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High precision measurements of the parity-violating asymmetry in polarized electron scattering from nuclei
can be used to extract information on nuclear and nucleon structure or to determine standard model couplings and
higher-order radiative corrections. To this end, low uncertainties are also required in the effects that inevitably
arise from modeling the underlying nuclear structure. An experimental precision of a few tenths of a percent
may be attainable for the asymmetry if the appropriate kinematic range is chosen, as will be discussed here for
the case of 12C. And given this, the dual goal of ascertaining both the sizes of various nuclear structure related
effects and of providing estimates of their uncertainties for this particular target will be discussed.
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I. INTRODUCTION

Recently there has been interest expressed in having rela-
tively low energy, high luminosity polarized electron beams
for studies of parity-violating (PV) electron scattering [1]. One
such is the MESA accelerator at Mainz [2]; another might
be an upgraded version of the FEL facility at Jefferson Lab
[3]. Various motivations underlie these initiatives, including
improved measurements of PV electron-proton scattering at
low momentum transfers, of the neutron radii of nuclei, and of
tests of the standard model, both of the weak mixing angle
and of higher order radiative corrections including single-
nucleon box and cross-box two-boson exchange diagrams
and dispersion corrections. Here PV scattering from nuclei
is involved and this raises the questions: How well can
nuclear structure effects be taken into account? What level
of uncertainty exists in evaluating these nuclear effects, both
at present or through future theoretical studies?

In the present paper we report the results of a study of
specific classes of nuclear effects to be discussed in the
following section, and indicate in some cases where additional
work might be undertaken. The paper is organized in the
following way: Following these brief introductory comments,
in Sec. II the basic formalism is summarized. References
are given in that section to much more detailed treatments
of the formalism and so here only a few specifics needed
for the present study are highlighted. The various effects that
either stem from nuclear structure issues or involve strangeness
content in the nucleons in the nucleus are enumerated at this
point. Following this in Sec. III results are given for the case
of 12C, both for the assumed kinematics of the MESA facility
and for somewhat higher energies that might become available
with an upgraded JLab FEL facility. Included there is a careful
analysis of the expected fractional uncertainties in the PV
asymmetry expected with these, together with the uncertainties
projected to arise from nuclear structure uncertainties and
from our current knowledge of strangeness. The paper then
concludes with a brief summary of our findings.

II. FORMALISM

The weak interaction contains vector and axial-vector
components having opposite behavior under a parity

transformation. This is at the origin of the nonzero value of
the PV asymmetry in electron scattering, which is defined
as the relative difference between the cross sections of
incoming electrons longitudinally polarized parallel (σ+) and
antiparallel (σ−) to their momentum:

A = dσ+ − dσ−

dσ+ + dσ− . (1)

By considering the exchange of a single gauge boson for each
of the two interactions involved in the process, namely the
neutral weak (Z0 boson) and the electromagnetic (photon)
interactions, and neglecting the effect of the nuclear Coulomb
field on the electron wave functions, i.e., within plane wave
Born approximation (PWBA), the PV asymmetry can be
written as [4]

A = GF |Q2|
2πα

√
2

W PV

W PC
. (2)

It is apparent that the PV asymmetry factorizes into a standard
model part, containing the Fermi (weak) and the fine-structure
(electromagnetic) coupling constants, GF and α respectively,
a four-momentum transfer dependence |Q2|, and a nuclear-
structure dependent part containing the ratio of the PV to
the parity-conserving (PC) responses. The former arises from
an electromagnetic-weak interaction interference (indicated
with a hat in the hadronic tensors below) and contains terms
with vector-vector tensors weighted by the weak neutral
axial coupling of the electron ae

A, both longitudinal (L) and
transverse (T ), as well as a term (T ′) with axial-vector tensors
weighted by the weak neutral vector coupling of the electron
ae

V :

W PV = ae
A(vLŴL + vT ŴT ) + ae

V vT ′ŴT ′ . (3)

The PC response, on the other hand, is purely electromag-
netic and therefore contains just vector-vector tensors, both
longitudinal and transverse:

W PC = vLWL + vT WT . (4)

When considering an N = Z nuclear target with pure
isospin T = 0 in its ground state, only the isoscalar part of
the elastic responses is involved, which effectively removes the
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axial-vector contribution (ŴT ′ ) from the PV response, since the
isoscalar axial coupling of the weak neutral interaction (β(0)

A ) is
zero in the standard model (at tree level). If we further restrict
ourselves to elastic scattering by Jπ = 0+ nuclear targets,
only the Coulomb-type monopole (C0) multipole operators
contribute to the responses, so that the transverse terms (T )
both in the PV and the PC responses do not contribute either.
In this situation both responses become trivially proportional
[5]:

W PV

W PC
= ae

AŴL

WL

= ae
A β

(0)
V , (5)

where β
(0)
V is the vector isoscalar weak neutral coupling of the

nucleon and ae
A, as stated above, is the electron weak neutral

axial coupling; both can be expressed at tree level in terms
of the electromagnetic-weak (Weinberg) mixing angle θW as
β

(0)
V = −2 sin2 θW and ae

V = 4 sin2 θW − 1, where sin2 θW ≈
0.23. The PV asymmetry with the above-mentioned conditions
can then be expressed as

A = A0 ≡ −
[
GF |Q2|
πα

√
2

]
ae

A sin2 θW
∼= 3.22 × 10−6 |Q2|

(6)

when the momentum transfer is given in fm−1. The nuclear
target under consideration in the present work, 12C, has 0+
angular momentum and parity in its ground state, as well as
nominal T = 0 since N = Z. Therefore, a precise measure-
ment of the PV asymmetry allows a precise determination of
the values of the standard model constants, in particular the
mixing angle θW , if all of the above mentioned conditions
are met; namely, one-boson exchange (no box diagrams), no
Coulomb distortion of projectile wave functions, no dispersion
effects to non-0+ excited states of 12C, absence of strangeness
in the nucleons, and no isospin-mixing effects. Our current
experimental knowledge does not ensure the actual fulfillment
of some of these conditions, such as the absence of strangeness
in the nucleon [6], and clearly refutes others, such as the isospin
purity of the nuclear state which is spoiled by the inescapable
Coulomb interaction among protons. Therefore their conse-
quences need to be modeled by theory and extracted from the
measured PV asymmetry, introducing theoretical uncertainties
in the analysis. Under the term “theoretical uncertainties” we
include the variability in the theory describing a given feature,
for instance different microscopic nuclear structure models,
as well as the experimental uncertainty in the parameters
of the models, for instance the strangeness content of the
nucleon.

The planned experimental conditions [1], which will be
used as starting point and reference case in this study, consist
of 150 MeV polarized electrons with a luminosity of 5 × 1038

particles per cm2 per s. Scattered electrons are to be detected
with scattering angles between 25◦ and 45◦, typically for a total
of 107 seconds running time (approximately 100 days). An
ideal degree of electron polarization of 100% is assumed here.
The statistical uncertainty of the measured PV asymmetry
and the model-dependent uncertainty of the corresponding
theoretical prediction are to be kept below 0.3% so that
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FIG. 1. Scattering angle as a function of the momentum transfer
for different incident energies. The scattering angles of 25◦ and 45◦

are highlighted, as well as the corresponding momentum transfers
in our reference case of ε = 150 MeV for an easy translation of
kinematic conditions among the different incident momenta.

new information on electroweak couplings or on higher-order
interaction effects can be extracted.

In addition we explore other possible kinematic regions
where theoretical uncertainties and the experimental figure of
merit are such that the relative error of the asymmetry remains
below 0.3%, even when some of the experimental features
such the luminosity or the running time are relaxed. We allow
for the possibility of an integrated measurement of the PV
asymmetry within a given solid angular range, thus reducing
the statistical uncertainty. The analysis of different kinematic
regions will be based on a set of energies of 150, 300, and
500 MeV, according to the capabilities of facilities such as
MESA at Mainz or potentially the FEL accelerator at Jefferson
Lab.

In the processes under study here the incident energy ε of
the electrons as well as the scattering angle θ at which they
are detected are under control, both quantities determining
the momentum transfer q of the interaction. In the extreme
relativistic limit and ignoring the nuclear recoil it is given
by

q = 2 ε sin(θ/2). (7)

For an easier interpretation of kinematic conditions in terms of
momentum transfer or of scattering angle for a fixed incident
energy, we show their relationship in Fig. 1 for the incident
energies used in this work.

The various effects that will be explored in this work
(see below) give rise to different PV asymmetries which
are very hard to distinguish from each other when plotted
directly as functions of a kinematic variable. Therefore we
plot instead asymmetry deviations for each effect, �X ≡
AX/A0 − 1, defined as the difference between the theoretical
PV asymmetry under study, AX (with only effect X on), and
our reference value, A0, divided by the reference value. The
total PV asymmetry contains all of the effects and can therefore
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be written as

AT ≈ A0

(
1 +

∑
i

�Xi

)
, (8)

where the interference terms between different effects, of the
type �Xi �Xj , are considered to be small and so are neglected
in this analysis. The theoretical uncertainties in any of the PV
asymmetry deviations 	�Xi effectively translate into relative
theoretical uncertainties of the corresponding PV asymmetries,
since

	�X = �Xa − �Xb = AXa − AXb

A0
= 	AX

A0
. (9)

For instance, if different reasonable nuclear models yield a
deviation range 	�Xi = 0.01 due to effect Xi , the relative
theoretical uncertainty of the PV asymmetry is 1% (with
respect to A0).

Several sources of theoretical uncertainties are explored in
this work. First, the electromagnetic charge of the nuclear
target is responsible for the Coulomb distortion of the
incoming and outgoing electron wave functions; theoretical
uncertainties in the distribution of this charge within the
nucleus translate into PV asymmetry uncertainties through
the effect of the Coulomb distortion of the projectile wave
function, which is computed within the distorted wave Born
approximation (DWBA) [7]. This analysis is carried out using
a three-parameter Fermi distribution for the nuclear charge
density:

ρ(r) = ρ0
1 + w r2

c2

1 + e
r−c
d

, (10)

where c, d, and w are the radius, diffuseness, and central-
depression parameters, respectively. Different ground-state
charge distributions are then generated by varying the values of
these parameters from their fitted values [8], keeping the cor-
responding rms charge radius within the known experimental
range [9]. To avoid confusion with isospin-mixing effects (see
below), the ground-state neutron distribution is taken to be the
same as the charge distribution.

We study next the effect of isospin mixing in the nuclear
ground state due to the electromagnetic interaction, which
reveals itself in the form of different proton and neutron
distributions. In this case we model the nuclear ground state
as an axially-deformed Hartree-Fock mean field employing
Skyrme nucleon-nucleon interactions, together with pairing
via a BCS approximation [10]. Skyrme interactions are
effective nucleon-nucleon interactions [11,12]. They include
a two-body force in the form of a short-range expansion
which leads to momentum dependence (�k,�k′), and contain the
appropriate exchange terms of which only the spin exchange
(Pσ ) appears explicitly in the final Skyrme expression. An
additional term is added to account for two-body spin-orbit
interaction. Finally, an extra term introduces a three-body force
in the form of a density-dependent (ρ) term. A general Skyrme

interaction can thus be written as

V Sk
12 = t0(1 + x0Pσ )δ(�r1 − �r2)

+ 1

2
t1(1 + x1Pσ )[δ(�r1 − �r2)k2 + k′2δ(�r1 − �r2)]

+ t2(1 − x2Pσ )�k′δ(�r1 − �r2)�k + iW0(�σ1 + �σ2)�k′

× δ(�r1 − �r2)�k + 1

6
t3(1 + x3Pσ )δ(�r1 − �r2) ρα

×
( �r1 + �r2

2

)
. (11)

The parameters of the Skyrme interaction that establish the
strength of each term (ti ,xi,W0,α) are fitted to reproduce
different properties in different regions of isotopes over the
nuclear chart. Although a nucleus as light as 12C might not be
very well suited to such mean-field approaches, we estimate
the theoretical variability of the nuclear isospin mixing by
using a set of representative Skyrme parametrizations in a
Hartree-Fock calculation. A like-nucleon pairing interaction
within the BCS approximation is also included, using a fixed
pairing energy gap, equal for protons and neutrons, that
can be modified to study its effect on the isospin mixing.
Another possible indirect source of isospin mixing, an axial
deformation in the nuclear ground state, is considered by in-
troducing quadrupole constraints in the Skyrme Hartree-Fock
energy functional. Further analysis in the future will require,
if available, state-of-the-art ab initio many-body calculations
of the nuclear target ground state. For example, an interesting
study could be made using the Green’s function Monte Carlo
approach [13]; the 12C ground state could be obtained using
a non-isospin-violating potential where the isospin would
be T = 0 as well as with the AV18 potential which has
charge symmetry breaking contributions. And in both cases
the Coulomb interaction could be added perturbatively. This
would yield estimates of isospin mixing stemming both from
the Coulomb interaction as in our present study and also
via the charge symmetry breaking terms in the potential.
Since the latter are obtained phenomenologically by fixing the
potential to fit the systematics of nucleon-nucleon scattering,
non-Coulombic isospin-mixing effects would to some extent
be incorporated following this procedure.

III. RESULTS

We start by showing in Fig. 2, on the left, the proton and
neutron densities in the ground state of 12C and on the right the
corresponding PV asymmetry for the scattering of polarized
electrons of 150 MeV within DWBA. In both cases the ground-
state structure of the nuclear target has been obtained from
a Hartree-Fock calculation using a SLy4 Skyrme interaction
[14] with BCS pairing for a spherical (self-consistent) nuclear
shape.

We analyze first the effect of the nuclear charge distribution
uncertainty on the PV asymmetry. Figures 3 and 4 show the
PV asymmetry deviation due to Coulomb distortion effects,
i.e., the deviation of the DWBA asymmetry with respect to
the PWBA calculation, �DW = ADW/A0 − 1. Different charge
distributions (equal to the neutron distributions) have been
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FIG. 2. Left: Proton and neutron radial densities in the ground state of 12C from a Skyrme (SLy4) Hartree-Fock calculation with BCS
pairing for a spherical (self-consistent) shape. Right: PV asymmetry in elastic scattering of polarized electrons with 150 MeV incident energy
from a 12C target, using the ground-state nucleon densities shown on the left.

used in the ground state of 12C, obtained by varying the
radius parameter c of the Fermi distribution in Eq. (10). In
the kinematic range of interest for 150 MeV incident electrons
the effect of Coulomb distortion of the electron wave function
lies around 3% with a theoretical spread of 0.01%, as shown
in Fig. 3; for the higher incident energies shown in Fig. 4 (300
and 500 MeV), the Coulomb distortion effects are smaller,
as are the theoretical spreads. In all cases these theoretical
spreads are well below the desired limit of 0.3%. The same
analysis has been performed by varying the diffuseness and
the central-depression parameters of the Fermi distribution,
keeping the charge rms radius within the experimental range.
The same conclusions as with the radius parameter variation
can be drawn.

Another contribution to the PV asymmetry comes from
the nuclear isospin mixing in the form of different proton
and neutron distributions, which we estimate using a Skyrme
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FIG. 3. PV asymmetry deviation of DWBA results for incident
electrons of 150 MeV with respect to those of PWBA, as a function
of the three-momentum transfer q (lower axis) or scattering angle
(upper axis). Three results are shown using different values of the
radius parameter c of the Fermi charge distribution (compatible with
the uncertainties in the experimental rms charge radius).

HF mean field calculation with BCS pairing, as discussed
above. The isospin mixing in this model results exclusively
from the Coulomb interaction between protons. The relevant
PV asymmetry deviation in this case compares the asymmetry
where isospin mixing is present with the one where the ground
state has zero isospin, �I = AI/A0 − 1. In Fig. 5 we plot
results with several Skyrme forces (see [15] and references
therein) to show both the average size of the isospin mixing
effect as well as an estimation of the theoretical uncertainty
within the model. The overall value of this deviation is seen
to be 0.3%–0.5% in the region of interest, although most of
the Skyrme forces tested here yield deviations lying within
an even smaller range. Some of the outliers in the subset
used in this work can be questioned on the grounds that
in some cases not all of the parameters in the interaction
were adjusted but were fixed, or in others that some of
the relevant terms in the interaction were absent. It should
also be noted that the various interactions were obtained by
emphasizing good agreement for specific properties (binding
energies, energy levels, the nature of the deformation, rms
radii, BE2s), but not necessarily all properties simultaneously,
and it is not obvious what matters most for the analysis of the
PV asymmetry. Furthermore, as stated above, the interactions
being used were not specifically designed for 12C, and one
sees reflections of this in the fact that some are better than
others at reproducing the position of the diffraction minimum
in the elastic cross section. Similar conclusions could be
expected from the whole set of nearly 250 different Skyrme
parametrizations that can be found in the literature and that
work reasonably well in describing a given set of properties
of finite nuclei or of nuclear matter. Concerning the latter, a
comprehensive analysis of the Skyrme interactions has been
performed in [15] in relation to nuclear matter constraints to
find that only a few of them pass the test. However, we find
it risky to endorse or rule out some Skyrme parametrizations
for our finite (actually light) N = Z nucleus based only on
nuclear matter evaluations, even those related to the symmetry
energy, which might seem in principle to be particularly
sensitive to proton-versus-neutron distributions and therefore
to isospin-mixing effects. To a very good approximation,
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FIG. 4. Same as for Fig. 3 but now for higher energies of the incident electrons. Left: For 300 MeV incident electrons. Right: For 500 MeV
incident electrons.

the PV asymmetry deviation due to isospin mixing shows
approximately a quadratic q dependence, especially in the low
momentum transfer region. This behavior can be easily traced
back to the momentum transfer dependence of the Coulomb
monopole operator involved in the PV asymmetry under
study in this work. Together with the Skyrme Hartree-Fock
results, we show in Fig. 5 the isospin-mixing deviation from
a relativistic mean field approach, a Dirac-Hartree study
performed starting with the NLSH parametrization of the
Lagrangian density [16]. The resulting deviation lies within
the range defined by the set of Skyrme forces described above.

Other modifications that can be considered in the nuclear
mean field with a potentially different impact on the proton
and neutron distributions, i.e., contributing to the isospin
mixing, are shown in Fig. 6. On the left we show the effect of
including or removing a residual pairing interaction between
like nucleons in the Skyrme Hartree-Fock calculation. The
strength of this interaction is introduced through a fixed pairing
energy gap within the BCS approximation, whose value is
difficult to estimate and is therefore an actual source of
uncertainty. On the right we plot the isospin-mixing deviations
for different axially symmetric shapes of the mean field
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FIG. 5. Left: Deviation of the PV asymmetry having isospin mixing with respect to the value in the absence of mixing, as a function of the
momentum transfer q in the lower axis and indicating the corresponding scattering angles in the upper axes for three incident energies, 150,
300, and 500 MeV. Several results are shown for different Skyrme forces used in a Hartree-Fock calculation (thin solid and dashed lines for
two groups of similar results, and thin dotted lines for outliers), together with a relativistic mean field calculation using an NLSH Lagrangian
parametrization (thick solid line). Right: Same as for figure on the left but with all the curves normalized to 1 at q = 1.5 fm−1. The thick dashed
line shows a pure q2 dependence for comparison.
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FIG. 6. Left: Deviation of the PV asymmetry having isospin mixing with respect to the value in the absence of mixing, as a function of
the momentum transfer q, for two different Skyrme Hartree-Fock calculations, with and without residual pairing interactions between like
nucleons within the BCS approximation. Right: The same, but now for three different axially-symmetric nuclear shapes from a deformed
Skyrme Hartree-Fock calculation: spherical, oblate, and prolate.

(spherical, oblate, and prolate), which are computed using a
quadrupole constraint in the Hartree-Fock calculation. This is
another source of uncertainty since the ground-state shape of
12C is not very well known (see the discussion in [10]) and
could even imply triaxial deformations that we nevertheless
model through axial deformations. The former could be related
to a three-alpha cluster structure interpretation [17], which can
be revealed in calculations beyond mean field involving more
than just one Slater determinant to account for deformation
and clustering [18]. Notwithstanding the above discussion,
as can be seen in the figures, all the variations considered,
namely different Skyrme parametrizations, pairing strengths,
and axially symmetric shapes, yield a theoretical spread lower
than 0.1%, which is below the target goal of a few tenths of a
percent.

We now turn to a brief discussion of the situation where the
experimental resolution is not sufficient to resolve the ground
state, and accordingly where the PV asymmetry arises from
a sum over several excited states together with the ground
state. Let us assume that the sum runs over i = 0, . . . ,n, with
0,1, . . . denoting the ground state, first excited state, etc. The
total asymmetry is given by

A =
n∑

i=0

fiAi, where fi ≡ σi∑n
j=0 σj

, (12)

with Ai being the PV asymmetry for excitation of the ith
state, σi being the (parity-conserving) cross section for a
transition from the ground state to the ith excited state, and one
has

∑n
i=0 fi = 1. Defining the deviation from the reference

asymmetry as above, one then has

�inel ≡ A/A0 − 1 = (f0 − 1) +
n∑

i=1

fi (Ai/A
0). (13)

Since the elastic scattering cross section, namely the contri-
bution from the Coulomb monopole charge form factor, is
proportional to Z2, whereas the inelastic cross sections are
not coherent, one expects at least to have fi ∼ 1/Z2 for i � 1
and thus that f0 − 1 ∼ −n/Z2. In fact, at low momentum

transfers the inelastic multipole matrix elements are further
suppressed by powers of q/qN where qN is a characteristic
nuclear momentum transfer scale, roughly 1 fm−1. Thus, even
from such rough arguments one expects a minor contribution
from inelastic transitions, unless the resolution is so poor
that a very large range of energies must occur in the sums
above.

In the specific case of 12C, first assuming that the energy
resolution is sufficient to involve only the T = 0 excited states
(i.e., better than 15.11 MeV; here we do not consider isospin
mixing in the excited states, although in a full analysis that can
be taken into account), assuming no strangeness contributions
and working at tree level in the standard model (where the
isoscalar axial-vector coupling is zero) one has a very simple
answer, namely �inel = 0, since all weak neutral current mul-
tipole matrix elements are proportional to the corresponding
electromagnetic matrix elements with a universal coupling.
Thus any nonzero result must come from having strangeness
or from taking into account beyond-tree-level contributions to
the isoscalar axial-vector matrix elements. The former occurs
because for inelastic contributions in general both G

(s)
E and

G
(s)
M can occur, in contrast to the elastic scattering result where

magnetic strangeness enters only as a very small relativistic
spin-orbit contribution (see the following discussion). The
latter implies that the VA interference response must be
taken into account; however, because of the smallness of
the vector leptonic coupling and because this contribution
is suppressed at the forward scattering angles being con-
sidered in this work, one expects a very small contribution
here.

The situation is even clearer if the experimental resolution
is good enough to require one to take into account only the
first two excited states of carbon, the 2+ state at 4.4389
MeV and the 0+ state at 7.6542 MeV [19]. A transition to
the latter has the same characteristics as the elastic case,
namely with the same proportionality of the WNC and EM
matrix elements, and hence has the same asymmetry, A2 = A0.
The former can be more complicated in that both C2 and
E2 multipoles enter and the E2 has both convection and
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magnetization current contributions, convection involving G
(s)
E

and magnetization G
(s)
M , while the C2 involves only G

(s)
E . In

fact, at the low momentum transfers of interest in this work the
E2 is known to be dominated by the convection current [20]
and thus one finds that A1 	 A0 as well. Indeed, putting in
estimates for the form factors involved and taking into account
strangeness content as discussed below, one finds that �inel is
below the 10−3 level and hence inconsequential for the present
discussions.

Regarding the possible effects of meson-exchange currents
(MECs), we note that MEC effects of non-strange type will
cancel in a situation where there is no isospin mixing and no
strangeness. If isospin mixing is present, but no strangeness,
isoscalar and isovector matrix elements are modified in
different ways, typically at the 10% level or less at low
momentum transfers [21], and so the results above may
change by roughly this amount leading to uncertainties of
typically a few parts in 1000. Finally, with isospin mixing and
strangeness in the nucleons (one-body strangeness) the dom-
inant effects are from the latter; two-body strangeness effects
at low q should be very small according to previous studies
[22].

We focus finally on the uncertainties stemming from
the electric and magnetic strangeness form factors of the
nucleon. The relevant asymmetry deviation in this case is
�s = As/A0 − 1, where A0 is the standard asymmetry (with
no strangeness). The electric and the magnetic strangeness
form factors of the nucleon can be parametrized as

G
(s)
E = ρsτ

(1 + 4.97τ )2
, (14)

G
(s)
M = μs

(1 + 4.97τ )2
, (15)

where τ = |Q2|/4m2
N and ρs and μs are the electric and mag-

netic strangeness content parameters respectively [6,23,24].
The current experimental values of these parameters are
interrelated and range from ρs = 1.60 and μs = −0.35 to
ρs = −0.40 and μs = 0.30, with a central value of ρs = 0.59
and μs = −0.02 [6]. The asymmetry deviations corresponding
to these limiting and central values are shown in Fig. 7,
yielding an overall effect from 0.2% to 1% in the region
of interest. The spread arising from these three cases lies
between 0.5% and 1.5%. The most relevant contribution
to these effects comes from the electric strangeness, since
magnetic strangeness in the monopole matrix element arises
only through a rather suppressed spin-orbit correction of
relativistic origin [10]. However, a larger effect of the magnetic
strangeness may appear in inelastic transitions, as discussed
above.

It is clear from the previous discussion that current
experimental uncertainty on the strangeness content of the
nucleon is a critical source of uncertainty in the PV asymmetry.
In order to reduce this uncertainty below the critical value,
	�s < 0.003 in our case, one should, according to Fig. 7,
restrict the measurements to a kinematic region where the
momentum transfer q is lower than a given value q0, which
corresponds to a given value of the scattering angle θ0 different
for each incident energy ε. At the same time the kinematic

20 40 60 80 100 120 140
θ [deg]

20 4010 30 50
5 10 15 20 25 30

0 0.25 0.5 0.75 1 1.25 1.5
q [fm-1]

-0.1

-0.05

0

0.05

0.1

Γ
 s

+1.60  /  -0.35
+0.59  /  -0.02
-0.40  /  +0.30

ρs μs

ε = 300 MeV
ε = 500 MeV

ε = 150 MeV

FIG. 7. Deviation of the PV asymmetry due to the strangeness
content in the nucleon with respect to that without strangeness, as
a function of the momentum transfer q in the lower axis and of the
scattering angle in the upper axes for three incident energies, 150,
300, and 500 MeV. Three results are shown for the limiting and
central combined values of the experimental range of the electric ρs

and magnetic μs nucleon strangeness content parameters [6,23,24].
The experimental range extracted from the HAPPEX-He experiment
is also shown (thick grey line) [26].

region of measurement should provide a large enough number
of events so that the statistical error lies below the critical value,
(	A/A)exp < 0.003. The latter is clearly the experimental
contribution to the asymmetry uncertainty, whereas the former,
	�, is the theoretical contribution; systematic errors are not
dealt with in this study.

To increase the number of PV events detected, and therefore
to reduce the statistical uncertainty of the asymmetry, we
consider the possibility of detection within a wide solid
angle of a given polar coverage and a fixed 2π azimuthal
angle coverage without segmentation, i.e., without angular
bins. In this situation the asymmetry may not be considered
constant within the solid angle of detection and the polar angle
dependence must be taken into account.

According to the definition of the PV asymmetry, Eq. (1),
the difference between the number of electrons with opposite
spin projections detected at a given scattering angle is N+(θ ) −
N−(θ ) = A(θ ) NT (θ ), where NT stands for the total number of
events (N+ + N−). The total PV asymmetry after integration
over scattering (polar) angle can then be written as

A = N+ − N−

NT

=
∫ θf

θi
dθ [N+(θ ) − N−(θ )]∫ θf

θi
dθ NT (θ )

=
∫ θf

θi
dθ A(θ ) NT (θ )∫ θf

θi
dθ NT (θ )

. (16)

On the other hand the statistical uncertainty of the asymmetry
is

	A = N
−1/2
T =

[∫ θf

θi

dθ NT (θ )

]−1/2

. (17)
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From the previous two equations the relative statistical
uncertainty of the PV asymmetry can be written as

	A

A
=

[ ∫ θf

θi
dθ NT (θ )

]1/2

∫ θf

θi
dθ A(θ ) NT (θ )

= 1

[	φ LT ]1/2

[ ∫ θf

θi
dθ dσ

d�
(θ ) sin θ

]1/2

∫ θf

θi
dθ A(θ ) dσ

d�
(θ ) sin θ

, (18)

where the total number of events has been replaced by the
expression

NT (θ ) = dσ

d�
(θ ) 	φ sin θ L T , (19)

with dσ/d� the differential cross section with respect to the
solid angle of detection, 	φ the azimuthal angular coverage,
L the luminosity of the incident beam, and T the running time
of the experiment. This leads to

	A

A
= 1

[	φ LT ]1/2

[ ∫ θf

θi
dθ dσ

d�
(θ ) sin θ

]1/2

∫ θf

θi
dθ A(θ ) dσ

d�
(θ ) sin θ

. (20)

The relative statistical error of the asymmetry decreases
as the polar angle coverage of the detector increases, but
at the same time the uncertainty in the dependent variable
(the scattering angle or equivalently the momentum transfer)
increases. Both uncertainties are shown in Fig. 8 as a function
of the final polar angle of the detector, using θi = 25◦ as initial
angle and with 360◦ azimuthal angular coverage.

In order to reduce experimentally the uncertainty in the
nucleon strangeness content it would seem convenient to
focus on a kinematic region where this uncertainty is large
and where at the same time those corresponding to other
sources remain sufficiently small. The q2 dependence of the
strangeness contribution suggests focusing on a momentum
transfer region between 1 and 1.5 fm−1 where, as can be seen
in Fig. 7, the uncertainty in the strangeness contribution is large
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FIG. 8. Upper panel: Relative statistical uncertainty of the PV
asymmetry for 150 MeV polarized electrons given luminosity 5 ×
1038 s−1cm−2 and 107 s running time, as a function of the final polar
angle θf of the detector starting at θi = 25◦, with 360◦ azimuthal
coverage. Lower panel: Relative uncertainty of momentum transfer
corresponding to this solid angle.
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FIG. 9. Relative statistical uncertainty of the PV asymmetry
for polarized electrons of different energies given luminosity 5 ×
1038 s−1cm−2 and 107 s running time, as a function of the momentum
transfer in the range 1–1.5 fm−1 in the lower axis and the corre-
sponding polar (scattering) angles for different incident energies in
the upper axes.

and at the same time the minima of the nuclear form factors do
not yet play a role (see [10]). In Fig. 9 we show the relative error
of the PV asymmetry in this region as a function of the final
polar angle of the detector or the corresponding momentum
transfer, the initial one being qi = 1 fm−1; it can be seen there
that larger incident energies result in smaller relative errors
even if the solid angle of detection is also smaller, as shown in
Fig. 10. Assuming a small contribution from any other effect,
a precise measurement of the PV asymmetry in this region
would reduce the strangeness content uncertainty, which is
then translatable to any other kinematic region, in particular
to low q, according to Eqs. (14) and (15). For instance, a 2%
precision in a measurement of the asymmetry at q = 1.5 fm−1

would reduce to around 0.2% at q = 0.5 fm−1. However,
the previous strategy would not be sufficient by itself if the
size and the uncertainty of another effect play a relevant role
in the same kinematic region, as seems to be the case with
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FIG. 10. Solid angle of scattering corresponding to a momentum
transfer range 1–1.5 fm−1 for different incident energies.
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the isospin-mixing discussed above. Several measurements at
different momentum transfers would be helpful to distinguish
two different contributions if different dependences on this
kinematic variable were expected for them. It is not the case
for the two effects under analysis now, since the isospin-mixing
contribution also shows a q2 dependence to a very good
approximation. Thus we are left with the following situation:
both the effects from isospin-mixing (at least as evaluated
in this study) and from electric strangeness at relatively
low momentum transfers in PV scattering from 12C track
proportionally to q2. This is both good and bad. On the one
hand, it could be considered to be good if the primary goal
is to determine the standard model or radiative effects at very
low momentum transfers, for then the isospin and strangeness
contributions taken together could be determined at somewhat
higher momentum transfers (between 1 and 1.5 fm−1), where
they are expected to dominate, and subsequently extrapolated
down to low values of q, incurring only minor uncertainties.
On the other hand, it is bad because clearly one will not be able
to distinguish isospin mixing from strangeness content without
another type of input. Possibly PV electron-proton scattering
will be done to higher precision and the strangeness content
better defined; or improved studies of elastic scattering from
4He can be made and used to fix the electric strangeness content
without much interference from isospin mixing. Concerning
the latter idea, in [25] the size of the isospin-mixing deviation
in 4He is estimated to be 0.3% even for a momentum transfer
of q = 1.5 fm−1. The estimation of the isospin-mixing effect
in that work, as well as in [4] for other N = Z nuclei including
12C, is different from the one performed here. It was based on a
Coulomb perturbation of the nominal T = 0 ground state that
effectively introduces a mixing with an excited T = 1 state,
both 0+. The mixing parameter is proportional to the amplitude
of the Coulomb perturbation and inversely proportional to
the energy difference between the mixed nonperturbed states;
the corresponding PV asymmetry is also dependent on the
form factors of the elastic transition on the new ground state,
which involves inelastic transitions in the basis previous to the
perturbation. The isospin-mixing deviation for 4He obtained
in this manner in [25] is considered there as a conservative
estimation, and the only source of isospin mixing taken into
account in those works, as well as in this one, is the Coulomb
interaction between protons.

Precise asymmetry measurements with this target, ideally
for a set of different momentum transfers, would help to pin
down the strangeness deviation uncertainty. The HAPPEX-He
experiment [26] measured the PV asymmetry with a 4%
precision at q = 1.4 fm−1 (see Fig. 7). Prospects are thus good
that with new techniques this level of precision can be pushed
down to the desired level of 2% or better at this momentum
transfer region.

IV. CONCLUSIONS

We have analyzed in this work the sizes and uncertainties
of several contributions to the PV asymmetry in polarized
electron scattering by 12C related to the structure of the target.
These contributions include distortion of the projectile wave
functions due to the Coulomb nuclear field, isospin mixing

in the nuclear states, strangeness content of the nucleons,
inelastic scattering, and the effect of meson-exchange currents.
These are analyzed in terms of the induced deviation of the PV
asymmetry with respect to the tree-level standard model value.
The determination of other effects, such as dispersive, higher-
order, or box-diagrammatic corrections can be considered an
important goal of the new precision experiments. With this in
mind, we have checked the statistical uncertainty expected
from the nuclear effects and strangeness in the kinematic
regions of interest. We will summarize here the sizes and
theoretical uncertainties these incur at the momentum transfer
region of interest, centered at 0.5 fm−1. First, Coulomb distor-
tion effects are of a 3% size and their theoretical uncertainty
has been evaluated here as 0.01%, obtained from reasonable
variations of the nuclear charge distribution that provides the
distorting field. Secondly, the isospin mixing in the nuclear
ground state of pure electromagnetic origin accounts for a 0.4%
average effect, with an uncertainty of 0.1% estimated using
different nucleon-nucleon interactions in Hartree and Hartree-
Fock mean field calculations. Thirdly, the current experimental
knowledge of the nucleon strangeness content results in
asymmetry deviations up to 1%, which is also the uncertainty
attached to the effect since the experimental ranges of the
content parameters are nearly compatible with zero. The effect
of meson-exchange currents within the nuclear target has been
addressed and is estimated to be below 0.1%, with the same
degree of uncertainty due to the fact that this effect modifies the
asymmetry only through an interplay with the isospin-mixing
and strangeness contributions, provided they are present. A
similar interplay may take place when excited nuclear states
are reached in inelastic scattering processes, which is only
an issue when their excitation energies are smaller than the
experimental energy resolution. We have shown, however,
that the modification to the PV asymmetry induced in 12C
by the two excited states below 9.6 MeV is zero or very
small. According to the above, the strangeness content and the
isospin mixing are the main sources of theoretical uncertainties
concerning the analysis of the PV asymmetry in 12C. New
experimental information could help improve the situation,
and our suggestion in this respect involves measurements with
other nuclear targets with a reduced isospin-mixing effect, as
well as in other kinematic regions where one expects to have
a larger strangeness content contribution.
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