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Poisson-like statistical fluctuations, which are caused by the finite number of produced particles, are estimated
for the cumulants of conserved charges, i.e., net baryon, net electric, and net strangeness. They turn out to be the
same as those baselines derived from the hadron resonance gas model. The energy and centrality dependence of
net-proton cumulants at the Relativistic Heavy-Ion Collider (RHIC) are demonstrated to be mainly caused by sta-
tistical fluctuations. By subtracting the statistical fluctuations, the dynamical kurtosis of net- and total-proton cu-
mulants from two versions of a multi-phase transport model and the ultra-relativistic quantum molecular dynamics
model at current RHIC collision energies are presented. It is found that the observed sign change of the dynamical
kurtosis of the net-proton cumulant cannot be reproduced by these three transport models. There is no significant
difference between the net- and total-proton kurtosis in model calculations, in contrast to the data at RHIC.
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I. INTRODUCTION

The cumulants of conserved charges have been suggested
as good probes of the quantum chromodynamics (QCD)
phase boundary. They are experimentally accessible and
theoretically calculable.

At finite temperature and baryon chemical potential, ef-
fective chiral models [1] and some lattice QCD calculations
[2,3] have predicted the existence of the QCD critical point
(CP). Since the higher order cumulants of conserved charges
are more sensitive to the correlation length, they have been
suggested as critical related measurements in heavy ion
collisions [4–14].

At vanishing chemical potential, lattice QCD calculations
at physical quark masses have shown that the chiral crossover
transition appears as the remnants of the second-order phase
transition belonging to the O(4) universality class [15–17].
This makes it possible to explore the temperature of the QCD
phase transition by the associated singularities of the higher
order cumulants of conserved charges [18–22].

Moreover, recent calculations of lattice QCD indicate that
the freeze-out conditions in heavy ion collisions can be reliably
determined by the ratios of the first three-order cumulants of
net electric charge [23]. So the measurements of the cumulants
of conserved charges are crucial in locating the QCD phase
boundary.

Before one can understand the physics of measured cumu-
lants, one should first determine the contributions of various
noncritical effects, such as global conservation laws in a
subsystem [24], initial size fluctuations [25,26], and experi-
mental acceptance cuts [25,27]. In this paper, we focus on the
contributions of Poisson-like statistical fluctuations, which are
caused by the finite number of produced particles [28–30].
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For an ideal thermodynamic system, the number of particles
is infinite. The statistical fluctuations are small and negligible
in comparison to the critical one. However, for heavy ion
collisions at the Relativistic Heavy-Ion Collider (RHIC), the
number of produced particles is not infinite. For example, at
the top energy of RHIC, the mean of the net-proton number is
less than 10 [31]. Therefore, the statistical fluctuations are not
negligible.

The predictions of a multiphase transport (AMPT) model
[32] have shown that the behavior of the net-proton cumulants
is dominated by the statistical fluctuations at RHIC collision
energies [33]. Here, the net-proton cumulants measured
through experiment are further compared with corresponding
statistical fluctuations directly. This shows clearly how the
behavior of net-proton cumulants is dominated by the statis-
tical fluctuations at nine centralities and three RHIC collision
energies.

By subtracting the Poisson-like statistical fluctuations,
the dynamical net-proton cumulants can be recommended
[12,33]. From the calculation of a nonlinear σ model [12] and
the arguments of universality near the critical point [34], the
dynamical kurtosis of the net protons is negative when the
critical point is approached from the high-temperature side.

The expected sign change has been observed in the
corresponding experimental measurements at RHIC; i.e., the
dynamical kurtosis of net protons varies from negative to
positive when the centrality varies from central to peripheral
collisions, and the collision energy goes from high to low [35].
In contrast, the dynamical kurtosis of total protons is positive
at all collision energies and centralities. Whether the sign
change of the dynamical kurtosis of net protons indicates the
appearance of a critical point or is simply caused by noncritical
effects or experimental cuts is still not clear. A parallel
investigation from known conventional models is helpful.

The paper is organized as follows. In Sec. II, the statistical
parts of the cumulants of three kinds of conserved charges
(i.e., net baryon, net electric charge, and net strangeness)
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are derived. They turn out to be the same as the baselines
derived from hadron resonance gas (HRG) model. Then the
contributions of statistical fluctuations to the RHIC prelimi-
nary net-proton cumulants are estimated in Sec. III. We find
that the energy and centrality dependencies of net-proton
cumulants are dominated by the statistical fluctuations. In
Sec. IV, by using the generators of the AMPT default model,
the AMPT with string melting model [32], and the ultra-
relativistic quantum molecular dynamics (UrQMD) model
[36], the dynamical kurtosis of net and total protons at nine
centralities and seven RHIC collision energies are presented,
respectively. They are both positive, in contrast to the observed
sign change of the dynamical kurtosis of net protons of STAR
data, but inconsistent with the observed data of dynamical
kurtosis of total protons. Finally, the summary and conclusions
are given in Sec. V.

II. STATISTICAL PART OF THE CUMULANTS

As we know, the statistical fluctuations of finite number of
particles are well presented by the Poisson distribution [28].
There are hadrons with baryon number 1, electric-charge 1 or
2, and strangeness 1, or 2, or 3, respectively. We start from the
simplest case. Suppose the baryon (NB

1 ) and the antibaryon
(NB

−1) numbers both follow the Poisson distribution. The net-
baryon probability distribution (NB = NB

1 − NB
−1) is therefore

the cross-correlation of two Poisson distributions, i.e.,
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where 〈NB
1 〉 and 〈NB

−1〉 are means of NB
1 and NB

−1, respectively.
INB

(z) is the modified Bessel function of the first kind. It is
a standard Skellam distribution [37], the same as that derived
from the HRG model [38].

The net-baryon cumulants (κB
k ) can be obtained by the
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KB

(
t ;

〈
NB

1

〉
,
〈
NB

−1

〉) =
∞∑

k=0

t k

k!
κB

k , (2)

where KB(t ; 〈NB
1 〉,〈NB

−1〉) = ln G(et ; 〈NB
1 〉,〈NB

−1〉), and
G(t ; 〈NB

1 〉,〈NB
−1〉) is the probability-generating function

(PGF) of the Skellam distribution, i.e.,

G
(
t ;

〈
NB

1

〉
,
〈
NB

−1

〉) =
∞∑

NB=0

f
(
NB ;

〈
NB

1

〉
,
〈
NB

−1

〉)
tNB

= G
(
t ;

〈
NB

1

〉)
G

(
1
/
t ;

〈
NB

−1

〉)

= e−(〈NB
1 〉+〈NB

−1〉)+〈NB
1 〉t+〈NB

−1〉/t . (3)

So the even- and odd-order net-baryon cumulants are
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They are uniquely determined by the means of baryon and
antibaryon numbers.

For electric charged particles, there are four kinds of
particles: a charge-one particle (NQ

1 ) and its antiparticle
(NQ

−1) and a charge-two particle (NQ
2 ) and its antiparticle

(NQ
−2). Suppose the multiplicity of each kind of particle

follows the Poisson distribution and the net-charge probability
distribution of charge-one particles (N1Q = N

Q
1 − N

Q
−1) is a

Skellam distribution again, the same as Eq. (1). For charge-two
particles, the probability distributions of charges (2N

Q
2 ) and

anticharges (2N
Q
−2) do not follow a Poisson distribution but

are
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respectively. The probability distribution of the net charge of
charge-two particles (2N2Q = 2N

Q
2 − 2N

Q
−2) is their cross-

correlation,
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So, the probability distribution of the net charge of all
charged particles (NQ = N1Q + 2N2Q) is the convolution of
the probability distributions of the net charges of charge-one
and charge-two particles, i.e.,
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From its CGF and PGF, the even- and odd-order cumulants
of net charge can be derived easily:
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They are also consistent with those obtained from the HRG
model [38]. It should be noticed that the ratio κ

Q
4 /κ

Q
2 , i.e., the
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product of kurtosis and variance, is
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It is not one, as in the case of net baryons or net protons [39],
but determined by the means of the numbers of four kinds of
charged particles.

For strangeness, there are six kinds of particles, i.e.,
strange-one, strange-two, and strange-three particles and their
antiparticles. If the number of each kind of particle follows
the Poisson distribution, similarly, the even- and odd-order
net-strangeness cumulants can be derived as
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They are also the same as those obtained from the HRG model
[38].

So starting from the assumption that all kinds of conserved
charge particles and antiparticles are produced independently,
or follow the Poisson distribution, the distributions and
corresponding cumulants of the three kinds of net charges
are derived. They turn out to be the same as those base-
lines obtained from the HRG model, where the Boltzmann
approximation is implemented and the quantum effects of
the electric-charged pion are neglected [38]. This shows that
the baselines of the cumulants of conserved charges are in
fact the fluctuations of independently produced particles, or
pure Poisson-like statistical fluctuations. They are completely
determined by the means of particle and antiparticle numbers.

III. STATISTICAL PART OF THE NET-PROTON
CUMULANTS AT RHIC

The neutron is not detectable in experiments; however,
the proton number fluctuations can reflect the singularity
of baryon susceptibility very well [8]. Replacing the means
of baryon and antibaryon number in Eq. (4) by means of
proton (〈Np〉) and antiproton (〈Np̄〉) numbers, the statistical
net-proton cumulants can be obtained. They are the variance,

σ 2
p,stat = 〈Np〉 + 〈Np̄〉, (12)

the normalized cumulants, i.e., skewness and kurtosis,

Sp,stat = 〈Np〉 − 〈Np̄〉
(〈Np〉 + 〈Np̄〉)3/2

, κp,stat = 1

〈Np〉 + 〈Np̄〉 , (13)

and the ratios of the third- and fourth-order cumulants to
the second one, i.e., the products of skewness and standard
deviation and of kurtosis and variance,

Sp,statσp,stat = 〈Np〉 − 〈Np̄〉
〈Np〉 + 〈Np̄〉 , κp,statσ

2
p,stat = 1. (14)

From these expressions, it is clear that except for κp,statσ
2
p,stat

being a constant, all others are determined by the means of
proton and antiproton numbers. As we know, with increasing

collision energy, and in more central collisions, the means
of produced proton and antiproton numbers increase. The
difference between the proton and antiproton means becomes
less and less. So the statistical parts of the normalized
cumulants and cumulant ratios decrease. In particular, Spσp

decreases faster, and the skewness (Sp) decreases the fastest.
However, at lower collision energies, due to the baryon

stopping effect [40], a large number of protons from initial
nuclei remain in the formed system. This situation becomes
more serious at even lower energies. For example, at 7.7 GeV,
the lowest collision energy, the antiproton mean is two orders
of magnitude smaller than that of the proton. In this case, all
statistical cumulants from Eq. (4) are mainly determined by
the proton mean. This is why all order cumulants are close to
each other at lower collision energies (cf. Fig. 1 of Ref. [25]
and Fig. 2 of Ref. [41]).

With increasing collision energy, the baryon stopping effect
becomes weaker and weaker. At the higher energies, the
contribution of the antiproton is not negligible. The statistical
fluctuations of odd-order cumulants is the mean of net-proton
number from Eq. (4), and they decrease rapidly with increasing
energy. This is why the odd-order cumulants decrease together,
and obviously separate from even-order ones with the increase
of collision energy (cf. Fig. 1 of Ref. [25] and Fig. 2 of
Ref. [41]).

From the means of proton and antiproton numbers at nine
centralities and three RHIC collision energies,

√
sNN = 19.6,

62.4, and 200 GeV [31], the statistical standard deviation,
skewness, and kurtosis of net protons are calculated. They
are presented by open black circles in Fig. 1, where the solid
red circles are the data. The three panels from left to right
correspond to the three collision energies, respectively.
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FIG. 1. (Color online) Centrality dependence of the statistical
standard deviation (σp), skewness (Sp), and kurtosis (κp) of the
net-proton distribution (open black circles) and corresponding ex-
perimental data (solid red circles) for Au + Au collisions at√

sNN = 19.6 GeV (left panels), 62.4 GeV (middle panels), and
200 GeV (right panels).
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The figure shows that all statistical cumulants (open black
circles) are close to corresponding data (solid red circles).
The differences between them are one order of magnitude
smaller. So the centrality and energy dependence of net-proton
cumulants at RHIC are dominated by its statistical parts.
As expected, the statistical skewness Sp is first and greatly
suppressed when the collision energy increases from 19.6 to
200 GeV.

IV. DYNAMICAL KURTOSIS OF NET AND TOTAL
PROTONS AT RHIC

In order to see the difference between directly measured
cumulants and statistical ones, dynamical cumulants are
recommended and defined as [30,33]

κp,dyn = κp − κp,stat. (15)

These measure the correlations between charges. If the
particles are produced independently, the dynamical cumulants
are zero.

Calculations from lattice QCD have shown that near the
critical temperature of the chiral phase transition, the kurtosis
at μB = 0 and mq = 0 is positive. It could be negatively
divergent near the critical point at nonvanishing chemical
potential and physical mass [42]. The nonlinear σ model
has demonstrated that if the critical point is approached
from the high-temperature side, the dynamical kurtosis will
change from negative to positive [12], although the negative
values are very small. Calculations using the three-dimensional
Ising model show a similar critical behavior [43], whereas
calculations using the three-dimensional O(4) model show
that the kurtosis oscillates between positive and negative. So
the negative kurtosis is not specific to the critical end point
(Ising universality). It may be associated with the chiral phase
transition [O(4) universality] [21]. Anyway, the behavior of
dynamical kurtosis at RHIC is highly interesting.

The dynamical kurtosis of net and total protons at nine
centralities and seven RHIC beam energies (

√
sNN = 7.7,

11.5, 19.6, 27, 39, 62.4, and 200 GeV) are shown in
Fig. 2(a) and 2(e), respectively [35]. Figure 2(a) shows clearly
how the dynamical kurtosis of net protons varies with two
controlling parameters, i.e., energy and centrality. It is negative
at noncentral collisions and higher energies, i.e.,

√
sNN >

19.6 GeV, and positive at
√

sNN < 19.6 GeV. The black
solid circles for the most peripheral collisions highlight this
change. The positive and negative values of the dynamical
kurtosis of net protons indicate, respectively, that the peaks of
net-proton distributions are sharper and flatter than those of
the corresponding Skellam distributions.

The figure also shows that the values of dynamical kurtosis
are not zero and are one order of magnitude smaller than that
directly measured. This indicates that protons and antiprotons
are not independently produced at RHIC.

In order to see whether the negative kurtosis can be caused
by noncritical effects or by conventional particle production
mechanisms, we calculate the dynamical kurtosis in the AMPT
default model, the AMPT with string model [32], and the
UrQMD model [36], where no critical behavior is implemented
in these models. As we know, the initial size fluctuations are
well taken into account in these three transport models by the
Glauber model. However, the electric charge conservation of
produced particles is not fully preserved in the AMPT models.
The UrQMD model is better at taking the conservation of final
state charges into account.

We simulate Au + Au collisions at seven corresponding
collision energies by these three models. The calculations
of dynamical net-proton cumulants are performed in the
same way as the experimental analysis [31]. The centrality
bins are selected by the multiplicity of charged particles
except for protons and antiprotons within pseudo-rapidity
window |η| < 0.5. The proton and antiproton measurements
are carried out at the mid-rapidity window |y| < 0.5 in the
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FIG. 2. (Color online) Energy dependence of the dynamical net-proton kurtosis (upper panels) and total-proton kurtosis (lower panels) at
nine centralities for Au + Au collisions at RHIC. The results come from experimental data [(a) and (e)] [35], the AMPT default model [(b)
and (f)], the AMPT with string melting model [(c) and (g)], and the UrQMD model [(d) and (h)], respectively.
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transverse momentum range 0.4 < pT < 0.8 GeV/c. The
dynamical kurtosis of net and total protons in each centrality
bin are estimated by the centrality bin width correction
(CBWC) method [44]. They are presented in the upper and
lower panels of Fig. 2, respectively, where the first column
shows the data from RHIC/STAR and the second, third,
and fourth columns are the results from the AMPT default,
the AMPT with string melting, and the UrQMD models,
respectively.

From Figs. 2(b), 2(c), and 2(d), it is clear that the
dynamical kurtosis of net protons from the three model
calculations are all positive at given centralities and energies,
in contrast to the data in Fig. 2(a). So the conventional
particle production mechanisms implemented in these three
transport models cannot reproduce the observed sign change
of the dynamical kurtosis of net protons. This inconsistency
indicates that there should be additional correlations which
have not been taken into account in these three transport
models.

It is too early to draw a conclusion as to whether the
related sign change is critical signal. Since the absolute
value of negative kurtosis is very small (less than 0.1),
if we change experimental cuts, such as the phase space
windows of the analysis, the definition of centrality, and the
centrality bin width corrections [26,44], the results may change
accordingly. But, up to now, how to choose the experimental
cuts and how to reduce the noncritical effects are still in
progress.

On the other hand, the obtained results from the current
theoretical calculations and experimental measurements are
encouraging. The behavior of dynamical kurtosis is very
interesting and worthy of further investigations.

From Figs. 2(f), 2(g), and 2(h), it is also clear that the
dynamical kurtosis values of total protons from the three
model calculations are all positive, which is inconsistent
with the data, as shown in Fig. 2(e). They are all similar
to those of dynamical kurtosis of net protons in the model
calculations, as shown in Figs. 2(b), 2(c), and 2(d). So
there is no significant difference between conserved and
nonconserved charge in model calculations. However, the
experimental data in Figs. 2(a) and 2(e) show that the behavior
of conserved charge is quite different from that of noncon-
served charge. This indicates again that some correlations
between conserved charges are missed in these three transport
models.

The quantitative difference between the two versions
of the AMPT and the UrQMD models can be observed
in the peripheral collisions, where the results from the
UrQMD model are all much larger than those from the
two versions of the AMPT model. This may be caused
by a strict conservation of final-state charged particles in
the UrQMD model, which leads to a stronger correlation
between charged particles in peripheral collisions, where the
number of produced particles are smaller than those of central
collisions.

V. SUMMARY AND CONCLUSIONS

In this paper, we argue that, at RHIC collision energies,
the Poisson-like statistical fluctuations in higher order cumu-
lants of conserved charges are not negligible. Starting from
independent particle production, i.e., assuming the Poisson
distribution for the number of conserved charge particles, we
derived the statistical cumulants of net baryons, net electric
charge, and net strangeness. They are uniquely determined by
the means of charged particle and antiparticle numbers and are
the same as those baselines obtained from the HRG model.
So the baselines of higher order cumulants of conserved
charges are essentially the statistical fluctuations.

From the means of proton and antiproton numbers given by
RHIC/STAR experiments, the statistical standard deviation,
skewness, and kurtosis are estimated. They are close to the
data at nine centralities and three RHIC collision energies.
So the net-proton cumulants at RHIC are dominated by the
statistical fluctuations.

By subtracting the statistical fluctuations, the dynamical
kurtosis values of net and total protons from two versions of
the AMPT model and the UrQMD model at RHIC collision
energies are presented. It is found that the dynamical kurtosis
of net protons is small, but not zero. This indicates that
protons and antiprotons are not produced independently in
these models, which is inconsistent with the data.

However, the observed sign change of the dynamical
kurtosis of net protons at RHIC cannot be reproduced by
conventional particle production mechanisms implemented in
these three models. This inconsistency between the model
calculations and experimental data indicates that there should
be additional correlations between conserved charges in heavy
ion collisions which have not been implemented into these
three transport models.

In addition, model calculations show dynamical kurtosis
values of total protons are all positive at observed centralities
and energies, which is inconsistent with the data. There is
no significant difference between the kurtosis of net and total
protons or between conserved and nonconserved charges in the
model calculations. However, from current experimental data,
the centrality and energy dependence of dynamical kurtosis
of net protons has a sign change, and the dynamical kurtosis
of total protons stays positive. The behavior of dynamical
kurtosis of net protons is significantly different from that of
total protons. This shows again that some correlation effects
in conserved charges are missing in these models.

ACKNOWLEDGMENTS

This work is supported in part by the Major State Basic
Research Development Program of China under Grant No.
2014CB845402, the NSFC of China under Grants No.
10835005, No. 11221504, No. 11005046, and No. 11005045,
and the Ministry of Education of China with Project No.
20120144110001.

[1] M. Asakawa and K. Yazaki, Nucl. Phys. A 504, 668
(1989).

[2] Z. Fodor and S. D. Katz, Phys. Lett. B 534, 87 (2002); ,J. High
Energy Phys. 03 (2002) 014.

014904-5

http://dx.doi.org/10.1016/0375-9474(89)90002-X
http://dx.doi.org/10.1016/0375-9474(89)90002-X
http://dx.doi.org/10.1016/0375-9474(89)90002-X
http://dx.doi.org/10.1016/0375-9474(89)90002-X
http://dx.doi.org/10.1016/S0370-2693(02)01583-6
http://dx.doi.org/10.1016/S0370-2693(02)01583-6
http://dx.doi.org/10.1016/S0370-2693(02)01583-6
http://dx.doi.org/10.1016/S0370-2693(02)01583-6
http://dx.doi.org/10.1088/1126-6708/2002/03/014
http://dx.doi.org/10.1088/1126-6708/2002/03/014


PAN, ZHANG, LI, CHEN, XU, AND WU PHYSICAL REVIEW C 89, 014904 (2014)

[3] C. Schmidt, C. R. Allton, S. Ejiri, S. J. Hands, O. Kaczmarek,
F. Karsch, and E. Laermann, Nucl. Phys. B (Proc. Suppl.) 119,
517 (2003); R. V. Gavai, Nucl. Phys. A 862, 104 (2011).

[4] J. I. Kapusta and A. P. Vischer, and R. Venugopalan, Phys. Rev.
C 51, 901 (1995).

[5] M. Stephanov, K. Rajagopal, and E. Shuryak, Phys. Rev. Lett.
81, 4816 (1998).

[6] S. Gavin, arXiv:nucl-th/9908070; D. Bower and S. Gavin, Phys.
Rev. C 64, 051902 (2001).
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