nilsson orbital. However, the theory does
not predict the correct ordering of the proton quasiparticle
energies, shown in the left-hand panel. As a consequence, the
[404] ↓p [512] ↑n appear as excited states in the theoretical
spectrum of the 174Lu, shown in the right-hand panel. One
sees that the level ordering is opposite to the experimental,
with the 6− band head below the 1−, thus violating the GM
rule.

To understand the theoretical splittings in more detail, we
separate three contributions:

(i) the spin dependence of the two-body interaction,
treating the interaction in first-order perturbation
theory;

TABLE I. Theoretical spin splittings of neutron-proton configu-
rations for odd-odd nuclei in the rare-earth region. For each nucleus,
two-quasiparticle states were constructed, taking 10 to 15 proton
quasiparticle orbitals and a like number of neutron quasiparticle
orbitals. The table shows the percentages of the cases in which the
calculated splitting agrees with the GM rule, combining the results
for several isotopes of each element. Columns labeled 2BP, 3BP,
and FP show the perturbative results for the two-body interaction
alone, the three-body interaction alone, and the full interaction
treated perturbatively. The last column shows the results of the fully
self-consistent calculation of the HFB minima. The table shows the
results for the D1S interaction [13]. We also have calculated splittings
with the D1M interaction [14] and found similar results.

2BP (%) 3BP (%) FP (%) Self-consistent (%)

164−168Ho 93 8 28 45
168−172Tm 97 4 26 41
172−176Lu 97 4 28 40
180−184Ta 97 5 37 30
184−188Lu 97 3 36 28

(ii) the spin dependence of the density-dependent interac-
tion, again treating it perturbatively;

(iii) the many-body rearrangement effects associated
with the wave function modifications in the two-
quasiparticle state.

The two- and three-body perturbative contributions are +188
and −291 keV, respectively. The rearrangement contribution
is +44 keV, giving a total splitting of −61 keV as shown in
the level scheme in Fig. 1. This should be compared with an
empirical value of +114, which is what is left of the observed
splitting of +171 after the rotational effects have been removed
[10]. Thus, as claimed earlier, the three-body contribution has
a bad sign and in this case it overwhelms the good sign of the
two-body contribution.

We carried out this analysis on 100–225 doublets in each of
15 nuclei in the deformed rare-earth region. All of these nuclei
have strong prolate deformations. The results are shown in
Table I. A histogram of calculated GM splittings for for the Lu
isotopes is provided in the Supplemental Material [16]. These
results confirm the statements made earlier that the two-body
interaction has a correct sign, the three-body interaction has
the wrong sign, and the net sign with all the contributions is
variable and inconsistent with a general GM rule.

To gain a better understanding of the origin of the problem
we briefly review how the interaction energies are calculated
using the one-body densities of Hartree-Fock-Bogoliubov
(HFB) theory. When time-reversal symmetry is broken the
one body-density matrix can be decomposed as the sum of a
time-even density and a time-odd density. In the expression of
the total energy there is a contribution which is quadratic in
the time-odd term. Starting from an even-even HFB reference
state, the creation of a quasiparticle leads to a nonzero time-odd
density matrix. The blocking of the time-reversed state leads to
the same time-odd density but with opposite sign. To build the
two configurations defining a GM pair, a proton quasiparticle
with quantum number Kp and a neutron one with Kn are
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blocked to obtain one of the states. The other corresponds to
blocking (−Kp,Kn). Among the different terms contributing
to the energy in the Gogny interaction there are a few that
do not contribute to the splitting, namely the Wigner term of
the central potential, the Coulomb potential, and the pairing
channel of the central potential. Among the remaining terms,
the spin-orbit contribution is much smaller than the other two
and will be omitted in the discussion. Tensor potentials are
not common either in Gogny or Skyrme interactions but they
may be required to improve the single-particle spectrum in
some cases [15,17]. It was shown in Ref. [10] that the tensor
contribution to the GM splitting has in most of the cases the
same sign as the central one and is typically much smaller
in magnitude. Its inclusion is not expected to modify our
conclusions; we only consider the contributions of central
two-body and three-body interactions in the following.

We first calculate the perturbative contribution to the split-
ting, taking the expectation value of the energy functional in the
two-quasiparticle states formed by applying the Bogoliubov
quasiparticle creation operators to the HFB ground state of
a neighboring even-even nucleus. The formula for the energy
difference due to the three-body interaction is very simple if the
quasiparticle spins are perfectly aligned along the symmetry
axis. Namely, the contribution of the three-body term �v3b is

�v3b = v3b(Kp,Kn) − v3b(−Kp,Kn)

= 4t3

∫
d3�rρα

(
ρ

p,o
1/2,1/2ρ

n,o
1/2,1/2 + ρ̄

p,o
1/2,−1/2ρ̄

n,o
1/2,−1/2

)
,

(2)

where ρ is the ordinary density, and ρ
τ,t
s,s ′ (�r) =∑

ll′ ρ
τ,t
qs,q ′s ′ϕ∗

q ′ (�r)ϕq(�r) represent the different components of
the density, depending on nucleon type τ , spin projections
s and s ′, and the time-reversal behavior t = ±1 (even, odd)
of the density matrix elements ρ

τ,t
qs,q ′s ′ . The bar denotes the

modulus of a (complex) density. If the blocked quasiparticle
is BCS-like (i.e., linear combinations of creation and
annihilation canonical basis states) then the time-odd density
matrix ρ

τ,o
qs,q ′s ′ is diagonal in the canonical basis with zeros in

the diagonal except for the blocked orbital quantum number,
where it takes the value ±1/2 according to the direction of
the spin σ of the blocked orbital. In this very specific case
only taking place at the first iteration (first order), the density
ρ

τ,o
1/2,−1/2 is zero and the sign of ρ

τ,o
1/2,1/2 equals (−1)σ−1/2.

Therefore �v3b is positive for parallel spins and negative for
antiparallel ones, just the opposite of the GM rule.1 Since all
of the quantities in the integrand as well as t3 are positive, the
contribution to the splitting is repulsive, i.e., the wrong sign.

It is also of interest to examine the various interactions in a
momentum space representation, taking the two-quasiparticle
wave function as |�knsn,�kpsp〉 with �k as the nucleon’s mo-

1In the actual HFB calculation the blocked quasiparticle may have
a mixture of the two spin orientations and the simple argument
given above may fail. This occurs for some configurations treated in
Table I.
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FIG. 2. Matrix elements of the effective neutron-proton interac-
tion from the D1S Gogny energy functional at nuclear matter density,
ρ = 0.16 fm−3. In the upper panel, the individual contributions of
the two- and three-body terms from Eqs. (3) and (4) are shown. In
the lower panel, the total for the D1S is shown in comparison to the
empirical �vnp discussed in Refs. [10,18].

mentum and s as its spin quantum number.2 The two-body
interaction energy in the Gogny functional depends on the
relative momentum |�kn − �kp|. Taking the two particles on
the Fermi surface, the relative momentum is given by q± =
kF

√
1 ± cos θ with cos θ = �kn · �kp/knkp. The contribution to

the GM splitting,

�v2b = 〈q+ ↑n↑p |v|q+ ↑n↑p〉 − 〈q− ↑n↓p |v|q− ↑n↓p〉,
(3)

is shown in the left-hand panel of Fig. 2 as the solid line. The
three-body contribution, given by

�v3b = t3ρ
α, (4)

is shown as the dashed line. One sees that the two components
have opposite sign. They are added together in the plot on the

2See Supplemental Material for specific formulas in terms of the
Gogny parameters [16].
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right. Both signs of the GM splitting are possible, depending
on the angle θ . In that plot we also show an empirical neutron-
proton interaction, constructed to fit the data on the GM
multiplets [10,18]. The interactions are in rough agreement
when the momenta in the parallel-spin state are also parallel
but strongly disagree when the momenta are antiparallel in
that state.

The nuclear matter results also have implications for the
Landau parameters of the system. The connection is discussed
in the Supplemental Material [16].

We conclude with some remarks about the construction of
a better three-body interaction. It seems clear that the contact
nature of the Gogny (and Skyrme) interactions is at the root
of the problem of reproducing the empirical spin dependence
of the neutron-proton interaction. There have been proposals
in the literature to generalize the three-body interaction by
including derivative terms [19,20] as in the Skyrme two-body
interaction. Unfortunately the expansion in powers of the
derivatives gives rise to many terms and it is difficult from
a purely empirical point of view to determine the coefficients.

The interaction arises both from the subnucleon degrees of
freedom that are missing from theory as well as from the
correlations that are missing from the mean-field treatment of
the nucleon degrees of freedom. The latter, called the induced
three-body interaction, has a long range [21] and a nonlocality
[22] that is impossible to account for in a contact interaction. It
should also be mentioned that taking the three-body interaction
as an energy functional rather than an effective Hamiltonian
can give rise to serious difficulties with broken symmetries
and correlation effects [23,24]. The high computational cost
of a three-body Hamiltonian can perhaps be mitigated by using
separable parametrizations or hypercontraction [25].
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