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In this paper, we explore whether or not quark deconfinement may occur in high-mass neutron stars such as
J1614 − 2230 (1.97 ± 0.04 M�) and J0348 + 0432 (2.01 ± 0.04 M�). Our study is based on a nonlocal extension
of the SU(3) Nambu–Jona-Lasinio (n3NJL) model with repulsive vector interactions among the quarks. This
model goes beyond the frequently used local version of the Nambu–Jona-Lasinio (NJL) model by accounting
for several key features of QCD which are not part of the local model. Confined hadronic matter is treated in
the framework of nonlinear relativistic mean field theory. We find that both the local as well as the nonlocal
NJL model predict the existence of extended regions of mixed quark-hadron (quark-hybrid) matter in high-mass
neutron stars with masses of 2.1 to 2.4 M�. Pure quark matter in the cores of neutron stars is obtained for certain
parametrizations of the hadronic lagrangian and choices of the vector repulsion among quarks. The radii of
high-mass neutron stars with quark-hybrid matter and/or pure quark matter cores in their centers are found to lie
in the canonical range of 12 to 13 km.
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I. INTRODUCTION

White dwarf and neutron stars (NSs) are born in the
aftermath of core-collapsing supernova explosions. Depending
on NS mass and rotational frequency, gravity may compress
the matter in the core regions of such stars up to more than
ten times the density of ordinary atomic nuclei, thus providing
a high-pressure environment in which numerous subatomic
particle processes are likely to compete with each other.
Theoretical studies indicate that hyperons, boson condensates
(pions, kaons, H-matter), and/or deconfined up, down, and
strange quarks may exist in the core regions of NSs (for an
overview, see [1–13], and references therein).

Based on qualitative considerations concerning the stiffness
of the nuclear equation of state (EoS), one could argue that
the detection of high-mass NSs, such as PSR J1614–2230
with a gravitational mass of 1.97 ± 0.04 M� [14] and PSR
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J0348 + 0432 with a mass of 2.01 ± 0.04 M� [15], may rule
out the existence of deconfined quarks in their central core
regions, since quark deconfinement would take away so much
pressure that high-mass NSs are not supported. As shown in
Ref. [16], conclusions of that kind are not necessarily correct.

Our paper builds on the investigations carried out in
Ref. [16] for NSs containing deconfined quark matter, i.e.,
quark-hybrid stars (QHSs). The study is based on a generalized
version of the Nambu–Jona-Lasinio (NJL) model [17], which
accounts for several basic properties of quantum chromody-
namics (QCD). As an improvement of the standard NJL model,
we will consider nonlocal interactions among the quarks [18].
By combining the NJL model and the one-gluon-exchange
model, which uses an effective gluon propagator to model
effective interactions among the quarks, it is possible to
introduce the nonlocality in the quark-quark interaction [19]
through a model-dependent form factor g(p), in a natural way.
Table I compares the key features of the standard (local) NJL
with those of the nonlocal NJL model. Advantages of the
nonlocal model over the local model are indicated.

SU(2) versions of the nonlocal NJL model have been
applied to the study of hybrid stars in the past [20–22]. In
this work, we model the quark phase that may exist in the
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TABLE I. Comparison of the key features of the local and nonlocal NJL model.

Local NJL Nonlocal NJL model

Lack of confinement. Confinement with a proper choice of the nonlocal regulator and
model parameters [23].

Quark-quark scalar-isoscalar and pseudoscalar- Quark-quark interaction through phenomenologically (effective)
isovectorial local interaction. quark propagator.

Nonrenormalizable. UV divergences are fixed [18].
Ultra-violet (UV) cutoff (�) is needed. Model dependent form factor g(p).

Dynamical quark masses are momentum independent. Dynamical quark masses are momentum dependent (as also
found in lattice QCD calculations) [24].

Divergences in the meson loop integrals. Extra cutoffs The momentum dependent regulator makes the theory finite
are needed. to all orders in the 1/Nc expansion [25].

The � cutoff is turned off at high momenta, limiting The form factor provides a natural cutoff that falls off at high momenta.
the applicability of the model at high densities.

core of a neutron star using the nonlocal three-flavor NJL
(n3NJL) model of Refs. [26] and [27], which includes vector
interactions among the quarks. In our previous work [16], we
considered the vector interaction of the nonlocal NJL model in
a phenomenological way, and found that the transition to pure
quark matter occurs only in neutron stars which lie already on
the gravitationally unstable branch of the stellar sequence. In
this paper, we explore the effect of the shift of the chemical
potential on the form factor, when vector interactions are
considered. The results are compared with those obtained by
modeling the quark phase in the framework of the local SU(3)
NJL model (l3NJL) described, for example, in Refs. [28–31].
The vector interactions are know to be important for the QCD
phase diagram [32]. It is therefore interesting, if not mandatory,
to explore the consequences of the vector interactions for the
EoS of neutron star matter and the structure of compact stars
computed for such EoSs.

Global electric charge neutrality is imposed on the con-
stituents of neutron star matter. Local NJL studies carried out
for local electric charge neutrality have been reported recently
in Refs. [33,34,39]. In [33] a nonlinear Walecka model was
employed for the hadronic phase, using parametrizations GM1
[40] and NL3 [41], and the local NJL model for the quark
phase. In that work it was found that the observation of compact
stars with masses greater than around 2 M� would be hard to
explain unless one uses a very stiff hadronic model for the nu-
clear EoS, such as NL3 with nucleons only, instead of the softer
GM1 EoS. The authors in Ref. [34] treat vector interactions and
color superconductivity among the quarks in the framework of
the local NJL model, using the NL3 and GM3 parametrizations
for the description of confined hadronic matter. The maximum
mass of a neutron star was found to exceed 2M�. A possible
mixed phase of quarks and hadrons has not been considered
in [34], whose appearance depends on the surface tension
between nuclear matter and quark matter, which is only very
poorly known [1,35–37]. Screening and surface tension may
be very important for understanding the quark-hadron phase
transition and the existence of the mixed phase [35].

The authors in [38] analyze the possibility of quark matter
nucleation in high-mass neutron stars using the nonlinear

Walecka model plus the local NJL model with vector inter-
action for the EoS. They obtain stable NSs configurations
with quark cores when the NL3 parametrization is considered
(being 2.18M� the largest NS mass) and NSs with mixed phase
in their centers if the parametrization for the hadronic phase is
TM1 or TM2 (being 2.03M� the maximum star mass).

Finally, we mention the study of Ref. [39], where it was
found on the basis of the percolation picture from the hadronic
phase with hyperons to the quark phase with strangeness that
massive neutron stars with quark matter cores are compatible
with the mass observed for PSR J1614–2230, provided the
crossover from hadronic matter to quark matter takes place at
around three times the normal nuclear matter density, quark
matter is strongly interacting in the crossover region, and has
a stiff equation of state.

This work is organized as follows. In Sec. II, we describe
the local as well as the nonlocal extension of the SU(3)
NJL model at zero temperature. In Sec. III, the nonlinear
relativistic Walecka model, which is used to model confined
hadronic matter, is briefly discussed. In Sec. IV, we analyze
the construction of the mixed quark-hadron phase subjected
to global electric charge neutrality. Our results for the quark-
hadron composition and bulk properties of neutron stars are
presented in Secs. V and VI. Finally, a summary and discussion
of our results is provided in Sec. VII.

II. QUARK MATTER PHASE

A. The local three-flavor NJL model with
vector interaction (l3NJL)

As an effective model of QCD, the NJL model accounts
for the interactions between constituent quarks and provides
a simple scheme for studying spontaneous chiral symmetry
breaking, a key feature of quantum chromodynamics (QCD) in
the low temperature and density domain, and its manifestations
in hadron physics, such as dynamical quark mass generation,
the appearance of quark pair condensates, and the role of pions
as Goldstone bosons. The effective action of the local three-
flavor NJL model with vector interaction (l3NJL) used in this
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paper is given by

SE =
∫

d4x

{
ψ̄(x)(i∂/ − m̂)ψ(x)

+ 1

2
GS[ (ψ̄(x)λaψ(x))2 + (ψ̄(x)iγ5λaψ(x))2 ]

+H [det[ψ̄(x)(1 + γ5)ψ(x)] + det[ψ̄(x)(1 − γ5)ψ(x)]]

−GV [(ψ̄(x)γ μλaψ(x))2 + (ψ̄(x)iγ μγ5λaψ(x))2]

}
,

(1)

where ψ is a chiral U(3) vector that includes the light
quark fields, ψ ≡ (u,d,s)T , m̂ = diag(mu,md,ms) is the cur-
rent quark mass matrix, λa where a = 1, . . . ,8 denote the
generators of SU(3), and λ0 = √

2/3 13×3. The values for
the coupling constants GS and H as well as the strange
quark mass ms and the three-momentum ultraviolet cutoff
parameter, �, are model parameters. Their values are taken
from Ref. [29], i.e., mu = md = 5.5 MeV, ms = 140.7 MeV,
� = 602.3 MeV, GS�

2 = 3.67, and H�5 = −12.36. The
vector coupling constant GV is treated as a free parameter.

At the mean-field level, the thermodynamic potential
associated with SE is given by

�L(Mf ,μ) = GS

∑
f =u,d,s

〈ψ̄f ψf 〉2 + 4H 〈ψ̄uψu〉〈ψ̄dψd〉〈ψ̄sψs〉

− 2Nc

∑
f =u,d,s

∫
�

d3p

(2π )3
Ef

− Nc

3π2

∑
f =u,d,s

∫ pFf

0
dp

p4

Ef

− GV

∑
f

ρ2
f , (2)

where Nc = 3, Ef =
√

p2 + M2
f , and pFf

=
√

μ2
f − M2

f . The
constituent quark masses Mf are given by

Mf = mf − 2GS〈ψ̄f ψf 〉 − 2H 〈ψ̄jψj 〉〈ψ̄kψk〉 , (3)

with f,j,k = u,d,s indicating cyclic permutations. The vector
interaction shifts the quark chemical potential according to

μf → μf − 2GV ρf , (4)

where ρf is the quark number density corresponding to the
flavor f in the mean field approximation, that is,

ρf = Nc

3π

[
(μf − 2GV ρf )2 − M2

f

]3/2
. (5)

The quark condensates
〈
ψ̄f ψf

〉
can be determined by

minimizing the thermodynamic potential as
〈
ψ̄f ψf

〉
, that

is,

∂�L

∂〈ψ̄f ψf 〉 = 0 , f = u,d,s . (6)

B. The nonlocal three-flavor model with
vector interaction (n3NJL)

In this section we briefly describe the nonlocal extension
of the SU(3) Nambu–Jona-Lasinio (n3NJL) model. The
Euclidean effective action for the quark sector, including the
vector interaction, is given by

SE =
∫

d4x

{
ψ̄(x)[−i∂/ + m̂]ψ(x)

− GS

2

[
jS
a (x) jS

a (x) + jP
a (x) jP

a (x)
]

− H

4
Tabc

[
jS
a (x)jS

b (x)jS
c (x) − 3 jS

a (x)jP
b (x)jP

c (x)
]

− GV

2

[
j

μ
V (x)jμ

V (x)
]}

, (7)

where ψ and m̂ stand for the light quark fields and the current
quark mass matrix, respectively. For simplicity, we consider
the isospin symmetric limit in which case mu = md = m̄.
The operator ∂/ = γμ∂μ in Euclidean space is defined as
�γ · �∇ + γ4

∂
∂τ

, with γ4 = iγ0. The scalar, pseudoscalar jS,P
a (x)

and j
μ
V (x) vector currents are, respectively, given by

jS
a (x) =

∫
d4z g̃(z) ψ̄

(
x + z

2

)
λa ψ

(
x − z

2

)
,

jP
a (x) =

∫
d4z g̃(z) ψ̄

(
x + z

2

)
iγ5λa ψ

(
x − z

2

)
, (8)

j
μ
V (x) =

∫
d4z g̃(z) ψ̄

(
x + z

2

)
γ μλa ψ

(
x − z

2

)
,

where g̃(z) is a form factor responsible for the nonlocal
character of the interaction and λa represent the generators
of SU(3), as for the local model.

Finally, the constants Tabc in the t’Hooft term, which
account for flavor-mixing, are defined by

Tabc = 1

3!
εijk εmnl (λa)im (λb)jn (λc)kl . (9)

After standard bosonization of Eq. (7), the integrals over the
quark fields can be evaluated in the framework of the Euclidean
four-momentum formalism. The thermodynamic potential, in
the mean-field approximation at zero temperature, can then be
written as

�NL(Mf ,0,μf )

= −Nc

π3

∑
f =u,d,s

∫ ∞

0
dp0

∫ ∞

0
dp ln

{[
ω̂2

f + M2
f

(
ω2

f

)] 1

ω2
f + m2

f

}
− Nc

π2

∑
f =u,d,s

∫ √
μ2

f −m2
f

0
dp p2 [(μf − Ef )θ (μf − mf )]

− 1

2

⎡⎣ ∑
f =u,d,s

(
σ̄f S̄f + GS

2
S̄2

f

)
+ H

2
S̄u S̄d S̄s

⎤⎦ −
∑

f =u,d,s

� 2
f

4GV

, (10)
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where Nc = 3, Ef =
√

p2 + m2
f , and ω2

f = (p0 + i μf )2 +
p2. The constituent quark masses Mf are treated as
momentum-dependent quantities and are given by

Mf

(
ω2

f

) = mf + σ̄f g
(
ω2

f

)
, (11)

where g(ω2
f ) is the Fourier transform of the form factor g̃(z).

The inclusion of vector interactions shifts the quark chemical
potential as

μf → μ̂f = μf − g
(
ω2

f

)
�f , (12)

where �f represent the vector mean fields related to the
vector current interaction [last term in Eq. (7)]. The inclusion
of the form factor in Eq. (12) is a particular feature of the
nonlocal model, which renders the shifted chemical potential
momentum dependent. Accordingly, the four momenta ωf in
the dressed part of the thermodynamic potential are modified
as

ω2
f → ω̂2

f = ( p0 + i μ̂f )2 + p2 . (13)

We followed the prescriptions given in [20] to include the
vector interaction. Note that the quark chemical potential shift
does not affect the nonlocal form factor g(ω2

f ), as discussed in
[20,42,43], avoiding a recursive problem.

As we mentioned before, the form factor g̃(z) is defined by
its Fourier transform in Euclidean space, which we take to be
Gaussian

g
(
ω2

f

) = exp
(−ω2

f /�2) . (14)

It is worth noting that in Eq. (14), � is not a cutoff as in the
case of the local NJL, but a model parameter which plays a role
for the width of the chiral transition. This parameter as well as
the quark current masses and coupling constants in Eq. (7) can
be chosen so as to reproduce the phenomenological values of
pion decay constant fπ , and the meson masses mπ , mη, mη′ , as
described in Refs. [26,27]. In this work we use for the n3NJL
model the parameters listed in Table II [16].

Within the stationary phase approximation, the mean-field
values of the auxiliary fields S̄f turn out to be related to the
mean-field values of the scalar fields σ̄f [44]. They are given
by

S̄f = −16 Nc

∫ ∞

0
dp0

∫ ∞

0

dp

(2π )3
g
(
ω2

f

) Mf

(
ω2

f

)
ω̂2 + M2

f

(
ω2

f

) .

(15)

TABLE II. Parameters used for the nonlocal NJL (n3NJL) model
calculations presented in this paper.

Parameters n3NJL

m̄ 6.2 MeV
ms 140.7 MeV
� 706.0 MeV
GS�

2 15.04
H�5 −337.71

TABLE III. Parameters of the hadronic lagrangian of Eq. (19).

Coupling constants Parametrizations

GM1 NL3

gσ 8.910 10.217
gω 10.610 12.868
gρ 8.196 8.948
bσ 0.002947 0.002055
cσ −0.001070 −0.002651

The mean field values of σ̄u, σ̄s and �f are obtained via
minimizing the thermodynamic potential,

∂�NL

∂σ̄f

= 0 ,
∂�NL

∂�f

= 0 . (16)

III. HADRONIC MATTER PHASE

The hadronic phase is described in the framework of nonlin-
ear relativistic field theory [45,46], where baryons (neutrons,
protons, hyperons, � states) interact via the exchange of scalar,
vector, and isovector mesons (σ , ω, ρ, respectively). The
parametrizations used in our study are GM1 [40] and NL3 [41].
The associated parameter values are summarized in Table III.

The total Lagrangian of the model is given by [1,2]

L = LH + L� , (17)

with the leptonic Lagrangian given by

L� =
∑

λ=e−,μ−
ψ̄λ(iγμ∂μ − mλ)ψλ . (18)

The hadronic Lagrangian in Eq. (17) has the form

LH =
∑

B=n,p,�,�,�,�

ψ̄B[γμ(i∂μ − gωωμ − gρ �ρμ)

− (mN − gσσ )]ψB + 1

2

(
∂μσ∂μσ − m2

σ σ 2)
− 1

3
bσmN (gσσ )3 − 1

4
cσ (gσσ )4

−1

4
ωμνω

μν + 1

2
m2

ωωμωμ + 1

2
m2

ρ �ρμ · �ρμ − 1

4
�ρμν �ρμν .

(19)

TABLE IV. Properties of symmetric nuclear matter at saturation
density for the parameters listed in Table III. Shown are the saturation
density ρ0, energy per baryon E/N , nuclear incompressibility K ,
effective nucleon mass m∗

N , and asymmetry energy asy.

Properties Parametrizations

GM1 NL3

ρ0 (fm−3) 0.153 0.148
E/N (MeV) −16.3 −16.3
K (MeV) 300 272
m∗/mN 0.78 0.60
asy (MeV) 32.5 37.4
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FIG. 1. (Color online) Mass-radius relationships of neutron stars
computed for the pure (no quark matter) hadronic EoS studied in this
work.

The quantity B sums all baryonic particles which are produced
in neutron star matter at a given density [1,2]. Intriguingly (see
Sec. VI), we find that, in addition to hyperons, the �− particle
is generated in neutron star matter at densities which are
relevant for stable neutron stars. In contrast to this, treatments
of the quark-hadron phase transition based on the MIT bag
model [36,37] do not predict the occurrence of the �− state.

The quantities gρ , gσ , and gω in Eq. (19) are meson-baryon
coupling constants whose values are summarized in Table III.

Table IV lists the properties of symmetric nuclear mat-
ter computed from Eq. (19) for the relativistic mean-field
approximation. The most important differences between the
three parameter sets concern the values of the nuclear incom-
pressibility and the asymmetry energy. The maximum neutron
star masses for GM1 and NL3 are 2.23 M� and 2.77 M�,
respectively, for confined hadronic matter. This is illustrated
in Fig. 1, which shows the mass-radius relationship of neutron
stars for the parametrizations (Table III) studied in this work.

FIG. 2. (Color online) Pressure as a function of baryon number
density for the local NJL model, l3NJL. The hadronic parametriza-
tions are GM1 and NL3, and the vector repulsion strengths are
GL

V /GS = 0 and GL
V /GS = 0.3.

FIG. 3. (Color online) Same as Fig. 2, but for the nonlocal NJL
model, n3NJL, and vector repulsion strengths GNL

V /GS = 0 and
GNL

V /GS = 0.09.

IV. QUARK-HADRON MIXED PHASE

The basic particle reactions in chemically equilibrated
quark matter are given by the strong process u + d ↔ u + s
and the weak processes d(s) → u + e− and u + e− → d(s).

FIG. 4. (Color online) Pressure as a function of baryon (μB =
μn/3) and electron (μe) chemical potential for the local NJL
model, l3NJL, hadronic parametrizations GM1 and NL3, and vector
repulsions (a) GL

V /GS = 0 and (b) GL
V /GS = 0.3.

015806-5



M. ORSARIA, H. RODRIGUES, F. WEBER, AND G. A. CONTRERA PHYSICAL REVIEW C 89, 015806 (2014)

Neutrinos, once created by the weak reactions, do not
accumulate in cold neutron star matter, which implies zero
chemical potentials for (anti)neutrinos. The chemical potential
for each quark flavor f is then given by

μf = μb − Qf μe , (20)

where μb and μe denote the baryon and electron chemical
potential, respectively, and Qf stand for the electric charge of
a quark of flavor f . The baryon chemical potential is related to
the quark chemical potentials according to μb = 1/3

∑
f μf .

The contribution of the leptons present in the quark matter
phase to the thermodynamic potential is given by

�λ=e−,μ−(μe) = − 1

π2

∫ pFλ

0
p2

(√
p2 + m2

λ − μe

)
dp .

(21)

Muons occur in the system if the electron chemical potential
μe = μμ is greater than the muon rest mass, mμ = 105.7 MeV.
For electrons we have me = 0.511 MeV. For the l3NJL model,
the total thermodynamic potential for the quark phase is then
given by Eqs. (2) and (21). For the n3NJL model, the total
thermodynamic potential follows from Eqs. (10) and (21).

If the dense interior of a neutron star is indeed converted
to quark matter, it must be three-flavor quark matter since it

FIG. 5. (Color online) Same as Fig. 4, but for the nonlocal NJL
model, n3NJL, hadronic parametrizations GM1 and NL3, and vector
repulsions (a) GNL

V /GS = 0 and (b) GNL
V /GS = 0.09.

FIG. 6. (Color online) Same as Fig. 1, but with quark matter
included. The vector repulsion is GV = 0.

has lower energy than two-flavor quark matter. And just as
for the hyperon content of neutron stars, strangeness is not
conserved on macroscopic time scales, which allows neutron
stars to convert confined hadronic matter to three-flavor quark
matter until equilibrium brings this process to a halt. As first
realized by Glendenning [1,36,37], the presence of quark
matter in neutron stars enables the hadronic regions of the
mixed phase to become more isospin symmetric than in the

FIG. 7. (Color online) Particle population of neutron star matter
computed for the local NJL model, l3NJL. Yellow areas highlight
the mixed phases. The solid vertical lines indicate the central
densities of the associated maximum-mass NSs. The hadronic model
parametrization is GM1 and the vector repulsions are (a) GL

V /GS = 0
and (b) GL

V /GS = 0.3.
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pure phase by transferring electric charge to the quark phase.
The symmetry energy can be lowered thereby at only a small
cost in rearranging the quark Fermi surfaces. The electrons
play only a minor role when neutrality can be achieved among
the baryon-charge carrying particles. The stellar implication
of this charge rearrangement is that the mixed phase region
of a neutron star will have positively charged regions of
nuclear matter and negatively charged regions of quark matter
[1,36,37]. This should have important implications for the
electric and thermal properties of neutron stars. First studies
of the transport properties of quark-hybrid neutron star matter
have been reported in [47,48].

To determine the mixed phase region of quarks and hadrons,
we start from the Gibbs condition for pressure equilibrium
between confined hadronic (P H ) matter and deconfined quark
(P q) matter. The Gibbs condition is given by [1,36,37]

P H
(
μH

b ,μH
e ,{φ}) = P q

(
μ

q
b,μ

q
e ,{ψ}) , (22)

with μH
b = μ

q
b for the baryon chemical potentials and μH

e =
μ

q
e for the electron chemical potentials in the hadronic (H ) and

quark (q) phase, respectively. By definition, the quark chemical
potential is given by μ

q
b = μn/3, where μn is the chemical

potential of the neutron. The quantities {φ} and {ψ} in Eq. (22)
stand collectively for the field variables and Fermi momenta
that characterize the solutions to the equations of confined
hadronic matter and deconfined quark matter, respectively. In
the mixed phase, the baryon number density, nb, and the energy

FIG. 8. (Color online) Same as Fig. 7, but for the hadronic model
parametrization NL3 and vector repulsions (a) GL

V /GS = 0 and
(b) GL

V /GS = 0.3.

density, ε, are given by [1,36,37]

nb = (1 − χ )nH
b + χn

q
b (23)

and

ε = (1 − χ )εH + χεq , (24)

where nH
b (εH ) and n

q
b (εq) denote the baryon number (energy)

densities of the hadron and quark phase, respectively. The
quantity χ ≡ Vq/V denotes the volume proportion of quark
matter, Vq , in the unknown volume V . By definition, χ
therefore varies between 0 and 1, depending on how much
confined hadronic matter has been converted to quark matter
[1,36,37]. In addition to the Gibbs condition (22) for pressure,
the conditions of global baryon number conservation and
global electric charge neutrality need to be imposed on the
field equations. The global conservation of baryon charge is
expressed as [1,36,37]

ρb = χ ρQ(μn,μe) + (1 − χ ) ρH (μn,μe,{φ}) , (25)

where ρQ and ρH denote the baryon number densities of the
quark phase and hadronic phase, respectively. The condition
of global electric charge neutrality is given by the equation

(1 − χ )
∑
i=B,l

qH
i nH

i + χ
∑
i=q,l

q
q
i n

q
i = 0 , (26)

FIG. 9. (Color online) Particle population of neutron star matter
computed for the nonlocal NJL model, n3NJL. The yellow areas
highlight the mixed phase. The solid vertical lines indicate the central
densities of the associated maximum-mass NSs. The hadronic model
parametrization is GM1 and the vector repulsions are (a) GNL

V /GS =
0 and (b) GNL

V /GS = 0.09.
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where qi is the electric charge of the ith specie in units of the
electron charge. In this work we have chosen global rather than
local electric charge neutrality. The latter is not fully consistent
with the Einstein-Maxwell equations and the microphysical
condition of chemical equilibrium and relativistic quantum
statistics, as shown in [49]. In contrast to local electric charge
neutrality, the global neutrality condition puts a net positive
electric charge on confined hadronic matter, rendering it more
isospin symmetric, and a net negative electric charge on
the deconfined quark phase, allowing neutron star matter to
settle down in a lower energy state that otherwise possible
[36,37].

V. MODELS FOR THE ULTRA-DENSE PART OF THE EOS
OF NEUTRON STAR MATTER

Figures 2 and 3 show the EoS of neutron star matter
computed for the local (l3NJL) and nonlocal (n3NJL) model,
respectively. The hadronic contributions are computed for the
lagrangian given in Eq. (17). For the quark matter phase the
local NJL model (Sec. II A) and the nonlocal NJL model
(Sec. II B) have been used.

For the hadronic phase we consider the parameter sets
GM1 and NL3. The quark phase is being investigated for
repulsive vector interactions GV among quarks which range
from zero to the upper limits set by the local and nonlocal
model. The equations of state shown in Figs. 2 and 3 are
plotted in the three-space spanned by the neutron chemical

FIG. 10. (Color online) Same as Fig. 9, but for the hadronic
model parametrization NL3 and vector repulsions (a) GNL

V /GS = 0
and (b) GNL

V /GS = 0.09.

TABLE V. Deleptonization densities for the local and nonlocal
NJL model, for the GM1 parametrization (ρ0 = 0.16 fm−3).

GV /GS Deleptonization density (ρ0)

Local NJL Nonlocal NJL

0 (GM1) 6.65 5.85
0 (NL3) 6.61 4.55
0.09 (GM1) − 7.03
0.09 (NL3) − 5.33
0.30 (GM1) 7.45 −
0.30 (NL3) 6.26 −

potential, electron chemical potential and pressure in Figs. 4
and 5.

Figure 6 shows the mass-radius relationship of neutron
stars for the three selected parametrizations of the hadronic
lagrangian of this work. The transition to quark matter is
included, but the vector repulsion among quarks is switched
off. This lowers the maximum masses of the neutron stars

FIG. 11. (Color online) Pressure P (solid lines), baryon chemical
potential μB = μn/3 (dashed lines) and electron chemical potential
μe (dotted lines) as a function of baryon number density (in units
of ρ0 = 0.16 fm−3) for parametrization NL3. The hatched areas
denote the mixed phase regions where confined hadronic matter and
deconfined quark matter coexist. (a) and (b) are computed for l3NJL
and n3NJL, respectively, and zero vector repulsion. The impact of
finite values of the vector repulsion (0.3GS and 0.09Gs) on the data
is shown in (c) and (d) for l3NJL and n3NJL, respectively.
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FIG. 12. (Color online) Pressure P (solid lines), baryon chemical
potential μB = μn/3 (dashed lines), and electron chemical potential
μe (dotted lines) as a function of baryon number density (in units of
ρ0 = 0.16 fm−3) for parametrization GM1. The hatched areas denote
mixed phase regions where confined hadronic matter and deconfined
quark matter coexist. The data in (a) and (b) is for vector interactions
0.075GS and 0.09GS , respectively.

(compare with Fig. 1), since a standard treatment of the quark-
hadron transition softens the equation of state. The masses of
the recently discovered high-mass neutron stars J1614-2230
(1.97 ± 0.04 M�) [14] and J0348 + 0432 (2.01 ± 0.04 M�)
[15] are shown for comparison. Our calculations show that
even for zero vector repulsion both stars could contain quark-
hybrid matter in their cores.

TABLE VI. Widths of mixed phases and central densities of
maximum-mass neutron stars for the local NJL model of this paper
(ρ0 = 0.16 fm−3).

GL
V /GS Mixed phase Central density of Mmax

(ρ0) (ρ0)

0 (GM1) 3.64–7.60 7.21
0.30 (GM1) 5.07–8.92 8.81
0 (NL3) 2.85–4.51 5.96
0.30 (NL3) 3.33–6.03 6.52

VI. QUARK-HYBRID COMPOSITION

In Figs. 7 through 10 we show the relative particle fractions
Yi (≡ρi/ρ) of neutron star mater as a function of baryon
number density for both the local and nonlocal NJL model.
It can be seem that by increasing the strength of the vector
interaction, negatively charged particles like μ−’s and �−’s
take on the role of electrons, whose primary duty is to make
the stellar matter electrically neutral. Because of the early
onset of the � population in our models, there is less need for
electrons so that their number density in the mixed phase is
reduced compared to the outcome of standard mean-field/bag
model calculations. Table V shows the densities beyond which
leptons are no longer present in quark-hybrid matter (quark
matter gets deleptonized). They are different for the local and
nonlocal NJL model and depend on the ratio GV /GS .

Since we model the quark-hadron phase transition in three-
space, accounting for the fact that the electric and baryonic
charge are conserved for neutron star matter, the pressure
varies monotonically with the proportion of the phases in
equilibrium, as shown in Figs. 4, 5 and 11, 12. For the latter, the
hatched areas denote the mixed phase regions where confined
hadronic matter and deconfined quark matter coexist. The
quark matter contents of the maximum-mass neutron stars
computed for these equations of state are indicated (χ values).
Pure quark matter exists in stars marked with χ = 1. Our
calculations show that, in the nonlocal case, similarly to the
observation in Ref. [16], the inclusion of the quark vector
coupling contribution shifts the onset of the phase transition
to higher densities and narrows the width of the mixed
quark-hadron phase, when compared to the case GV = 0. To
the contrary, when the quark matter phase is represented by
the local l3NJL model, the width of the mixed phase tends to
be broader for finite GV values. This effect can be seen both
in Fig. 11 as well as in Tables VI and VII.

To account for the uncertainty in the theoretical predictions
of the ratio GV /GS [43,50–52], we treat the vector coupling
constant as a free parameter. We observed that the n3NJL
model is more sensitive to the increase of GV /GS than the local
model. For GV /GS > 0.09 we have a shift of the onset of the
quark-hadron phase transition to higher and higher densities,
preventing quark deconfinement in the cores of neutron stars.
However, we can reach values of GV /GS up to 0.3 for the
local NJL case.

Next we determine the bulk properties of spherically
symmetric neutron stars for the collection of equations of
state discussed in this paper. The properties are computed

TABLE VII. Widths of mixed phases and central densities of
maximum-mass neutron stars for the nonlocal NJL model of this
paper (ρ0 = 0.16 fm−3).

GNL
V /GS Mixed phase Central density of Mmax

(ρ0) (ρ0)

0 (GM1) 3.22–8.18 6.87
0.09 (GM1) 4.98–7.90 8.69
0 (NL3) 2.71–6.87 5.68
0.09 (NL3) 3.24–6.31 6.28

015806-9



M. ORSARIA, H. RODRIGUES, F. WEBER, AND G. A. CONTRERA PHYSICAL REVIEW C 89, 015806 (2014)

FIG. 13. (Color online) Quark-hybrid matter inside of neutron stars, computed for the local NJL model (l3NJL) and hadronic model
parametrizations GM1 and NL3. The symbols ‘MP’ and ‘QP’ stand for mixed phase and pure quark phase, respectively. The vertical
bars denote the maximum-mass star of each stellar sequence. (a) Mass-radius relationships of neutron stars made of quark-hybrid matter.
(b) Enlargement of the circled region of (a).

from the Tolmann-Oppenheimer-Volkoff (TOV) equation of
general relativity theory [1,2,53]. The outcomes are shown in
Figs. 13 and 14 for the local and nonlocal NJL model,
respectively. The green and orange bands in Fig. 13 display

the masses of the recently discovered, massive neutron stars
PSR J1614-2230 [14] and J0348 + 0432 [15], respectively.

As a neutron star becomes increasingly more massive,
the stellar core composition consist of either only nucleons,

FIG. 14. (Color online) Same as Fig. 13, but computed for the non-local NJL model (n3NJL) and hadronic model parametrizations GM1
and NL3. (a) Mass-radius relationships of neutron stars made of quark-hybrid matter. (b) Enlargement of the circled region of (a).
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TABLE VIII. Maximum masses and radii of neutron stars made
of quark-hybrid matter for different vector repulsion (GV /GS).

NJL model GV /GS Rmax (km) Mmax/M�

Local 0 12.49 1.96
GM1 0.30 11.80 2.11
Local 0 13.68 2.07
NL3 0.30 13.53 2.37
Nonlocal 0 12.62 1.87
GM1 0.09 11.81 2.11
Nonlocal 0 13.62 2.04
NL3 0.09 13.56 2.35

nucleons and hyperons, a mixed phase (MP) of quarks and
hadrons, or a pure quark matter phase (QP), as indicated
in Figs. 13 and 14. For the nonlocal NJL model and the
NL3 parametrization for the hadronic phase [Fig. 14(b)], we
find that pure quark does not exist in stable neutron stars.
Only neutron stars which lie to the left of the mass peak are
dense enough to contain such matter. These stars are however
unstable against radial oscillations and thus cannot exit stably
in the universe. The situation is different if the GM1 parameter
set is used for the hadronic lagrangian. In this case a small
amount of pure quark matter turns out to exist in the maximum-
mass neutron star if the strength of the vector repulsion is
non-zero (GNL

V /GS = 0.09). (See also Table VII.) Extended
regions of a mixed phases of quarks and hadrons are found
for both hadronic parametrizations. The situation is somewhat
different for the local NJL model (Fig. 13), for which pure
quark matter cores are obtained for NL3 [see Table VI
and Fig. 13(a)]. The results for the masses and radii of the
maximum-mass neutron stars are shown in Table VIII.

VII. SUMMARY AND CONCLUSIONS

In this work we use extensions of the local (l3NJL) and
nonlocal (n3NJL) Nambu–Jona-Lasinio model to analyze the
possible occurrence of quark deconfinement in the cores of
neutron stars. We have constructed the phase transition from

hadronic matter to quark matter via the Gibbs conditions,
imposing global electric charge neutrality and baryon number
conservation. We have calculated the mass-radius relationships
of ordinary neutron stars and neutron stars with deconfined
quarks in their centers (quark-hybrid stars). Depending on
the strength of the quark vector repulsion, we find that
mixed phases of confined hadronic matter and deconfined
quarks can exist in neutron stars as massive as 2.1 to
2.4 M�. The radii of these objects are between 12 and
13 km, as expected for neutron stars.

According to our study, for the n3NJL model, a transition
to pure quark matter occurs only in neutron stars which lie on
the gravitationally unstable branch of the stellar sequences if
the parametrization NL3 for the hadronic matter lagrangian is
used. This is different for the other hadronic parametrization
considered in this paper, GM1, which predicts, for sufficiently
large vector interactions among the quarks, pure quark matter
cores in maximum-mass neutron stars. Pure quark matter
cores are also obtained for the l3NJL model if the NL3
parametrization is being use. For the GM1 parametrization,
however, pure quark matter is not present but gives way to an
extended region of deconfined quarks which are in chemical
equilibrium with various baryon species.

The latter is found to exist in all neutron stars models,
independent of the value of the vector repulsion among quarks.
With increasing stellar mass, all the stellar core compositions
consist either of nucleons only, nucleons and hyperons, a mixed
phase of quarks and hadrons (MP), and, in some cases, a pure
quark matter phase (QP) in the core.
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