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The Feynman-Metropolis-Teller treatment of compressed atoms has been recently generalized to relativistic
regimes and applied to the description of static and rotating white dwarfs in general relativity. We present here
the extension of this treatment to the case of finite temperatures and construct the corresponding equation of state
(EOS) of the system; applicable in a wide regime of densities that includes both white dwarfs and neutron star
outer crusts. We construct the mass-radius relation of white dwarfs at finite temperatures obeying this new EOS
and apply it to the analysis of ultra-low-mass white dwarfs with M � 0.2M�. In particular, we analyze the case
of the white dwarf companion of PSR J1738 + 0333. The formulation is then extrapolated to compressed nuclear
matter cores of stellar dimensions, systems with mass numbers A ≈ (mPlanck/mn)3 or mass Mcore ≈ M�, where
mPlanck and mn are the Planck and the nucleon mass. For T � mec

2/kB ≈ 5.9 × 109 K, a family of equilibrium
configurations can be obtained with analytic solutions of the ultrarelativistic Thomas-Fermi equation at finite
temperatures. Such configurations fulfill global but not local charge neutrality and have strong electric fields on
the core surface. We find that the maximum electric field at the core surface is enhanced at finite temperatures
with respect to the degenerate case.
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I. INTRODUCTION

We have recently generalized in Ref. [1] to relativistic
regimes the classic work of Feynman, Metropolis, and Teller
(FMT) [2], solving a compressed atom by use of the Thomas-
Fermi equation in a Wigner-Seitz cell. The integration of
this equation does not admit any regular solution for a
pointlike nucleus and both the nuclear radius and the nuclear
composition have necessarily to be taken into account [3,4].
This introduces a fundamental difference from the nonrel-
ativistic Thomas-Fermi model where a pointlike nucleus is
adopted. So this approach improves in the following aspects
all previous treatments of the equation of state (EOS) of a
compressed atom, including the classic works based on the
uniform approximation by Chandrasekhar [5] and the EOS by
Salpeter [6]: (1) in order to guarantee self-consistency with a
relativistic treatment of the electrons, the pointlike assumption
of the nucleus is abandoned, introducing a finite-sized nucleus;
(2) the Coulomb interaction energy is fully calculated without
any approximation by solving numerically the relativistic
Thomas-Fermi equation for each given nuclear composition;
(3) the inhomogeneity of the electron distribution inside each
Wigner-Seitz cell; (4) the energy density of the system is
calculated taking into account the contributions of the nuclei,
of the Coulomb interactions, as well as of the relativistic
electrons to the energy of the Wigner-Seitz cells; and (5) the β
equilibrium among neutrons, protons, and electrons is also
taken into account, leading to a self-consistent calculation
of the threshold density for triggering the inverse β decay
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of a given nucleus. The computation of the EOS is done by
calculating the dependence of all these ingredients on the level
of compression inside the star interior.

We have shown in Ref. [7] how all these effects together
with general relativity are important in the determination
of the macroscopic structure of white dwarfs as well as
for the determination of their maximum stable mass against
gravitational collapse. More recently, the relativistic FMT EOS
has been used to determine general relativistic equilibrium
configurations of rotating white dwarfs [8].

In Fig. 1 we show the mass-radius relation of T = 0 white
dwarfs for the relativistic FMT, Salpeter, and Chandrasekhar
EOS and compare them with the estimated masses and radii
of white dwarfs from the Sloan Digital Sky Survey Data
Release 4 (SDSS-E06 catalog) [9]. It can be clearly seen
that for masses �0.7–0.8M� deviations from the degenerate
treatments are already evident. It is natural to expect that such
deviations could be related to the neglected effects of finite
temperatures on the structure of the white dwarf. Thus, besides
being interesting on their own, the finite-temperature effects
on the EOS and, consequently, on the mass-radius relation of
the white dwarf are very important. In this work we extend our
previous EOS [1], based on the degenerate relativistic FMT
treatment, by introducing the effects of finite temperatures and
use it to construct equilibrium configurations of white dwarfs
at finite temperatures.

It is very interesting that there have been recently discovered
ultra-low-mass white dwarfs with masses �0.2 M�, which
are companions of neutron stars in relativistic binaries; see,
e.g., Refs. [10,11]. These low-mass white dwarfs represent the
perfect arena to test the EOS of compressed matter since the
central densities of these objects are expected to be �106 g
cm−3, where the degenerate approximation breaks down and
therefore temperature effects cannot be neglected. Using the
mass-radius relation at finite temperatures, we analyze in the
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FIG. 1. Mass-radius relations of white dwarfs obtained with the
relativistic FMT (solid black), Salpeter (dashed black), and Chan-
drasekhar (dotted black) EOS and their comparison with the estimated
masses and radii of white dwarfs taken from the Sloan Digital Sky
Survey Data Release 4 (SDSS-E06 catalog, gray circles) [9].

present work the structure of the white dwarf orbiting the pulsar
PSR J1738 + 0333. We infer its mass, radius, surface gravity,
and internal temperature and compare and contrast them with
previous estimates.

The generalization of the relativistic FMT model presented
in this work will be also useful to extend previous works
in which the nonrelativistic Thomas-Fermi model has been
used to describe the physics of the low-density layers of
neutron stars, including their atmospheres (see, e.g., Ref. [12]).
The proper treatment of the relativistic and Coulomb effects
corrects the over- and underestimates of the total pressure
at high and low densities, respectively, which occurs in
nonrelativistic Thomas-Fermi models and in the approximate
Coulomb corrections of Salpeter [6]; see Ref. [1] for further
details.

In addition to the generalization of the EOS of compressed
matter, we follow the steps in Ref. [1] and extrapolate the
treatment to the case of compressed nuclear matter cores of
stellar dimensions introduced in macroscopic cores composed
of neutrons, protons, and electrons in β equilibrium and
with mass numbers A ∼ (mPlanck/mn)3 ∼ 1057, hence, masses
Mcore ∼ M�, which are expected to be bound by self-gravity.
These objects are idealized configurations that reflect the
properties of macroscopic nuclear matter systems such as
neutron stars.

The paper is organized as follows: first, in Sec. II, we
describe the extension of the relativistic FMT treatment to
finite temperatures. Then, in Sec. III, we summarize the results
of the numerical integration of the equations and describe the
general properties of the new EOS. In Sec. IV we construct
the mass-radius relation of white dwarfs and show specifically
the results for 4He composition and in Sec. V we apply
these results to the case of the ultra-low-mass white dwarf
companion of PSR J1738 + 0333. In Sec. VI we extend the
formulation of compressed matter to the case of the nuclear
matter cores of stellar dimensions introduced in Ref. [1]. We
finally discuss our results in Sec. VII.

II. THE RELATIVISTIC FMT TREATMENT
AT FINITE TEMPERATURES

We now consider the equations of equilibrium of a rela-
tivistic gas of electrons at a temperature T �= 0 surrounding a
finite-sized and positively charged nucleus of mass and atomic
numbers A and Z, respectively. The electron cloud is confined
within a radius RWS of a globally neutral Wigner-Seitz cell
and the system is isothermal.

Following Ref. [1], we adopt a constant distribution of
protons confined in a radius Rc = �λπZ

1
3 , where λπ =

�/(mπc) is the pion Compton wavelength, with mπ the pion
rest-mass. The parameter � is such that at nuclear density,
� ≈ (r0/λπ )(A/Z)1/3, where r0 ≈ 1.2 fm; so in the case
of ordinary nuclei � ≈ 1. Consequently, the proton number
density can be written as

np(r) = 3Z

4πR3
c

θ (r − Rc) = 3

4πλ3
π�3

θ (r − Rc), (1)

where θ (r − Rc) is the Heaviside function centered at the core
(nucleus) radius, r = Rc.

Clearly, the electron number density follows from Fermi-
Dirac statistics and is given by

ne = 2

(2π�)3

∫ ∞

0

4πp2dp

exp
[

Ẽ(p)−μ̃e(p)
kBT

]
+ 1

, (2)

where kB is the Boltzmann constant, μ̃e is the elec-
tron chemical potential without the rest-mass, and Ẽ(p) =√

c2p2 + m2
ec

4 − mec
2, with p and me the electron momentum

and rest-mass, respectively.
Introducing the degeneracy parameter η = μ̃e/(kBT ),

t = Ẽ(p)/(kBT ), and β = kBT /(mec
2), we can write the

electron number density as

ne = 8π
√

2

(2π�)3
m3c3β3/2[F1/2(η,β) + βF3/2(η,β)], (3)

where

Fk(η,β) ≡
∫ ∞

0

t k
√

1 + (β/2)t

1 + et−η
dt (4)

is the relativistic Fermi-Dirac integral.
We consider temperatures that satisfy T � mec

2/kB ≈
6 × 109 K, so we will not take into account the presence of
antiparticles. The Thomas-Fermi equilibrium condition for the
relativistic electron gas is in this case given by

μ̃e(r) − eV (r) = kBT η(r) − eV (r) = const, (5)

where V (r) is the Coulomb potential.
By introducing the dimensionless quantities x = r/λπ ,

xc = Rc/λπ , and χ/r = μ̃e/(�c) and replacing the above
particle densities into the Poisson equation,

∇2V (r) = 4πe[np(r) − ne(r)], (6)
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we obtain the generalization of the relativistic Thomas-Fermi
equation to finite temperatures,

d2χ (x)

dx2
= −4παx

{
3

4π�3
θ (xc − x)

−
√

2

π2

(
me

mπ

)3

β3/2[F1/2(η,β) + βF3/2(η,β)]

}
.

(7)

Equation (7) must be integrated subjected to the same
boundary conditions as in the degenerate case, given by

χ (0) = 0,
dχ

dx

∣∣∣∣
x=0

> 0,
dχ

dx

∣∣∣∣
x=xWS

= χ (xWS)

xWS
, (8)

where the latter condition ensures the global charge neutrality
at the Wigner-Seitz cell radius, RWS, and xWS = RWS/λπ is
the dimensionless cell radius.

We turn now to compute the energy of the Wigner-Seitz cell.
For the present case of finite temperatures, the total energy of
each cell can be split as

EWS = EN + Ek + EC, (9)

where

EN = MN (A,Z)c2 + Uth, Uth = 3

2
kBT , (10)

Ek =
∫ RWS

0
4πr2(Ee − mene)dr, (11)

EC = 1

2

∫ RWS

Rc

4πr2e[np(r) − ne(r)]V (r)dr, (12)

are the nucleus, kinetic, and Coulomb energy. For the nucleus
mass MN (A,Z) we adopt experimental values, Uth is the
thermal energy of nuclei which we here adopt as an ideal
gas,1 and the electron energy density Ee is given by

Ee = mec
2ne +

√
2

π2�3
m4

ec
5β5/2[F3/2(η,β) + βF5/2(η,β)].

(13)

The total density and pressure are then given by

ρ = EWS

c2VWS
, (14)

P = PN + Pe, (15)

where

PN = 2

3

Uth

VWS
= kBT

VWS
, (16)

Pe = 23/2

3π2�3
m4

ec
5β5/2

[
F3/2(ηWS,β) + β

2
F5/2(ηWS,β)

]
,

(17)

1Quantum corrections to the ideal behavior of the ions considered
here can be straightforwardly included following previous treatments
such as in Refs. [13–15].

with ηWS being the value of η at the boundary of the Wigner-
Seitz cell with volume VWS = 4πR3

WS/3.

III. NUMERICAL INTEGRATION OF THE
EQUATIONS AND THE EOS

For a given chemical composition (Z,A), temperature T
(i.e., β), and dimensionless Wigner-Seitz cell radius xWS, the
relativistic Thomas-Fermi equation (7) is integrated subjected
to the boundary conditions (8). We thus obtain both the
Coulomb potential and the function η inside the given Wigner-
Seitz cell. With the knowledge of ηWS, we proceed to evaluate
first the energy of the cell by Eqs. (9)–(13) and, subsequently,
the values of the density and pressure through Eqs. (14)–(17).
For fixed chemical composition and temperature, we repeat
the above steps for different cell radii to obtain different
compression levels of the system; this leads to different
densities and pressures, hence, the EOS. These steps can be
then performed for different compositions and temperatures;
the results are discussed below.

A. Properties of the EOS

As we showed in Ref. [1], as a result of the Coulomb
interaction duly accounted for in the relativistic Thomas-Fermi
treatment, the distribution of the electrons inside a Wigner-
Seitz cell is not uniform. In order to show the effects of the
temperature, in Fig. 2 we show, as an example, the electron
number density inside a Wigner-Seitz cell of 56Fe at a density
of 30 g cm−3 and for temperatures T = [0,107,1010] K.

We can see in Fig. 2 how the effect of the temperature
tends to homogenize the electron distribution inside the
cell. In addition, we notice that the larger the temperature
the larger the value of the electron density at the border of
the Wigner-Seitz cell, thus increasing the electron pressure.
This effect can be clearly seen in Fig. 3, where we show
the value of the electron number density evaluated at

FIG. 2. Electron number density inside a Wigner-Seitz cell of
56Fe at a density of 30 g cm−3 at selected temperatures. Here nBohr =
3/(4πR3

Bohr) ≈ 1.6 × 1024 cm−3, where RBohr = �/(e2me) ≈ 5.3 ×
10−9 cm, is the Bohr radius. In this example we have used both
low density and high temperatures up to 1010 K in order to show an
extreme example of electron density flattening.
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FIG. 3. Electron number density at the radius of a Wigner-Seitz
cell of 12C as a function of the density (14) for the selected
temperatures T = [104,105,106,107,108] K.

the cell radius, RWS, as a function of the density for the
temperatures T = [104,105,106,107,108] K for a given
chemical composition, 12C.

The volume of the Wigner-Seitz cell, VWS = 4πR3
WS/3,

determines the density of the system ρ given by Eq. (14); the
smaller the volume the larger the density. In Fig. 4 we show
the density of the system as a function of the Wigner-Seitz cell
radius RWS for a temperature T = 107 K and 12C chemical
composition. Small deviations of the R−3

WS behavior are due to
the inhomogeneity of the electron distribution inside the cell
and to the contribution of the Coulomb and electron kinetic
energy to the density.

In this line it is important to mention that often in the
literature the density of the system is approximated as

ρ = A

Z
Mune, (18)

which corresponds to the rest-mass density of nuclei in the
system and where a uniform distribution of electrons is

FIG. 4. Total density (in g cm−3) of the system as a function of
the radius of the Wigner-Seitz cell [in units of the electron Compton
wavelength λe = �/(mec) ≈ 3.9 × 10−11 cm] in the case of 12C at a
temperature T = 107 K.

FIG. 5. Total pressure as a function of the matter density ρ =
AMune/Z, given by Eq. (18), and ρ = EWS/(c2VWS), given by
Eq. (14), which includes the thermal, kinetic, and Coulomb energy in
the Wigner-Seitz cell. In this example the composition is 12C and the
temperature T = 104 K.

assumed. Here Mu = 1.6604 × 10−24 g is the unified atomic
mass. We can see from Eq. (9) that this is equivalent to
neglecting the thermal, kinetic, and Coulomb energy of the
cells as well as the inhomogeneity of the electron density.
However, as we showed in Refs. [1,7], the inclusion of the
Coulomb and electron kinetic energies are important at low
and high densities, respectively. In particular, the contribution
of the kinetic energy of the electrons to the energy density
is fundamental in the determination of the critical density for
the gravitational collapse of 12C white dwarfs [7]. We show in
Fig. 5 the effect on the EOS of using as density of the system
only the nuclei rest-mass, Eq. (18), instead of the full mass
density given by Eq. (14), which accounts for the total energy
of the Wigner-Seitz cell given by Eq. (9).

The effects of finite temperatures are clearly expected to
be important at low densities, where the system loses its
degeneracy. The point where the EOS should start to deviate
from its degenerate behavior can be estimated by equating the
degenerate and ideal gas pressures for the electron component.
Assuming the electrons as nonrelativistic, we have nekBT =
(3π2)2/3

�
2n

5/3
e /me, from which we obtain that temperature

effects are important for densities

ρ � 1.5 × 103

(
T

107 K

)3/2

g cm−3, (19)

where we have used A/Z ≈ 2 and ρ ≈ AMune/Z. In Fig. 6
we compare the relativistic degenerate FMT EOS [1,7] and its
generalization at finite temperatures presented in this work for
the cases T = 107 and 108 K and 12C chemical composition.
For these specific temperatures we see that deviations of the
degenerate EOS start at a density ρ ≈ 2 × 104 g cm−3 and
≈106 g cm−3, respectively. For the same temperatures, Eq. (19)
estimates deviations from degeneracy at ρ ≈ 1.5 × 103 g cm−3

and ≈4.8 × 104 g cm−3, respectively. Thus, the lower the
temperature the better the estimate given by Eq. (19); the
reason for this is that for larger temperatures the system will
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FIG. 6. Comparison of the EOS for 12C at temperatures
T = [0,107,108] K.

lose the degeneracy at larger densities where the nonrelativistic
approximation for the electrons breaks down.

In Fig. 7, we show the nuclei to electron pressure ratio
in cells of 12C as a function of the density and for selected
temperatures. It can be seen that for all temperatures the ratio
approaches the same constant value in the low-density regime.
This is due to the fact that at sufficiently low densities the
electron gas also becomes an ideal gas and, consequently,
its pressure is approximately given by P id

e = ZkBT/VWS.
Therefore, the nuclei-to-pressure ratio approaches the limit
PN/P id

e = 1/Z, where PN is given by Eq. (16). In the example
of Fig. 7 we have Z = 6 so PN/P id

e ≈ 0.17. It is clear that the
density at which each curve reaches such a constant value
increases with the temperature, since at larger temperatures
the electrons reach their ideal gas state at higher densities.

We summarize the finite-temperature generalization of the
relativistic FMT EOS in Fig. 8, where we plot as an example
the total pressure (15) as a function of the total density of
the system (14) at temperatures T = [104,105,106,107,108] K
and for a chemical composition, 12C. All the above features

FIG. 7. Nuclei to electron pressure ratio as a function of the mass
density in the case of 12C white dwarf for selected temperatures in
the range T = 104–108 K.

FIG. 8. Total pressure as a function of the mass density in the
case of 12C white dwarf for selected temperatures in the range
T = 104–108 K.

of the EOS are general and therefore applied also to chemical
compositions other than 12C.

B. Inverse β decay and pycnonuclear reactions

We turn now to the finite-temperature effects on the
inverse β-decay instability. It is known that white dwarfs may
become unstable against the inverse β-decay process (Z,A) →
(Z − 1,A) through the capture of energetic electrons. In order
to trigger such a process the electron energy must be larger
than the mass difference between the initial nucleus (Z,A)
and the final nucleus (Z − 1,A). This threshold energy is
denoted as ε

β
Z . Usually, ε

β
Z − 1 < ε

β
Z is satisfied and therefore

the initial nucleus undergoes two successive decays, i.e.
(Z,A) → (Z − 1,A) → (Z − 2,A); see, e.g., Refs. [6,16].

The critical density ρ
β
crit is then obtained numerically by

looking for the density at which the electron energy equals
ε

β
Z . In Table II of Ref. [7] we showed that, in the degenerate

case, the threshold energies to trigger the inverse β process for
4He, 12C, 16O, and 56Fe are reached at densities ρ

β
crit = 1.37 ×

1011, 3.88 × 1010, 1.89 × 1010, and 1.14 × 109 g cm−3,
respectively.

For the present finite-temperature case, from our numerical
integration we found that the critical densities for the occur-
rence of the inverse β-decay instability are not affected so they
are the same as in the degenerate approximation. This is due
to the fact that the effects of temperatures T � 108 K become
relevant at densities ρ � 106 g cm−3, as can be seen from
Figs. 6 and 8.

We turn now to the pycnonuclear reactions. In a nuclei
lattice the nuclear reactions proceed with the overcoming of
the Coulomb barrier between neighbor nuclei. At zero temper-
atures, T = 0, the Coulomb barrier can be overcome due to
the zero-point energy of the nuclei (see, e.g., Refs. [16,17]),

Ep = �ωp, ωp =
√

4πe2Z2ρ

A2M2
u

. (20)

The number of pycnonuclear reactions per unit volume per
unit time increases with the density of the system [17] and any
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effect that reduces the Coulomb barrier will increase the cross
section of the reaction. The inclusion of the temperature could
then lead to thermo-enhanced pycnonuclear rates (see, e.g.,
Refs. [17,18]). The astrophysical importance of pycnonuclear
reactions, e.g., in the theory of white dwarfs, relies on the
fact that, for instance, the 12C + 12C pycnonuclear fusion,
leading to 24Mg, is possible in a time scale shorter than a
Hubble time, τpyc < 10 Gyr, for densities ∼1010 g cm−3. Such
a density turns to be larger than the critical density ∼3 ×
109 g cm−3 for the double inverse β decay of 24Mg into 24Ne
by electron capture (see, e.g., Refs. [6,16]), which destabilize
the white dwarf due to sudden decrease of its electron pressure.
Under such conditions, 12C + 12C fusion will indirectly induce
the gravitational collapse of the white dwarf rather than to a
supernova explosion.

Following the updated reaction rates of Ref. [18], we
recently computed in Ref. [8] the critical density for pyc-
nonuclear instability in general relativistic uniformly rotating
12C white dwarfs at zero temperatures. It comes out that the
instability agent of white dwarfs can be either general rela-
tivistic effects or inverse β-decay or pycnonuclear reactions
or rotation through mass shedding or secular instabilities (see
Ref. [8] for details).

The electrons around the nuclei screen the positive charge of
the nucleus, reducing the Coulomb barrier; hence, their proper
inclusion could, in principle, increase the reaction rates. On
the other hand, we showed in Figs. 2 and 3 two different
effects due to the finite temperature: (1) it tends to flatten the
electron distribution, thus changing the electron screening of
the Coulomb potential with respect to the degenerate case, and
(2) it increases the electron density, hence, the pressure at the
border of the cell. These effects clearly could lead not only to
qualitative but also to quantitative differences in the estimate
of the rates of the pycnonuclear reactions (see, e.g., Ref. [19]).

However, the inclusion of these combined effects within the
pycnonuclear reactions treatment, following a fully relativistic
approach of the electron gas and the Coulomb interactions as
the one presented here, is a most difficult and complex task
that deserves a detailed and separated analysis and therefore
will not be addressed here.

IV. MASS-RADIUS RELATION

General relativistic effects are important in the high-
density branch of white dwarfs; for instance, they lead to
the gravitational collapse of the star prior to the trigger
of the inverse β-decay instability in 12C white dwarfs [7].
We here construct the mass-radius relation of white dwarfs
in their entire range of stability, so we use the equations
of hydrostatic equilibrium within the framework of general
relativity. Assuming the spherically symmetric metric

ds2 = eν(r)c2dt2 − eλ(r)dr2 − r2dθ2 − r2 sin2 θdϕ2, (21)

the equations of equilibrium can be written in the Tolman-
Oppenheimer-Volkoff form,

dν(r)

dr
= 2G

c2

4πr3P (r)/c2 + M(r)

r2
[
1 − 2GM(r)

c2r

] , (22)

FIG. 9. Total mass versus central density for 4He white dwarfs
for selected temperatures from T = 104 K to T = 108 K.

dM(r)

dr
= 4πr2 E(r)

c2
, (23)

dP (r)

dr
= −1

2

dν(r)

dr
[E(r) + P (r)], (24)

where we have introduced the mass enclosed at the distance
r through e−λ(r) = 1 − 2GM(r)/(c2r), E(r) = c2ρ(r) is the
energy density, and P (r) is the total pressure, given by
Eqs. (14) and (15).

These equations can be integrated for a wide range of central
densities, temperatures, and selected chemical compositions,
for instance 4He, 12C, 16O, and 56Fe. In Figs. 9 and 10, we
show in particular the mass-central density and mass-radius
relations of 4He white dwarfs in the range of densities and
radii where finite-temperature effects are more important.

The minima in these plots mark the transition from the
ideal to the degenerate behavior of the electron gas: from left
to right in the M-ρc relation and from right to left in the M-R
relation. Thus these minima can be used to give an estimate
of the minimum mass that a star should have to be able to
burn stably a given chemical composition since the condition
of a stable burning requires that the gas be nondegenerate.

FIG. 10. Total mass versus radius for 4He white dwarfs for
selected temperatures from T = 104 K to T = 108 K.
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Consequently, stable burning requires that the star lies on the
branch of solutions on the left-hand side of the minimum of
the M-ρc diagram or on the right-hand side of the minimum
of the M-R diagram. For instance, helium burning is triggered
at a temperature THe+He ≈ 108 K, so we can obtain from the
solutions shown in Fig. 9 that the minimum mass for stable
helium burning is MHe+He

min ≈ 0.51M�. The corresponding
radius and density of this configuration is 4.54 × 109 cm ≈
0.065R� and 6.59 × 105 g cm−3, respectively. A similar
analysis can be done for the other compositions.

V. THE ULTRA-LOW-MASS WHITE DWARF
COMPANION OF PSR J1738 + 0333

It is clear that the effects of the temperature are particularly
important at low densities and, hence, for low-mass white
dwarfs. We analyze here the specific case of the white dwarf
companion of the millisecond pulsar PSR J1738 + 0333. We
refer to Ref. [11] for details on the observations and technical
aspects of the derivation of the binary parameters.

Antoniadis et al. [11] obtained, by use of the the
Goodman High Throughput Spectrograph instrument of the
Southern Astrophysical Research Telescope (SOAR) at Cerro
Pachón, Chile, a photometric radius of the white dwarf,
RWD = 0.042 ± 0.004R�. On the other hand, the analysis
of the white dwarf atmosphere spectrum with the mod-
els of Ref. [20] led to an effective surface temperature,
Teff = 9130 ± 150 K, and a logarithm of the surface grav-
ity, log10(g) = log10(GMWD/R2

WD) = 6.55 ± 0.1. Using the
evolutionary mass-radius relation of Painei et al. [21], the
mass of the white dwarf was estimated in Ref. [11] to
be MWD = 0.181+0.007

−0.005M�, with a corresponding radius of
RWD = 0.037+0.004

−0.003R�, in agreement with the photometric
value.

A first attempt to obtain the mass of the white dwarf can
be done directly from the observed data by combining the
spectral and photometric analysis. Assuming the photometric
radius as the star radius, the mass of the white dwarf would
be MWD = gR2

WD/G ≈ 0.23M�, using the central values of
RWD and g, which is roughly consistent with the mass derived
from the mass-radius relation of Ref. [21].

In order to compare our mass-radius relation at finite
temperatures with the above results and infer the internal
temperature of the white dwarf, we plotted in Figs. 11 and
12 our theoretical surface gravity-mass and radius relations
for 4He white dwarfs, together with the above observational
constraints.

An inspection of Fig. 11 does not give us any information on
the possible internal temperature of the white dwarf since, in
principle, we do not have any a priori information on the mass.
However, from Fig. 12 we clearly identify that the interior tem-
perature of the white dwarf core should be T ≈ 2–3 × 107 K.
In Fig. 13 we plot the mass-radius relation for 4He white
dwarfs with the observational constraints of the companion
of PSR J1738 + 0333. We can now compare our results
with an estimate obtained, for instance, using the relation
found by Koester in Ref. [22] between the central and surface
temperatures of the white dwarf, T 4

eff/g = 2.05 × 10−10T 2.56
c .

Using the value Teff = 9130 K and log10(g) = 6.55, this

FIG. 11. Logarithm of the surface gravity, log10(g) =
log10(GMWD/R2

WD), as a function of the mass for 4He white
dwarfs for selected interior temperatures from T = 104 K to
T = 108 K. The horizontal diamonds indicate the maximum and
minimum best-fit values log10(g) = 6.55 ± 0.1.

relation gives Tc ≈ 2.6 × 107 K, in full agreement with our
inference. In this estimate we have neglected the contribution
of the thickness of the envelope to the total surface radius of the
white dwarf. However, this approximation does not introduce
a large error since the envelope would be in this case at most
∼10−2RWD thick.

VI. APPLICATION TO NUCLEAR MATTER
CORES OF STELLAR DIMENSIONS

In Ref. [1] we extended the relativistic FMT model to
what we have called nuclear matter cores of stellar dimen-
sions: macroscopic objects composed by neutrons, protons,
and electrons in β equilibrium, with mass numbers A ∼
(mPlanck/mn)3 ∼ 1057 and corresponding masses Mcore ∼ M�.

FIG. 12. Logarithm of the surface gravity, log10(g) =
log10(GMWD/R2

WD), as a function of the radius for 4He white
dwarfs for selected interior temperatures from T = 104 K to
T = 108 K. The horizontal diamonds and the vertical tick dashed
lines indicate the maximum and minimum best-fit values of the
surface gravity, log10(g) = 6.55 ± 0.1, and photometric radii
RWD = 0.042 ± 0.004R�, respectively.
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FIG. 13. Total mass versus radius for 4He white dwarfs for
selected interior temperatures from T = 104 K to T = 108 K.
The diagonal diamonds and the vertical tick dashed lines indicate
the maximum and minimum best-fit values of the surface grav-
ity, log10(g) = 6.55 ± 0.1 and photometric radii RWD = 0.042 ±
0.004R�, respectively.

These systems are expected to represent idealized cores of
macroscopic systems of nuclear matter kept bound by self-
gravity, such as the cores of neutron stars. We now follow
our treatment in Ref. [1] and use the existence of scaling
laws and proceed to the ultrarelativistic limit of the relativistic
Thomas-Fermi equation at finite temperatures given by Eq. (7).

The β equilibrium of Nn = A − Z neutrons, Z protons,
and Z electrons gives, for massive cores, Nn � Z. Typically,
in these systems we have A/Z ≈ 102, so at nuclear density the
neutron gas will have a Fermi energy EF

n of the order of

EF
n 

(
P F

n

)2

2mn

 (3π2)2/3 �
2

2mn

(
A

ρnuc

mn

)2/3

∼ 60 MeV,

(25)

where we have used a nuclear density value ρnuc ≈ 2.7 ×
1014 g cm−3 and 1 − Z/A ≈ 1. Assuming a temperature such
that T � T F

n = EF
n /kB ≈ 7 × 1011 K, the neutron chemical

potential μn can be expanded as

μn = EF
n

[
1 − π2

12

(
kBT

EF
n

)2

− π4

80

(
kBT

EF
n

)4

+ · · ·
]
. (26)

Correspondingly, the protons have Fermi energy EF
p ∼

(Z/A)2/3EF
n ∼ MeV, so for temperatures kBT �EF

p ≈ 1 MeV,
Eq. (26) applies also for protons,

μp = EF
p

[
1 − π2

12

(
kBT

EF
p

)2

− π4

80

(
kBT

EF
p

)4

+ · · ·
]
. (27)

As a result, for temperatures kBT � 1 MeV, both neutrons
and protons can be treated as degenerate particles, whereas in
this limit electrons are semidegenerate and ultrarelativistic. In
the case of ordinary nuclei, due their high isospin symmetry
(A/Z ≈ 2), both neutrons and protons can be treated as
degenerate particles until T ≈ (Z/A)2/3EF

n /kB ∼ 38 MeV.
Since in the ultrarelativistic limit for electrons their kinetic

energy ε is simply pc, the condition μe/(kBT ) � 1 holds.

Consequently, the integral

I =
∫ ∞

0

f (ε)dε

exp
(

ε−μe

kBT

) + 1
, (28)

with f (ε) = ε2 appearing in the electron density given by
Eq. (2), can be expanded as

I =
∫ μe

0
f (ε)dε + 2(kBT )2f ′(μe)

∫ ∞

0

z

ez + 1
dz

+ 1

3
(kBT )4f ′′′(μe)

∫ ∞

0

z3

ez + 1
dz + · · · , (29)

where ∫ ∞

0

zx−1

ez + 1
dz = (1 − 21−x)�(x)

∞∑
n=1

1

nx
, (30)

with � the Gamma function and μe the chemical potential of
electrons and a prime denotes derivative with respect to ε. We
thus obtain the result

I =
∫ μe

0
f (ε)dε + π2

6
(kBT )2f ′(μe)

+ 7π4

360
(kBT )4f ′′′(μe) + · · · , (31)

and, retaining only the first term in T , we have

I ≈ μ3
e

3
+ π2

6
(kBT )2μe. (32)

As discussed in Ref. [1], for a nuclear massive core of stellar
dimensions we can assume the plane-parallel approximation,
which leads to the Poisson equation in the case of finite
temperatures,

d2φ̂

dξ 2
= −θ (ξ − ξc) + φ̂3 + sφ̂, (33)

where φ = 41/3(9π )−1/3χ�/x, x̂ = kx, where k = (12/π )1/6√
α�−1, ξ = x̂ − x̂c, and s = (2π4)1/3�2(kBT )2/(34/3m2

πc2).
Notice that the above equation is the ultrarelativistic version
of Eq. (7) for semidegenerate electrons and how, in the limit
T → 0 (s → 0), it leads to the ultrarelativistic Thomas-Fermi
equation for fully degenerate massive cores obtained in
Ref. [1].

The Coulomb potential is given by

eV (ξ ) =
(

9π

4

)1/3 1

�
mπc2φ̂(ξ ) − C, (34)

with C = (9π/4)1/3�−1mπc2φ̂(ξWS), the electric field is

E(ξ ) = −
(

35π

4

)1/6 √
α

�2

m2
πc3

e�

dφ̂

dξ
, (35)

and the electron number density is

ne(ξ ) = (mπc2)3

3π2�3c3

[(
9π

4

)
1

�3
φ̂3(ξ )

+ π2

2

(
9π

4

)1/3 1

�

(
kBT

mπc2

)2

φ̂(ξ )

]
. (36)
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The global charge neutrality of the system imposes the
boundary condition that the electric field vanishes at ξ = ξWS.
This implies dφ̂/dξ |ξ=ξWS = 0. The function φ̂ and its first
derivative dφ̂/dξ must be continuous at the surface ξ = 0 of
the nuclear density core. This boundary-value problem can be
solved analytically and indeed Eq. (33) has the first integral,

2

(
dφ̂

dξ

)2

=
{
φ̂4(ξ ) + 2sφ̂2 − 4φ̂(ξ ) + 3 − 2s, ξ � 0,

φ̂4(ξ ) + 2sφ̂2 − φ̂4(ξWS) − 2sφ̂2(ξWS), ξ > 0,

(37)

with boundary conditions at ξ = 0,

φ̂(0) = φ̂4(ξWS) + 3

4
+ s

2
[φ̂2(ξWS) − 1], (38)

dφ̂

dξ

∣∣∣∣
ξ=0

= −
{

φ̂4(0) − φ̂4(ξWS)

2
+ s[φ̂2(0) − φ̂2(ξWS)]

}1/2

.

(39)

The solution of Eq. (37) in the interior region ξ � 0 is then

φ̂(ξ ) = 1 − (s + 3)

[
1 +

(
s + 1

2

)1/2

sinh(β − √
s + 3ξ )

]−1

,

(40)

with

sinh β =
√

2

s + 1

{
11 + φ4(ξWS) + 2s[φ2(ξWS) + 1]

1 − φ4(ξWS) − 2s[φ2(ξWS) − 1]

}
.

(41)

In the exterior region ξ > 0 the solution of Eq. (37) is

φ̂(ξ ) =
√

−s + √
s2 + G

cos
(
am

[
(s2 + G)1/4(ξ − ξWS), 1

2 + s

2φ̂2(ξWS)

]) , (42)

where G = φ̂4(ξWS) + 2sφ̂2(ξWS). It can be seen again how in
the limit T → 0 (s → 0), the solution at finite temperatures
given by Eqs. (40)–(42) becomes its degenerate counterpart
obtained in Ref. [1].

From Eqs. (39) it follows that the peak of the electric field
at the surface of the core is larger than the corresponding value
obtained for T = 0. In fact, we have, for any temperature
T > 0 and level of compression ξWS �= 0,∣∣∣∣

(
dφ̂

dξ

)
ξ=0

∣∣∣∣
T >0

>

∣∣∣∣
(

dφ̂

dξ

)
ξ=0

∣∣∣∣
T =0

. (43)

As in the degenerate case, in the limit ξWS → 0, the global
charge neutrality Ne = Z and the local charge neutrality ne =
np are recovered and at the surface of the massive core no
electrodynamical structure is present.

The above analytic equations can be used only in the ultra-
relativistic regime of the electron gas; it can then be checked
from the above formulation that at such high compressions we
have φ̂(ξ )|T >0 ≈ φ̂(ξ )|T =0. More specifically, corrections due

to thermal effects on the density of ultrarelativistic electrons
are smaller than 1% for T � 0.1 MeV/kB ≈ 109 K.

VII. CONCLUSIONS

The Feynman-Metropolis-Teller treatment [1] of com-
pressed matter has been here generalized to the case of finite
temperatures. We have thus obtained the EOS formed by nuclei
and electrons by solving the finite-temperature relativistic
Thomas-Fermi equation (7) within globally neutral Wigner-
Seitz cells. We emphasize in this work the electron component
and the Coulomb interaction between ions and electrons fully
computed within a relativistic Thomas-Fermi approach with
finite-sized nuclei, and therefore applicable to any relativistic
regime of the electrons and densities. This work generalizes
other treatments based on either a uniform distribution of
electrons or the classic Thomas-Fermi treatment; see, e.g.,
Ref. [12]. The quantum corrections to the classic ideal ion fluid
considered in this work can be straightforwardly introduced in
their corresponding ranges of relevance, as done in previous
treatments; see, e.g., Refs. [13–15,23].

We have shown the general features of the new EOS
and compared and contrasted the effects due to the nonzero
temperature with respect to the degenerate case. We have
checked that the onset of the inverse β-decay instability is
not modified for temperatures T � 108 K and therefore the
zero-temperature critical densities computed in Ref. [7] can
be safely used. The enhancement and flattening of the electron
density inside the cell for larger temperatures could have
relevant effect in the pycnonuclear reaction rates in the interior
of white dwarfs and/or in the low density layers of accreting
neutron stars.

Deviations from the degenerate EOS have been shown to
occur in the regions of interest of low-mass white dwarfs and
in the outermost layers of neutron star crusts. Ultra-low-mass
white dwarfs, MWD ∼ 0.2M� [10,11], have been found in
binary systems with neutron star companions. These objects
have central densities �106 g cm−3, where the degenerate
approximation breaks down and so thermal effects cannot
be neglected. We have analyzed here the specific case of
PSR J1738+0333, whose mass and radius was estimated
in Ref. [11] using the evolutionary mass-radius relation of
Painei et al. [21]. They obtained MWD = 0.181+0.007

−0.005M�,
RWD = 0.037+0.004

−0.003R�, in agreement with the spectrometric
and photometric data. We inferred for this object an internal
temperature T ≈ 2–3 × 107 K, and a mass MWD ≈ 0.2M�,
assuming, for instance, the photometric radius, R = 0.042R�,
as the star radius. We checked also our result using the relation
by Koester [22] between the internal and surface white dwarf
temperatures, T 4

eff/g = 2.05 × 10−10T 2.56
c . Using the surface

temperature and the logarithm of the surface gravity obtained
from the spectral analysis, Teff = 9130 K and log10(g) = 6.55,
this relation gives Tc ≈ 2.6 × 107 K, in full agreement with
our results.

Following our previous work [1], we finally extrapolated
the treatment to macroscopic systems with mass numbers
A ≈ (mPlanck/mn)3 ∼ 1057, corresponding to masses Mcore ≈
M�. We showed that the presence of the temperature enhances
the maximum electric field in the core surface of these objects.
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