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Probing gluon dynamics by charm and bottom mesons in nuclear matter in heavy-meson effective
theory with 1/M corrections
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We consider heavy mesons with charm and bottom in nuclear medium. We construct an effective Lagrangian
with axial-vector coupling including 1/M corrections for the heavy-meson mass M by following the velocity-
rearrangement invariance. As an application, we consider heavy mesons, D̄ and D̄∗ mesons for charm and B

and B∗ mesons for bottom, bound in nuclear matter, and we discuss their in-medium masses modified by the
interaction with nucleons via pion exchanges including the 1/M corrections. The mass modifications are affected
by the gluon dynamics in nuclear medium. By comparison with the heavy-quark effective theory, we find that
the effects of scale anomaly are suppressed in nuclear medium. We also find that the contributions from the
chromoelectric gluon are enhanced in nuclear medium, while those from the chromomagnetic gluon are reduced.
We propose to use heavy mesons as probes to research the gluon fields in nuclear medium in experimental studies.
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I. INTRODUCTION

Exotic nuclei containing hadrons as impurities are inter-
esting, not only for studying hadron-nucleon interactions and
changes of nuclear structures induced by the impurities but
also for investigating medium effects at finite baryon number
density as modifications of the QCD vacuum. In the light flavor
(up, down, and strangeness) sector, the exploration of chiral
condensates as well as gluon condensates in nuclear medium
by using light hadrons as probes has been studied [1–7]. As a
natural extension from light flavors to heavy flavors, there have
been also discussions about exotic nuclei containing charm and
bottom hadrons [8–16]. Exotic nuclei with charm and bottom
flavors will bring us new knowledge which is difficult to be
accessed by those with light flavors. It is expected that they
will be studied in future experiments in accelerator facilities.

We consider mass for the hadron and nuclear system
containing a heavy quark with mass mQ. It is given by
1/mQ expansion by following the heavy-quark effective
theory (HQET) [17,18]. Importantly, the coefficients in the
power series of 1/mQ are related to the gluon dynamics in
the heavy systems. As is well known, at leading order of
the 1/mQ expansion (the heavy-quark limit mQ → ∞), the
system with a heavy quark obeys the heavy-quark symmetry,
namely, the heavy-flavor symmetry and the heavy-quark-spin
symmetry. At this order, the mass of the heavy system is
simply a sum of the mass of the heavy quark and the energy
from the light component, namely, the light quarks and the
gluons. The contributions from the light component (light
quarks and gluons) are related to the scale anomaly of the
energy-momentum tensor in QCD [19,20], which is the analog
of the gluon condensate in the QCD vacuum. In the present
study, we further explore the corrections at O(1/m1

Q) in the
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1/mQ expansion. It provides us with additional information
about the gluon dynamics. At O(1/m1

Q), “chromomagnetic”
gluon field is concerned with the mass splitting between a
pair of spin partners, such as a P̄ = (Q̄q)spin 0 meson and a
P̄ ∗ = (Q̄q)spin 1 meson with a heavy antiquark Q̄ and a light
quark q. Furthermore, it is also known from the virial theorem
that the “chromoelectric” gluon field is related to the kinetic
energy of the heavy system with O(1/m1

Q) [21]. Both of them
are involved in the mass formula for the heavy system which is
given by a power series of 1/mQ [see Eq. (4) in Sec. II]. Thus,
we obtain the information about the gluon dynamics from the
masses of heavy systems. This is a quite general procedure so
that it can be applied not only to heavy hadrons but also to
exotic nuclei containing a heavy quark.

Let us focus on the charm (bottom) nuclei with anticharm
(C = −1) [antibottom (B = +1)], which contain a D̄(∗) (B(∗))
meson in the ground state. We note that a D̄(∗) (B(∗)) meson
is composed of c̄q (b̄q) with a charm (bottom) antiquark c̄
(b̄) and a light quark q, and hence there is no annihilation
process from light quark-antiquark pairs in nuclear medium.
Therefore, when the interaction between a D̄(∗) (B(∗)) meson
and a nucleon N is attractive sufficiently, a D̄(∗) (B(∗))
meson can be bound in nuclei as a stable particle against the
decays by strong interactions. It decays by weak interactions
and electromagnetic interactions only. Theoretically, it was
shown indeed that there is an attractive force (e.g., a pion
exchange force) so that several bound and/or resonant states
of D̄(∗)N (B(∗)N ) can exist around the thresholds [22–25].
The problem whether a D̄(∗) (B(∗)) meson is bound in nuclear
matter has been discussed with regard to several theoretical
approaches, the quark-meson coupling models [26–28], the
QCD sum rules [15,16], the mean-field methods [29–32], the
coupled-channel methods with contact interactions [33–36],
and the perturbative calculations by pion exchanges [37]. The
study of atomic nuclei containing a D̄(∗) (B(∗)) meson has
also been performed. There has also been a discussion about
the in-medium interaction between a D̄(∗) (B(∗)) meson and a
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nucleon in nuclear matter [38]. Many studies suggest that D̄(∗)

(B(∗)) mesons can be bound stably.
The purpose in the present study is to investigate the

in-medium masses of D̄(∗) (B(∗)) mesons in nuclear matter. The
previous studies about D̄(∗) (B(∗)) mesons in nuclear matter
did not give all the terms with O(1/mQ) in 1/mQ corrections.
However, it is necessary to fully include the complete terms
with O(1/mQ) for discussions in realistic situations, which
are comparable with experimental results. Furthermore, in the
power series of 1/mQ for the in-medium masses, we obtain
information about the modifications of gluon dynamics as the
medium effects. For the achievement of this, the correct 1/mQ

expansion for the masses of D̄(∗) (B(∗)) mesons in nuclear
medium is needed. We discuss the 1/M expansion with the
heavy-meson mass M in the heavy-meson effective theory
(HMET) [39,40] (see also Refs. [41,42]). In fact, it will turn
out that the 1/M expansion up to O(1/M1) corresponds to
the 1/mQ expansion up to O(1/m1

Q) in the HQET. We note
that, at finite density, a D(∗) (B̄(∗)) meson is unstable in nuclear
medium, because the absorption and annihilation processes are
dynamically caused by light quark-antiquark pairs. In those
views, we regard that D̄ and D̄∗ (B and B∗) mesons are
simple and unique objects that can be used to probe the gluon
dynamics in nuclear medium.

The article is organized as follows. In Sec. II, we summarize
briefly the mass formula with the 1/mQ expansion for heavy
hadrons in the HQET. In Sec. III, we formulate the effective
Lagrangian with the 1/M corrections for the heavy mesons
interacting with a pion by the coupling through the axial-
vector current. In Sec. IV, we apply the heavy-meson effective
Lagrangian to calculate the in-medium mass of the D̄(∗) (B(∗))
meson in nuclear matter. We then discuss the modifications of
the effects of the scale anomaly and the chromoelectric and
chromomagnetic gluon fields in nuclear matter. In Sec. V, we
discuss the application to baryons containing a heavy quark.
The final section is devoted to a summary and perspectives.

II. MASS FORMULA FOR HEAVY HADRONS IN HEAVY
QUARK EFFECTIVE THEORY

In the HQET [17,18], the four-momentum of the heavy
quark Q with mass mQ is separated as

pμ = mQvμ + kμ, (1)

with the four-velocity vμ (v2 = 1) and the residual four-
momentum kμ whose scale is much smaller than mQ. Then,
we introduce the effective field for the heavy quark

Qv(x) = eimQvx 1 + v/

2
Q(x), (2)

for the original heavy-quark field Q(x). The effective La-
grangian including O(1/m1

Q) is given by

LHQET = QvviDQv + Qv

(iD⊥)2

2mQ

Qv

− c(μ)gs Qv

σαβGαβ

4mQ

Qv + O(
1/m2

Q

)
, (3)

with D
μ
⊥ = Dμ − vμvD for the covariant derivative Dμ =

∂μ + igsA
μ with the coupling constant gs and the gluon field

Aμ = Aa μT a (a = 1, . . . ,8). In the third term, we define the
gluon field tensor Gαβ given by [Dα,Dβ] = igsG

αβ and intro-
duce the Wilson coefficient c(μ) from the matching to QCD
at the energy scale μ � mQ. The heavy-quark symmetry (the
heavy-flavor symmetry and the heavy-quark-spin symmetry)
is conserved at O(1/m0

Q), while it is not generally conserved
at O(1/m1

Q). In the terms with O(1/m1
Q) in Eq. (3), the first

term breaks the heavy-flavor symmetry but still conserves the
heavy-quark-spin symmetry, while the second term breaks
both symmetries. The QCD Lagrangian for light quarks and
gluons is unchanged.

Based on the effective Lagrangian (3), the mass of the
hadron H containing a heavy quark Q is given as

MH = mQ + �̄ − λ1

2mQ

+ 4�SQ · �SL

λ2(mQ)

2mQ

+ O(
1/m2

Q

)
,

(4)

where we define, in the rest frame with vr = (1,�0 ),

1
2

〈
Hvr

∣∣H0

∣∣Hvr

〉 = �̄, (5)

1
2

〈
Hvr

∣∣Qvr
(iD⊥)2Qvr

∣∣Hvr

〉 = λ1, (6)

1
2c(μ)

〈
Hvr

∣∣Qvr
gsσαβGαβQvr

∣∣Hvr

〉 = 8�SQ · �SLλ2(mQ), (7)

denoting the hadron state by |Hvr
〉. The factor 1/2 is multiplied

due to the normalization of the wave function. Here H0 is
the Hamiltonian obtained from the leading term in LHQET.
In Eq. (7), �SQ and �SL are operators for the spin of the heavy
quark Q and the total angular momentum of the light degrees of
freedom (the brown muck [17,18] or the spin complex [43]),
respectively. The dependence of mQ on λ2(mQ) originates
from the dependence of mQ on the Wilson coefficient c(μ),
because the matching with QCD is done at the energy scale
μ � mQ. For Eqs. (5), (6), and (7), interestingly, there are
alternative expressions given as

1

2MH

〈
H̃vr

∣∣β(αs)

4αs

G2
∣∣H̃vr

〉 = �̄, (8)

〈
Hvr

∣∣Qvr
gs �x · �EQvr

∣∣Hvr

〉 = − λ1

mQ

, (9)

1
2c(μ)

〈
Hvr

∣∣Qvr
gs �σ · �BQvr

∣∣Hvr

〉 = 8�SQ · �SLλ2(mQ), (10)

where Ei = −G0i is the chromoelectric gluon field and Bi =
εijkGjk is the chromomagnetic gluon field (i,j,k = 1,2,3).
Equation (8) originates from the scale anomaly in the trace of
the energy-momentum tensor in QCD [19,20]. We introduce
the Gell-Mann–Low function β(αs) = μdαs(μ)/dμ. We ig-
nore the finite current mass of light quarks for simplicity. In
this case, the light quark fields do not appear in the trace of the
energy-momentum tensor. In Eq. (8), we use the state |H̃vr

〉, the
normalization factor of which is consistent with the one used
in Refs. [19,20], instead of the state |Hvr

〉. The choice of the
normalization factor does not affect our conclusion. We may
note that Eq. (8) is an analog of the gluon condensate in the
QCD vacuum. Instead of the real vacuum as the ground state of
QCD, however, we consider the state containing a heavy quark
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in the present discussion. Equation (9) is derived from the
virial theorem as shown in Ref. [21] (see also Ref. [20]). Here
�x denotes the position of the center-of-mass of the system,
which should coincide with the position of the heavy quark
in the heavy-quark limit. Equation (10) is straightforwardly
obtained, because σαβ contains the Pauli matrices �σ for the
heavy-quark spin. Thus, we find that the matrix elements
�̄, λ1, and λ2(mQ) are related to the scale anomaly and the
chromoelectric and chromomagnetic gluon fields around the
heavy quark, respectively. This provides us with an interesting
view for studying the gluon dynamics. We may use heavy
hadrons to probe the gluon field (the chromoelectric and
chromomagnetic fields) around the heavy quarks in vacuum.

The mass formula in Eq. (4) does not depend on the specific
structure of heavy hadrons, when the matrix elements �̄, λ1,
and λ2(mQ) are appropriately given. It can be applied to the
heavy hadrons in finite temperature and/or baryon number
density, as long as the energy scale of the temperature and the
baryon number density are much smaller than the heavy-quark
mass. We can even consider possible bound/resonant states
containing a heavy quark in the deconfinement phase. When
the heavy hadron is embedded in the medium with temperature
T and baryon number density ρ, the mass formula is given as

MH (T ,ρ) = mQ + �̄(T ,ρ) − λ1(T ,ρ)

2mQ

+ 4�SQ · �SL

λ2(T ,ρ; mQ)

2mQ

+ O(
1/m2

Q

)
, (11)

where the matrix elements are defined by

1

2MH

〈
H̃vr

(T ,ρ)
∣∣β(αs)

4αs

G2
∣∣H̃vr

(T ,ρ)
〉 = �̄(T ,ρ), (12)

〈
Hvr

(T ,ρ)
∣∣Qvr

gs �x · �EQvr

∣∣Hvr
(T ,ρ)

〉 = −λ1(T ,ρ)

mQ

, (13)

1

2
c(μ)

〈
Hvr

(T ,ρ)
∣∣Qvr

gs �σ · �BQvr

∣∣Hvr
(T ,ρ)

〉
= 8�SQ · �SLλ2(T ,ρ; mQ), (14)

for the hadron state |Hvr
(T ,ρ)〉 in the medium. Thus, the

matrix elements �̄(T ,ρ), λ1(T ,ρ), and λ2(T ,ρ; mQ) give us
the information about the gluon field around the heavy
quark in the medium. When we know �̄(T ,ρ), λ1(T ,ρ), and
λ2(T ,ρ; mQ) in the medium, we immediately obtain the ratios〈

H̃vr
(T ,ρ)

∣∣ β(αs )
4αs

G2
∣∣H̃vr

(T ,ρ)
〉

〈
H̃vr

∣∣ β(αs )
4αs

G2
∣∣H̃vr

〉 = �̄(T ,ρ)

�̄
, (15)

〈
Hvr

(T ,ρ)
∣∣Qvr

gs �x · �EQvr

∣∣Hvr
(T ,ρ)

〉
〈
Hvr

∣∣Qvr
gs �x · �EQvr

∣∣Hvr

〉 = λ1(T ,ρ)

λ1
, (16)

〈
Hvr

(T ,ρ)
∣∣Qvr

gs �σ · �BQvr

∣∣Hvr
(T ,ρ)

〉
〈
Hvr

∣∣Qvr
gs �σ · �BQvr

∣∣Hvr

〉 = λ2(T ,ρ; mQ)

λ2(mQ)
, (17)

in comparison with �̄, λ1, and λ2(mQ) in vacuum. These ratios
tell us how the effects of scale anomaly and chromoelectric
and chromomagnetic gluon fields are changed in the medium,
thus, enabling us to know the gluon dynamics in the medium
in comparison with that in vacuum. The procedure is generally

as follows. First, we evaluate the matrix elements �̄, λ1, and
λ2(mQ) for heavy hadrons in vacuum from the mass formula
in Eq. (4). Second, we do the same procedure for �̄(T ,ρ),
λ1(T ,ρ), and λ2(T ,ρ; mQ) in medium using Eq. (11). Third, by
using Eqs. (15), (16), and (17), we finally find the modification
of the effects of scale anomaly and chromoelectric and
chromomagnetic gluon fields in the medium. We note that this
procedure is model independent, because the mass formulas
in Eqs. (4) and (11) are based directly on the HQET. It will
be applied also to nonuniform medium, few-body hadron and
nuclear systems, and so on, as long as the systems contain a
heavy quark. Because we concentrate on nuclear matter with
zero temperature (T = 0) in the present study, for simplicity
we introduce the following notations:

MH (ρ) = MH (T = 0,ρ), (18)∣∣Hvr
(ρ)

〉 = ∣∣Hvr
(T = 0,ρ)

〉
, (19)

�̄(ρ) = �̄(T = 0,ρ), (20)

λ1(ρ) = λ1(T = 0,ρ), (21)

λ2(ρ; mQ) = λ2(T = 0,ρ; mQ), (22)

which will be used in the following discussions.

III. HEAVY-MESON EFFECTIVE THEORY
WITH 1/M CORRECTION

A. Correspondence between heavy-quark effective theory
and heavy-meson effective theory

We consider D̄ and D̄∗ (B and B∗) mesons as the simplest
systems in nuclear medium. Their quark contents are given as
Q̄q with a heavy antiquark Q̄ and a light quark q, in which
the latter is indeed a nonperturbative object (the spin-complex
[43]) with a superposition of not only light quark-antiquark
pairs and gluons like q + q̄qq + q̄qg + . . . but also nucleon-
hole pairs around the Fermi surface. In theoretical analysis,
the most reliable way to evaluate the matrix elements in
Eqs. (12), (13), and (14) will be to solve directly the non-
perturbative problems in QCD, such as in lattice simulations.
However, we will discuss the in-medium effects in nuclear
matter, for which the lattice simulations cannot be applied
yet. In the present paper, we consider the approach from the
HMET by introducing the hadronic degrees of freedom. Based
on the effective Lagrangian for heavy mesons, we calculate the
in-medium masses of D̄(∗) (B(∗)) mesons in nuclear matter. By
fitting them to the in-medium mass formula in Eq. (11), we
can evaluate the desired matrix elements.

The HMET has an advantage, not only for performing a
practical calculation, but also for keeping a consistency with
the HQET. The in-medium mass formula in Eq. (11) is given
by a power series of 1/mQ. Interestingly, the contributions
up to O(1/m1

Q) from the HQET correspond to the ones
up to O(1/M1) in the HMET, with the heavy-meson mass
M = (MP + 3MP ∗ )/4 as an averaged mass of MP for a P
(pseudoscalar) meson and MP ∗ for a P ∗ (vector) meson. In the
heavy-quark limit, the term from the HQET coincides with that
from the HMET, because there is no heavy-quark mass in both
theories. We also confirm the correspondence at O(1/mQ)
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and O(1/M) by the relation 1/M = 1/mQ + O(1/m2
Q), or

inversely 1/mQ = 1/M + O(1/M2), from the mass formula
in vacuum in Eq. (4) and also in medium in Eq. (11). The
contributions at O(1/m2

Q) and O(1/M2) are neglected in the
present accuracy. Therefore, we can use the 1/M expansion
in the heavy-meson effective Lagrangian up to O(1/M1) in
keeping with the correspondence to the 1/mQ-expansion in
the HQET. In the literature, the systematic analysis to include
the 1/M corrections in the HMET is given in Refs. [39,40].
In the next two subsections, we give their results and add more
information.

B. Velocity-rearrangement invariance

In the HMET, we define the meson field

Hv(x) = 1 + v/

2
[/P ∗

v (x) + iγ5Pv(x)], (23)

which is a superposition of the vector field P ∗ μ
v (x) (μ =

0, . . . ,3) for a P ∗ meson and the pseudoscalar field Pv(x)
for a P meson with the four-velocity vμ (v2 = 1) [44–48]
(see also Refs. [18,49] for reviews). We assign P (∗) to stand
for D(∗) and B̄(∗) mesons by following the notations used in
the literature. The results for D̄(∗) and B(∗) mesons are easily
obtained by charge transformation. In this formalism, in a way
similar to Eq. (1), the four-momentum of the P (∗) meson with
mass M is expressed as

pμ = Mvμ + kμ, (24)

with the four-velocity vμ and the residual four-momentum kμ.
The residual four-momentum is a quantity much smaller than
the scale of M . However, such a separation is not uniquely
fixed, when we allow the small change of vμ and kμ to take
into account the 1/M correction. Namely, we can define a new
four-velocity wμ instead of vμ,

vμ = wμ − qμ/M, (25)

together with the replacement of the residual momentum
from kμ to kμ + qμ, under the constraint vq = O(q2/M).
This transformation is called the velocity rearrangement [39].
Under the velocity rearrangement, we keep w2 = 1 as

w2 = (v + q/M)2 = 1 + O(1/M2), (26)

with dropping the terms at O(1/M2). Along with the velocity
rearrangement, the meson fields Hv(x) and Hw(x) are related
as

Hv(x) =
{
Hw(x) − 1

2M
[q/,Hw(x)]

}
e−iqx + O(1/M2). (27)

This relation is obtained from the Lorentz transformations
from the frame with wμ to the frame with vμ, as explicitly
shown in Ref. [40]. Hereafter we do not write the position x
in the fields for simplicity.

The velocity rearrangement allows us an arbitrary choice of
the four-velocity up to O(1/M). Accordingly, the Lagrangian
should be invariant under the velocity rearrangement, which
is called the velocity-rearrangement invariance [39]. This is a
general concept that can be applied to any heavy particles so
that the corrections by finite mass are systematically included.

We note that, in the HQET, the Lagrangian (3) is invariant
under the velocity rearrangement by replacing M with mQ

in Eq. (25) (see Refs. [17,18]). Let us find the heavy-meson
effective Lagrangian that is a velocity-rearrangement invariant.
However, one may think that this may not be straightforwardly
accomplished, because Hw accompanies the additional term,
− [q/,Hw(x)] /2M , in Eq. (27). Then, one may think that it is
not an easy task to find the Lagrangian invariant in the velocity
rearrangement. A useful method is to introduce the “covariant
meson field” defined as

Hv = Hv + 1

2M
(i

−→
D/Hv − Hvi

←−
D/ − 2viDHv) +O(1/M2)

(28)

by following the prescription in Ref. [40]. Here the fact that
vμ + iDμ/M is a velocity-rearrangement invariant plays an
important role. We define i

−→
D/Hv = iγ μDμHv and Hvi

←−
D/ =

iDμHvγ
μ. We confirm that Hv and Hw are related by

Hv = e−iqxHw + O(1/M2). (29)

Therefore, we have only the phase factor e−iqx in the
transformation of the velocity rearrangement. We also define
the “covariant four-velocity”

Vμ = vμ + iDμ/M

|vμ + iDμ/M| , (30)

with the normalization condition

VμVμ = 1. (31)

At O(1/M1), Vμ is approximated by

Vμ = vμ + 1

M
(iDμ − vμviD) + O(1/M2), (32)

which satisfies the normalization condition

VμVμ = 1 + O(1/M2), (33)

in the desired accuracy. When Vμ is operated to the field Hv

in Hv , we have

VμHv =
[
vμ + 1

M
(iDμ − vμviD)

]
Hv + O(1/M2), (34)

where the derivative ∂μ in Dμ gives the residual momentum.
When Vμ is operated to the conjugate field of Hv , namely H̄v ,
we define

VμH̄v =
[
vμ − 1

M
(iDμ − vμviD)

]
H̄v + O(1/M2). (35)

The covariant meson field and four-velocity satisfy the
relations

V/Hv(x) = Hv(x) + O(1/M2), (36)

Hv(x)
←−V/ = −Hv(x) + O(1/M2), (37)

as a generalization of v/Hv(x) = Hv(x) and Hv(x)v/ = −Hv(x)
in the original field and four-velocity. With these setups, one
can construct the Lagrangian, which is invariant under the
velocity rearrangement, up to O(1/M1).
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C. Axial currents with 1/M corrections

We consider the interaction vertices for a P (∗) meson and a
pion through the axial-vector current coupling. As general
forms of the axial-vector currents for the heavy mesons,
we may consider the forms of TrHv�Hv�

′ with possible
combinations of Dirac matrices � and �′ to carry the quantum
number of an axial-vector current. Here we note that the
covariant meson field Hv and the covariant four-velocity
Vμ are used in order to make the axial-vector current be a
velocity-rearrangement invariant. We consider all the possible
forms of the axial-vector currents constructed by � = 1, iγ5,
γμ, γμγ5, and σμν , respectively, as follows. The indices of
isospin will be considered later.

In the case of � = 1, there are four possible forms:

TrHvHvγμγ5

= TrHvHvγμγ5

+ 1

2M
(TrviDHvHvγμγ5 − Tr HvviDHvγμγ5)

+ 1

4M
εμνρσ (TriDνHvHvσ

ρσ − TrHviD
νHvσ

ρσ )

+O(1/M2), (38)

TrVμHvVνHvγμγ5 + TrVνHvVμHvγμγ5

= O(1/M2), (39)

εμνρσ TrVρHvHvσ
μν + εμνρσ TrHvVρHvσ

μν

= 4TrHvHvγσ γ5 + O(1/M2), (40)

εμνρσ TrVλHvVνVρHvσμλ + εμνρσ TrVνVρHvVλHvσμλ

= O(1/M2). (41)

In the case of � = iγ5, there are two possible forms:

εμνρσ TrVνHviγ5VρHvγμγ5 + εμνρσ TrVρHviγ5VνHvγμγ5

= O(1/M2), (42)

TrVνHviγ5Hvσ
μν + TrHviγ5VνHvσ

μν

= O(1/M2). (43)

In the case of � = γμ, there are three possible forms:

εμνρσ TrHvγ
μHvσ

νρ = 2TrHvHvγσ γ5 + O(1/M2), (44)

TrHvV/Hvγ
μγ5 + TrHv

←−V/Hvγ
μγ5

= 2TrHvHvγ
μγ5 + O(1/M2), (45)

TrHvγ
μVνHvγ

νγ5 + TrHv

←−V νγ
μHvγ

νγ5

= O(1/M2). (46)

In those terms, the heavy-quark-spin symmetry for Hv is
conserved. Indeed, it is easily confirmed that those currents
are invariant under the spin transformation Hv → SHv with
S ∈ SU(2)spin for the heavy quark. Irrespective of the different
possible forms in Eqs. (38)–(46), consequently, the axial-
vector current that conserves the heavy-quark-spin symmetry
is uniquely determined to be TrHvHvγμγ5.

For � = γ μγ5 and σμν , the heavy-quark-spin symmetry
is broken. Hence, the leading term in the 1/M- expansion

in TrHv�Hv�
′ with � = γ μγ5 and σμν should be O(1/M1)

already. This is understood from the fact that, in the HQET, the
term that breaks the heavy-quark-spin symmetry is O(1/m1

Q)
[see Eq. (3)], and correspondingly the term that breaks the
heavy-quark-spin symmetry in the HMET should also be
O(1/M). For � = γ μγ5, there are six possible forms:

TrHvγ
μγ5Hv

= TrHvγ
μγ5Hv

+ 1

2M

(
TrviDHvγ

μγ5Hv − TrHvγ
μγ5viDHv

)
+ 1

4M
ενμαβ

(
TriDνHvσαβHv − TrHvσαβiDνHv

)
+O(1/M2), (47)

TrVμHvVνγνγ5Hv + TrVνHvVμγνγ5Hv

= O(1/M2), (48)

εμνρσ TrVρHvγ
μγ5Hvγ

νγ5 + εμνρσ TrHvγ
μγ5VρHvγ

νγ5

= 1

M
εμνρσ {Tr (−iDρ)Hvγ

μγ5Hvγ
νγ5

+ TrHvγ
μγ5iD

ρHvγ
νγ5} + O(1/M2), (49)

εμνρσ TrVνHvγ
μγ5VρHvγ5 + εμνρσ TrVρHvγ

μγ5VνHvγ5

= O(1/M2), (50)

TrVμHvγμγ5Hvγ
ν + TrHvVμγμγ5Hvγ

ν

= O(1/M2), (51)

TrVνHvγ
μγ5Hvγ

ν + TrHvγ
μγ5VνHvγ

ν

= −2TrHvγ
μγ5Hv + O(1/M2). (52)

We note that, because the term on the left-hand side is
already O(1/M), the term with 1/M on the right-hand side
is O(1/M2). Hence the latter term is not necessary to be
considered in the desired accuracy. Last, for � = σμν , there
are four possible forms:

εμνρσ TrHvσμνHvγρ

= 2TrHvγ
σγ5Hv + O(1/M2), (53)

εμνρσ TrVρHvσμνHv + εμνρσ TrHvσμνVρHv

= −4TrHvγ
σ γ5Hv + O(1/M2), (54)

εμρσλTrVνHvσ
μνVρVσHv + εμρσλTrVρVσHvσ

μνVνHv

= O(1/M2), (55)

TrVμHvσμνHvγ5 + TrHvσμνVμHvγ5

= O(1/M2). (56)

As a conclusion, we find that the axial-vector current that
breaks the heavy-quark-spin symmetry atO(1/M1) is uniquely
determined to be TrHvγ

μγ5Hv .
As by-products in the above calculations, we find the

following axial-vector currents are O(1/M2):

TrviDHvγ
μγ5Hv − TrHvγ

μγ5viDHv, (57)

ενμαβ(TriDνHvσαβHv − TrHvσαβiDνHv), (58)
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εμνρσ [Tr(−iDρ)Hvγ
μγ5Hvγ

νγ5 + TrHvγ
μγ5iD

ρHvγ
νγ5],

(59)

vν(TriDμHvγμγ5Hv − TrHviD
μγμγ5Hv), (60)

vμvνεμραβ(TriDρHvσ
αβHv − TrHvσ

αβiDρHv), (61)

because they are suppressed by 1/M in the axial-vector
currents TrHv�Hv�

′ with � = γμγ5 and σμν .
From the analysis above, we find that the axial-vector

currents for a heavy meson are reduced to the following two
forms:

A(1)
i,μ = TrHvHvγμγ5τ

i = TrHvHvγμγ5τ
i

+ 1

2M
(TrviDHvHvγμγ5τ

i − TrHvviDHvγμγ5τ
i)

+ 1

4M
εμνρσ (TriDνHvHvσ

ρσ τ i − TrHviD
νHvσ

ρσ τ i)

+O(1/M2) (62)

and

A(2)
i,μ = TrHvγμγ5Hvτ

i

= TrHvγμγ5Hvτ
i + O(1/M1), (63)

where we introduce the Pauli matrices τ i (i = 1,2,3) for
isospin. We note that A(1)

i,μ conserves the heavy-quark-spin

symmetry, while A(2)
i,μ breaks it. From the view of the spin

symmetry, therefore,A(1)
i,μ can beO(1/M0) orO(1/M1), while

A(2)
i,μ should be O(1/M1).

D. Effective Lagrangian with 1/M corrections

From the axial-vector currents of a heavy meson, the
effective Lagrangian up to O(1/M1) is then given as

LHMET

= −TrHvviDHv − TrHv

(iD)2

2M
Hv + λ

M
TrHvσ

μνHvσμν

+ Tr

[(
gA(1)

i,μ + g1

M
A

(1)
i,μ + g2

M
A(2)

i,μ

)
a

i,μ
⊥

]
+ O(1/M2)

= −TrHvviDHv − TrHv

(iD)2

2M
Hv + λ

M
TrHvσ

μνHvσμν

+
(
g + g1

M

)
TrHvHvγμγ5a

μ
⊥

+ g

2M

(
TrviDHvHvγμγ5a

μ
⊥ − TrHvviDHvγμγ5a

μ
⊥
)

+ g

4M
εμνρσ

(
TriDνHvHvσ

ρσ a
μ
⊥ − TrHviD

νHvσ
ρσ a

μ
⊥
)

+ g2

M
TrHvγμγ5Hva

μ
⊥ + O(1/M2), (64)

where λ is related to the mass splitting between the P and P∗
mesons as

� = MP ∗ − MP = −8
λ

M
. (65)

In the interaction terms, a
μ
⊥ is the axial-vector current of a

pion field defined by a
μ
⊥ = a

i,μ
⊥ τ i = i

2 (ξ †∂μξ − ξ∂μξ †) with

ξ = eiM/fπ and

M = 1√
2

�π · �τ =
(

π0√
2

π+

π− − π0√
2

)
(66)

(a sum is taken over i = 1,2,3). fπ = 135 MeV is the pion
decay constant. We note that the term (1/M)A(1)

i,μ, which is the

order of O(1/M) with A
(1)
i,μ = TrHvHvγμγ5τ

i , is introduced.
This term is required from the 1/mQ term breaking the
heavy-flavor symmetry but conserving the heavy-quark-spin
symmetry in the HQET. Here g, g1, and g2 are unknown
coupling constants. The effective Lagrangian in Eq. (64)
coincides with the one given in Ref. [40]. We can easily confirm
that the effective Lagrangian is invariant up to O(1/M1) under
the velocity rearrangement in Eq. (25).

The coupling constants g, g1, and g2 should be fixed from
theoretical calculations or from experimental information. At
O(1/M0) in the heavy-quark limit, the value of g has been
discussed with regard to several theoretical approaches such
as the quark models [47,50,51], the QCD sum rules [52–56],
the lattice QCD simulations [57–65], analyses of weak decays
of B mesons [66–68], and analyses of strong decays of �∗

c

baryons [69]. In the present study, we use g = 0.4–0.5, which
is consistent with the results in the lattice QCD simulations as
summarized in Ref. [65].

To determine g1 and g2, we impose a constraint to reproduce
the observed decay width of D∗ → Dπ . The decay width is
given at tree level from Eq. (64) as

� = 4π

32π2

1

f 2
π

1

3

[
2

(
g + g1

M
− g2

M

)
+ g

M
vpπ

]2

| �pπ |3, (67)

where vμ = (1,�0 ) is the four-velocity of the D∗ meson in
the initial state at rest, and p μ

π = (
√ �p 2

π + m2
π , �pπ ) is the

four-momentum of the pion in the final state. When Eq. (67)
is compared with the case in the heavy-quark limit, the terms
of g/M , g1/M , and g2/M are new ingredients as the 1/M
corrections. From the experimental value � = 0.065 MeV for
D∗+ → D0π+ [70], we obtain possible combinations of g1

and g2 for a given g. In most of our presentation, we set g1 = 0.
It will turn out that our conclusion is not affected qualitatively
so much even for the case of g1 = 0, as discussed later.
We consider the two parameter sets: (g,g1/MD,g2/MD) =
(0.5,0,−0.07) and (0.4,0,−0.18). Note that both g1 and g2

have a dimension of energy. It will be useful to introduce a
dimensionless number g1/MD and g2/MD as g1 and g2 are
divided by some quantity with a dimension of energy, say the
mass MD of a D meson.

IV. SELF-ENERGIES OF D̄(∗) AND B(∗) MESONS
IN NUCLEAR MATTER

Based on the heavy-meson effective Lagrangian (64), we
consider the self-energies of D̄(∗) and B(∗) mesons in nuclear
matter. We discuss first the D̄(∗) meson, and then apply a
similar discussion to the B(∗) meson only by changing the
mass MD̄(∗) to MB(∗) and keeping the values of g, g1, and g2.
We have so far used the meson-field P (∗) for the Qq̄ meson in
the Lagrangian (64). We easily obtain the interaction vertex
with pions in the Q̄q meson sector by changing the sign of
the interaction vertex in Eq. (64).
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We consider the self-energies of the D̄(∗) mesons with the lowest order of pion loops whose diagrams are shown in Fig. 1.
Those diagrams were considered in our previous works [37], where the complete 1/M expansion had not yet been given due to
the lack of the 1/M corrections in the interaction vertices. The self-energy of the D̄ meson in Fig. 1(a) is given by

−i�D̄(ρ; v,k) = − 2

f 2
π

∫
d4�

(2π )4

{g2 + 2g(g1 − g2)/M}�2 − g2(v�/M) {(2k − �)� − v(2k − �)v�}
2v(k − �) + (k − �)2/M − 2� + iη

× 1(
�2 − m2

π + iη
)2 τ a�ab

π (�)τ b, (68)

with the internal momentum �μ carried by pions. Here we measure the self-energy from the mass of D̄ meson in vacuum. For this,
we have transformed Hv(x) → ei(3/4)�vxHv(x), which gives only a mass shift in Eq. (64). We define the self-energy −i�ab

π (ρ; �)
of the pion propagating with momentum �, which is given by the lowest order of pion and nucleon loops, as

− i�ab
π (ρ; �) = −i�(1)ab

π (ρ; �) − i�(2)ab
π (ρ; �), (69)

with

−i�(1)ab
π (ρ; �) =

(
− gA

2fπ

i

)2

(−1)Tr
∫

d4p1

(2π )4
i�/γ5τ

a i

p1/ + �/ − mN + iη
(−i�/γ5)τ b

× (p1/ + mN )(−2π )δ
(
p2

1 − m2
N

)
θ (p10)θ (kF − | �p1|) (70)

and

−i�(2)ab
π (ρ; �) =

(
− gA

2fπ

i

)2

(−1)Tr
∫

d4p1

(2π )4
i�/γ5τ

a(p1/ + �/ + mN )(−2π )δ
[
(p1 + �)2 − m2

N

]
× θ (p10 + �0)θ (kF − | �p1 + �� |)(−i�/γ5)τ b(p1/ + mN )(−2π )δ

(
p2

1 − m2
N

)
θ (p10)θ (kF − | �p1|). (71)

Here we have used the axial-vector current coupling for the NNπ vertex

LNNπ = gA

2fπ

N̄γμγ5∂
μ �π · �τN, (72)

with the coupling constant gA = 1.3 and the in-medium propagator

(p/ + mN )

[
i

p2 − m2
N + iη

− 2πδ
(
p2 − m2

N

)
θ (p0)θ (kF − | �p |)

]
1f , (73)

for the nucleon (mass mN ) carrying the four-momentum pμ = (p0, �p ), and the 2 × 2 unitary matrix 1f for isospin space in
isospin-symmetric nuclear matter with Fermi momentum kF . Here η is an infinitely small positive number. The second term
in the square brackets in Eq. (73) indicates to subtract the on-mass-shell nucleon states with positive energies inside the Fermi
surface, because these states are not allowed to propagate due to the Pauli blocking effects. The baryon number density is given
by ρ = 2k3

F /3π2. We comment that the vector current coupling with two pions is not considered in the present discussion. This
can be justified, because their contribution to the self-energy of P (∗) meson vanishes in isospin-symmetric nuclear matter.

The self-energy of the D̄∗ meson in nuclear matter is given by

−i�D̄∗ (ρ; v,k) = −i�
(D̄∗)
D̄∗ (ρ; v,k) − i�

(D̄)
D̄∗ (ρ; v,k), (74)

with

−i�
(D̄∗)
D̄∗ (ρ; v,k) = − 2

f 2
π

∫
d4�

(2π )4

{g2 + 2g(g1 + g2)/M}�2 − g2(v�/M) {(2k − �)� − v(2k − �)v�}
2v(k − �) + (k − �)2/M + iη

× 2

3

1(
�2 − m2

π + iη
)2 τ a�ab

π (�)τ b (75)

and

−i�
(D̄)
D̄∗ (ρ; v,k) = − 2

f 2
π

∫
d4�

(2π )4

{g2 + 2g(g1 − g2)/M}�2 − g2(v�/M) {(2k − �)� − v(2k − �)v�}
2v(k − �) + (k − �)2/M + 2� + iη

× 1

3

1(
�2 − m2

π + iη
)2 τ a�ab

π (�)τ b, (76)
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from panels (b1) and (b2) in Fig. 1, respectively. Here we measure the self-energy from the mass of the D̄∗ mesons in vacuum.
For this, we have transformed Hv(x) → e−i(1/4)�vxHv(x), which gives only a mass shift in Eq. (64). As a matter of fact, each of
the self-energies of the D̄ and D̄∗ mesons in Eqs. (68) and (74) is invariant under the velocity rearrangement in Eq. (25).

In the integrals in Eqs. (68) and (74), we first perform the �0- to give the three-dimensional integrals. Because the three-
dimensional integrals are divergent, we introduce the cutoff regularization by introducing a momentum cutoff parameter �, as
was done in our previous work in Ref. [37] (see also Refs. [71–76] for discussions of nuclear and hypernuclear matter):

P
∫

d3 ��
(2π )3

|��|4
x + 1

2

(
1 + mN

M

)|��| 2 + �p1 �� − iη

1(|��| 2 + m2
π

)2

→ P
∫

d3 ��
(2π )3

|��|4
x + 1

2

(
1 + mN

M

)|��| 2 + �p1 �� − iη

1(|��| 2 + m2
π

)2 −
∫

d3 ��
(2π )3

1
1
2

(
1 + mN

M

)|��| 2
+

∫
|��|��

d3 ��
(2π )3

1
1
2

(
1 + mN

M

)|��| 2
,

(77)

with x = 0 and ±mN�. Here, P stands for the principal value integration. The sum of the first and second integrals is finite in
the integration at |��| → ∞, while the last term is finite by introducing the cutoff parameter �. Thus, we succeed in separating the
cutoff-independent (first and second) term and the cutoff-dependent (third) term. The cutoff parameters are set to be �D̄ = 1.27�
and �B = 1.22�, with � = 700 MeV for D̄(∗) and B(∗) mesons, which were fixed from the analysis of the hadron sizes as
discussed in Ref. [37].

From the self-energies in Eqs. (68) and (74), the in-medium
masses of the D̄(∗) and B(∗) mesons in nuclear matter are given
as

MD̄(ρ) = MD̄ + �D̄(ρ; vr ,0), (78)

MD̄∗ (ρ) = MD̄∗ + �D̄∗ (ρ; vr,0), (79)

MB(ρ) = MB + �B(ρ; vr,0), (80)

MB∗ (ρ) = MB∗ + �B∗(ρ; vr ,0), (81)

in the rest frame with vr = (1,�0 ) and kμ = 0. MD̄(∗) and
MB(∗) are masses of D̄(∗) and B(∗) mesons in vacuum.
We consider the normal nuclear matter with the baryon
number density ρ0 = 0.17 fm−3 (kF = 270 MeV). As results,
we obtain the in-medium masses: MD̄(ρ0) = 1851.2 MeV,
MD̄∗ (ρ0) = 1995.9 − i65.5 MeV, MB (ρ0) = 5237.3 MeV, and
MB∗ (ρ0) = 5254.1 − i43.0 MeV for (g,g1/MD,g2/MD) =
(0.5,0,−0.07); and MD̄(ρ0) = 1852.3 MeV, MD̄∗(ρ0) =
1978.9 − i47.6 MeV, MB(ρ0) = 5247.3 MeV, and
MB∗ (ρ0) = 5281.1 − i28.0 MeV for (g,g1/MD,g2/MD) =
(0.4,0,−0.17). Concerning the D̄∗ (B∗) meson, the imaginary
part gives the width in the decay process from the D̄∗ (B∗)

FIG. 1. The diagrams of the self-energies for (a) the D̄ meson
and (b1,b2) the D̄∗ meson in the nuclear matter. The thick solid
(normal dashed) lines denote the propagator of the D̄ and D̄∗ mesons
(pions). The thin solid lines with arrows indicate the nucleon and hole
propagators.

meson to the D̄ (B) meson in nuclear matter. However, they are
irrelevant to the present discussion, because only the real parts
are important as the mass shifts. In any case, the real parts of
the in-medium masses of D̄(∗) and B(∗) mesons are smaller by
a few tens of MeV than the masses in vacuum. This means that
D̄(∗) and B(∗) mesons are bound in the normal nuclear matter.

By fitting those masses to the in-medium mass formula
in Eq. (11), we obtain the matrix elements �̄(ρ0), λ1(ρ0),
and λ2(ρ0; mQ) (mQ = mc and mb) in the normal nuclear
matter. In Eq. (11), there is an operator �SL for the total
angular momentum of the light component. In the present
case, the light component for a D̄(∗) (B(∗)) meson includes
not only light quarks and gluons inside the meson but
also the nucleon-hole pairs in the nuclear matter. Such a
complex structure of light quarks, gluons, and nucleon-hole
pairs is called the spin complex [43]. As for the quantum
number, the spin complex (light component) for a D̄(∗) (B(∗))
meson in nuclear matter should have isospin, total angular
momentum, and parity I (jP ) = 1/2(1/2+), as discussed in
Ref. [43]. Therefore, we have SL = 1/2 for the D̄(∗) (B(∗))
meson in nuclear matter. Finally by using mc = 1.30 GeV and
mb = 4.71 GeV [17], we obtain the results summarized in
Table I. The matrix elements are �̄(ρ0) = 0.51 GeV, λ1(ρ0) =
−0.32 GeV2, λ2(ρ0; mc) = 0.068 GeV2, and λ2(ρ0; mb) =
0.039 GeV2 for (g,g1/MD,g2/MD) = (0.5,0, − 0.07), and
the matrix elements are �̄(ρ0) = 0.53 GeV, λ1(ρ0) = −0.30

TABLE I. The matrix elements �̄(ρ), λ1(ρ), λ2(ρ,mc), and
λ2(ρ,mb) of D̄(∗) and B (∗) mesons in normal nuclear matter (ρ = ρ0)
with g1 = 0. The last row indicates the values in vacuum (ρ = 0).

(g,g1/MD,g2/MD) �̄(ρ) λ1(ρ) λ2(ρ; mc) λ2(ρ; mb)
(GeV) (GeV2) (GeV2) (GeV2)

(0.5,0, −0.07) 0.51 −0.32 0.068 0.039
(0.4,0, −0.17) 0.53 −0.30 0.082 0.080
Vacuum (ρ = 0) 0.58 −0.25 0.092 0.11
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GeV2, λ2(ρ0; mc) = 0.082 GeV2, and λ2(ρ0; mb) = 0.080
GeV2 for (g,g1/MD,g2/MD) = (0.4,0,−0.17).

Concerning D̄(∗) (B(∗)) mesons in vacuum for comparison,
we obtain the matrix elements �̄ = 0.58 GeV, λ1 = −0.25
GeV2, λ2(mc) = 0.092 GeV2, and λ2(mb) = 0.11 GeV2, as
summarized in the last row in Table I. Those values are very
close to the ones obtained by the analysis of the QCD sum
rules: �̄ = 0.57 ± 0.07 GeV, λ1 = −0.25 ± 0.20 GeV2, and
λ2 = 0.12 ± 0.02 GeV2 [17]. It is confirmed that when the
matrix elements are calculated in nuclear matter at ρ = 0 in
Eqs. (78)–(81), the values of the matrix elements coincide with
those in vacuum: �̄(0) = �̄, λ1(0) = λ1, and λ2(0; mQ) =
λ2(mQ).

Let us compare the matrix elements in nuclear matter
with the ones in vacuum. We find that �̄(ρ0) is reduced by
0.87–0.91 times compared to �̄ in vacuum. We also see that
λ1(ρ0) is enhanced by 1.28–1.20 times in the absolute values
compared to λ1 in vacuum and λ2(ρ0; mc) and λ2(ρ0; mb) are
reduced by 0.74–0.89 times and 0.35–0.73 times, respectively,
compared to λ2(mc) and λ2(mb) in vacuum.

By utilizing the matrix elements �̄(ρ), λ1(ρ), λ2(ρ; mc),
and λ2(ρ; mb), we get the information about the change of the
gluon fields in the nuclear matter from those in vacuum. From
Eqs. (15), (16), and (17), we obtain the modifications of gluon
fields in the nuclear matter,

�̄(ρ)

�̄
=

〈
H̃vr

(ρ)
∣∣ β(αs )

4αs
G2

∣∣H̃vr
(ρ)

〉
〈
H̃vr

∣∣ β(αs )
4αs

G2
∣∣H̃vr

〉 = 0.87 − 0.91, (82)

λ1(ρ)

λ1
=

〈
Hvr

(ρ)
∣∣Qvr

gs �x · �EQvr

∣∣Hvr
(ρ)

〉
〈
Hvr

∣∣Qvr
gs �x · �EQvr

∣∣Hvr

〉
= 1.28 − 1.20, (83)

λ2(ρ; mQ)

λ2(mQ)
=

〈
Hvr

(ρ)
∣∣Qvr

gs �σ · �BQvr

∣∣Hvr
(ρ)

〉
〈
Hvr

∣∣Qvr
gs �σ · �BQvr

∣∣Hvr

〉
=

{
0.74 − 0.89 (charm),
0.35 − 0.73 (bottom), (84)

at ρ = ρ0. The first equation indicates that the effect of scale
anomaly is suppressed in the nuclear matter. The second and
third equations indicate that the contribution to the in-medium
masses from the chromoelectric gluon is enhanced, while that
from the chromomagnetic gluon is reduced. The tendency that
λ1(ρ0) is enhanced and �̄(ρ0), λ2(ρ0; mc), and λ2(ρ0; mb) are
reduced is not affected by the small change of the parameter
(g,g1/MD,g2/MD). Such tendencies are seen also for another
baryon number density different from ρ0. We plot the ratio
�̄(ρ)/�̄ as a function of ρ in Fig. 2, and we plot the ratios
λ1(ρ)/λ1, λ2(ρ; mc)/λ2(mc), and λ2(ρ; mb)/λ2(mb) in Fig. 3.
With the parameter sets (g,g1/MD,g2/MD) = (0.5,0,−0.07)
and (0.4,0,−0.18), we confirm that λ1(ρ) is enhanced, while
�̄(ρ), λ2(ρ; mc), and λ2(ρ; mb) are reduced, as the baryon
number density increases.

It may be interesting to compare �̄(ρ) with the gluon
condensate in nuclear matter, because both of them are related
to the scale anomaly in QCD. In Refs. [2,3], it is discussed
that the gluon condensate in nuclear matter at normal density
(ρ = ρ0) is, roughly, about 0.95 of that in the QCD vacuum.

 0
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 0.6

 0.8

 1

 1.2

 1.4

 0  0.05  0.1  0.15

ρ [fm-3]

Λ(ρ)/Λ(0)

FIG. 2. The ratio �̄(ρ)/�̄(0) for D̄(∗) and B (∗) mesons in nuclear
matter as a function of the baryon number density ρ. The solid
and dashed lines indicate the results for (g,g1/MD,g2/MD) =
(0.5,0,−0.07) and (0.4,0, −0.17), respectively.

This is comparable with the number 0.87–0.91 for �̄(ρ0)/�̄
in our results. It would be natural to have similar numbers
for both of them, because their origins are the same, the
scale anomaly in QCD. We should keep in mind, however,
that this comparison is done only qualitatively, because we
do not take into account the terms linear to light-quark
current masses, namely, the contributions from scalar quark
condensates, in Eqs. (8) and (12). Concerning λ1 and λ2(mQ),
their enhancement and reduction in nuclear matter are new
phenomena which seem to have not been addressed in the
literature. The enhancement of λ1 in nuclear matter would
be reasonable, because the the kinetic energy of the meson
[see Eq. (6)] should increase when the meson is bound in
nuclear matter. The reduction of λ2(mQ) in nuclear matter is
interesting. It suggests that the mass splitting between D̄ and
D̄∗ mesons (B and B∗ mesons) becomes smaller in nuclear
matter.

We close this section by making a comment on the case
of g1 = 0. Let us suppose g2 = 0 in this case. Then, from

 0
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 0.8

 1
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 1.4

 0  0.05  0.1  0.15
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λ1(ρ)/λ1(0)
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λ2(ρ,mb)/λ2(0,mb)

FIG. 3. The ratios λ1(ρ)/λ1(0), λ2(ρ; mc)/λ2(0; mc), and
λ2(ρ; mb)/λ2(0; mb) (from top to down) with the same notations as
in Fig. 2.
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TABLE II. The matrix elements �̄(ρ), λ1(ρ), λ2(ρ,mc), and
λ2(ρ,mb) with g2 = 0. (Same convention as Table I.)

(g,g1/MD,g2/MD) �̄(ρ) λ1(ρ) λ2(ρ; mc) λ2(ρ; mb)
(GeV) (GeV2) (GeV2) (GeV2)

(0.5,0.07,0) 0.50 −0.30 0.056 0.018
(0.4,0.17,0) 0.52 −0.25 0.059 0.040
Vacuum (ρ = 0) 0.58 −0.25 0.092 0.11

Eq. (67), we obtain (g,g1/MD,g2/MD) = (0.5,0.07,0) and
(0.4,0.17,0). We find similarly the in-medium masses by
calculating the self-energies for D̄(∗) and B(∗) mesons from
Eqs. (68) and (74). By applying the in-medium mass formula
in Eq. (11), we finally get the matrix elements as summarized
in Table II. Interestingly, we find the same tendency for λ1(ρ)
to be enhanced and for �̄(ρ), λ2(ρ; mc), and λ2(ρ; mb) to be
reduced, as discussed above. They are plotted in Figs. 2 and 3
as functions of the baryon number density. Thus, we expect
that our conclusion will be insensitive to the small changes in
the parameter sets.

V. DISCUSSION OF MATRIX ELEMENTS
IN HEAVY BARYONS

In the previous section, we discussed the medium effects
in nuclear matter of λ1 being enhanced and �̄ and λ2(mQ)
being reduced, as compared with the values in vacuum. We
investigate whether this is generally correct when the heavy
quark exists in baryon-rich environments. Such a tendency
may be seen for systems even with a few baryon numbers. In
this section, we consider charm and bottom baryons as systems
with minimal (finite) baryon number and discuss the values of
�̄, λ1, and λ2(mQ) in them.

Let us discuss normal heavy baryons whose minimal quark
configuration is Qqq. We consider �c and �b baryons with
1/2+ as the ground states, and �∗

c and �∗
b baryons with 1/2−

and 3/2− as the lowest excited states, in the isosinglet sector.
We consider also �(∗)

c and �
(∗)
b baryons with 1/2+ (3/2+)

as the ground states (the lowest excited states) in the isotriplet
sector [70]. We note that �∗

b baryons with 1/2− and 3/2− have
been recently reported by the CERN Large Hadron Collider
beauty as two states with masses of 5911.97 and 5919.77 MeV
and their quantum numbers are not settled yet [77]. However,
we may naturally assign the quantum number 1/2− (3/2−) to
the state with the smaller (larger) mass.

In the isosinglet sector, �c and �b baryons with 1/2+ are
assigned to states containing the brown muck with isospin,
total angular momentum, and parity I (jP ) = 0(0+). Similarly,
�∗

c and �∗
b baryons with 1/2− and 3/2− are assigned to states

containing the brown muck with 0(1−). In the isotriplet sector,
�(∗)

c and �
(∗)
b baryons with 1/2+ (3/2+) are assigned to states

containing the brown muck with 1(1+). Thus, each of the pairs
(�c,�b), (�∗

c ,�
∗
b), and (�(∗)

c ,�
(∗)
b ) belongs to an independent

spin multiplet. To apply the mass formula in Eq. (4) for each
pair, we use SL = 0 for (�c,�b) with 1/2+ and SL = 1 for
(�∗

c ,�
∗
b) and (�(∗)

c ,�
(∗)
b ). Consequently, we obtain the matrix

elements �̄, λ1, λ2(mc), and λ2(mb) for each pair as shown in

TABLE III. The matrix elements �̄, λ1, λ2(mc), and λ2(mb)
of normal charm and bottom baryons. For comparison, the matrix
elements of D̄(∗) and B (∗) mesons are also shown in the last column.

Baryons �̄ λ1 λ2(mc) λ2(mb)
(GeV) (GeV) (GeV2) (GeV)

�c, �b (1/2+) 0.88 −0.28 – –
�∗

c , �∗
b (1/2−, 3/2−) 1.17 −0.39 0.014 0.012

�(∗)
c , �

(∗)
b (1/2+, 3/2+) 1.09 −0.29 0.028 0.032

D̄(∗), B (∗) 0.58 −0.25 0.092 0.11

Table III. We find that λ1 is larger than that of D̄(∗) and B(∗)

mesons, and λ2(mc) and λ2(mb) are smaller. Thus, we find that
λ1 in the baryons with a heavy quark is enhanced and λ2(mc)
and λ2(mb) are reduced, in comparison with the meson cases.
This is consistent with the expectations from the analysis in
nuclear matter. We note, however, that the number of �̄ in the
heavy baryons is almost twice that in D̄(∗) and B mesons. This
is simply because the number of light quarks in heavy baryons
is twice that in D̄(∗) and B mesons.

Next, let us consider exotic baryons whose minimal quark
configuration is Q̄qqqq. Apparently, they cannot be regarded
as normal baryons with three quarks. The states with such
an exotic quark configuration can be given by the hadronic
molecules composed of a D̄(∗) (B(∗)) meson and a nucleon
N . In previous works by ourselves and our collaborators, it is
discussed that there can exist several bound/resonant states of
a D̄(∗) (B(∗)) meson and a nucleon N [22–24]. Among them, let
us consider the D̄(∗)N (B(∗)N ) states with 1/2− and 3/2− and
the states with 1/2+ and 3/2+ in the isosinglet sector. Only
the states with 1/2− are bound states, and the other states are
resonant states. Because we apply the mass formula in Eq. (4),
we consider only their masses by neglecting the decay widths
in the resonances. As for the quantum numbers of the brown
mucks, we assign 0(1+) for the (1/2−,3/2−) states and 0(1−)
for the (1/2+,3/2+) states, as discussed in Ref. [43]. Then,
we obtain the matrix elements �̄, λ1, λ2(mc), and λ2(mb) as
listed in Table IV. We find that λ1 is enhanced, while λ2(mc)
and λ2(mb) are reduced, both for the (1/2−,3/2−) states and
for the (1/2+,3/2+) states. This is again consistent with our
expectations from the results in nuclear matter. Note that the
number of �̄ is larger than that in D̄(∗) and B mesons, because
the number of light quarks in the exotic heavy baryons is larger.

TABLE IV. The matrix elements �̄, λ1, λ2(mc), and λ2(mb) of
exotic charm and bottom baryons (D̄(∗)N and B (∗)N ). The results of
charm and bottom dibaryons (D̄(∗)NN and B (∗)NN ) are also shown.
See the text for details. (Same conventions as in Table III.)

States �̄ λ1 λ2(mc) λ2(mb)
(GeV) (GeV2) (GeV2) (GeV2)

D̄(∗)N , B (∗)N (1/2−, 3/2−) 1.48 −0.27 0.050 0.047
D̄(∗)N , B (∗)N (1/2+, 3/2+) 1.50 −0.30 0.053 0.041
D̄(∗)NN , B (∗)NN (0−, 1−) 2.42 −0.28 0.082 0.078
D̄(∗), B (∗) 0.58 −0.25 0.092 0.11
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Recently, D̄(∗)NN (B(∗)NN ) systems, anticharm (bottom)
dibaryons, have been studied as exotic nuclei with minimal
baryon numbers [78]. There, the bound states were found in 0−
in the isospin singlet sector, and the resonant states were also
found in 1−, leading to the degenerate states in the heavy-quark
limit. In those two states, the quantum number of the brown
muck commonly contained was assigned as 1/2(1/2+) [78].
We obtained the matrix elements �̄, λ1, λ2(mc), and λ2(mb) as
shown in Table III. The enhancement of λ1 and the reduction
of λ2(mc) and λ2(mb) are seen again.

A comment is in order. In our previous works about the
D̄(∗)N and B(∗)N states in Refs. [22–24], the 1/M corrections
were included in the kinetic energies and the mass difference
between D̄ and D̄∗ (B and B∗) mesons. However, there was
no inclusion of 1/M corrections in the interaction vertices
with axial-vector current coupling to a pion, which are given
in Eq. (64). In this sense, the results in Refs. [22–24]
do not necessarily correspond to the full 1/M expansions.
Nevertheless, it is interesting to observe that the D̄(∗)N and
B(∗)N states cause the change of the matrix elements �̄, λ1,
λ2(mc), and λ2(mb), as seen in the normal charm and bottom
baryons.

VI. SUMMARY

We discuss the 1/M corrections with the heavy-meson
mass M in the in-medium masses of D̄(∗) (B(∗)) mesons
in nuclear matter. Following the formalism based on the
velocity-rearrangement invariance, we give the heavy-meson
effective Lagrangian with the 1/M corrections and apply it to
calculate the in-medium masses of D̄(∗) (B(∗)) mesons. From
the relation between the masses of heavy hadrons and the
gluon dynamics, we obtain the modifications of the gluon

fields in nuclear matter. We show that the effect of scale
anomaly is suppressed in nuclear matter and also show that the
contribution to the in-medium mass from the chromoelectric
gluon is enhanced, while that from the chromomagnetic gluon
is reduced. We discuss the cases of the heavy baryons with a
heavy quark in both the normal sector and the exotic sector.

As we have emphasized, the mass formula in Eq. (4) holds
for any states with a heavy quark in various environments.
In the present study, we have investigated the D̄(∗) and
B(∗) mesons in nuclear matter at zero temperature and have
discussed the effects of scale anomaly and chromoelectric and
chromomagnetic gluons. Similar discussions will be applied to
other charm and bottom hadrons such as �c and �b baryons
as well as D(∗) and B̄(∗) mesons in nuclear medium, when
appropriate dynamical processes are considered. Moreover,
the present analysis can also be applied to the heavy-quark
systems in the deconfinement phases with finite temperature
and/or finite density. Then, we will be able to discuss the
scale anomaly and the chromoelectric and chromomagnetic
gluons in various phases. Those studies will be interesting
experiments in hadron reactions at J-PARC and the GSI
Facility for Antiproton and Ion Research and also in heavy-ion
collisions at the BNL Relativistic Heavy Ion Collider and the
CERN Large Hadron Collider [79,80].
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