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Field theory of the d + t → n + α reaction dominated by a 5He∗ unstable particle
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An effective, nonrelativistic quantum field theory for the dt → nα fusion reaction in the low-energy, resonance
region is presented. The theory assumes that the reaction is dominated by an intermediate 5He∗ unstable spin-3/2+

resonance. It involves two parameters in the coupling of the dt and nα particles to the unstable resonant state and
the resonance energy level—only three real parameters in all. All Coulomb corrections to this process are com-
puted. The resultant field theory is exactly solvable and provides an excellent description of the dt fusion process.
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I. INTRODUCTION

A. Motivation and purpose

In this paper, we examine the reaction

d + t → n + α (1.1)

from an effective field theory point of view. We employ
modern techniques of many-body, nonrelativistic quantum
field theory1 to describe this reaction and also make use
of the contemporary ideas of effective field theory. In the
modern effective field theory approach, stable nuclei (which
are treated as particles) and resonant nuclear states (which
are treated as unstable particles) are described by individual
fields. The fields that correspond to asymptotic states produce
particles when they act on the vacuum (no-particle) state. But
fields that correspond to resonances have no corresponding
single-particle states.2 For the reaction that we consider in this
paper, we shall assume that only a single intermediate resonant
state, corresponding to a spin-3/2+ 5He∗, is needed. Thus we
shall have creation and annihilation fields for this unstable
intermediate resonance as well as such fields for deuteron,
triton, alpha, and neutron particles.

The effective field theory is a generalization of the
pseudopotential method introduced by Fermi [2] in 1936 for
low-energy neutron scattering on molecules. Fermi used a
δ(r) function taken in the Born approximation. The constant
multiplying the δ function was chosen to give the correct
scattering length on a nucleus. The use of a field to describe a
composite nucleus was done as early as 1973 by Schwinger [3]
when he described the deuteron and used this description
to rederive the effective range formula for the deuteron’s
form factor and for its photodisintegration cross section. The
modern use of field theory methods in nuclear physics was
advocated by Weinberg [4] in 1990. The review of Epelbaum,
Hammer, and Meißner [5] describes the application of effective
quantum field theory methods to nuclear problems in detail
and contains an extensive list of references to work in this area.

*Corresponding author: brownl@lanl.gov
1These methods are explained in detail in, for example, the first two

chapters of Ref. [1].
2Fields describing unstable, resonance particles are described at

some length in Sec. 6.3 of Ref. [1].

The effective field theory may be viewed as the simplest
mathematical method to implement a “black box” description
of nuclear reactions at low energies. This is a theoretical
description that uses the fewest number of parameters. If
the process involves a resonant intermediate state, then an
unstable field is needed in addition to the fields that describe
the propagation of the initial and final particles. As the energy
of the reacting particles is increased, additional parameters
must be included that correspond to coupling constants for
field interactions involving spatial gradients, which correspond
to interactions that give higher momentum dependence in
the reaction amplitudes. The number of parameters required
increases rapidly with increasing energy.

Here we are concerned with reactions in the low-energy
limit but with a resonant intermediate state, the 5He∗ state.
This introduces three parameters: two constants gdt and gnα

for the coupling of the dt and nα fields to the unstable 5He∗

field and the resonant energy of this unstable field.
A traditional method to compute coupled-channels nuclear

reactions is to use R-matrix theory. This theory entails nuclear
channel radii as well as excited-state energies and channel
couplings. The subsequent companion paper [6] describes the
one-level R-matrix theory for the two dt and nα channels.
This paper explains in detail how the zero-channel radii limit
of this R-matrix theory is precisely the result (1.12) below for
the effective field theory with the coupling to the unstable 5He∗

particle.
There are several motivations for this work. It provides a

detailed example of how effective field theory methods work
for a nontrivial example that involves a higher spin unstable
field. Coulomb corrections appear not only in the initial state
but also in the unstable field’s self-energy involving the dt
loop. Field theory methods of angular-momentum coupling
simplify the computation. The result provides a very accurate
description of the dt fusion reaction that involves only three
real parameters. Our simple description may be employed
in calculations of plasma screening effects that employ field
theory methods and thus requires a field theory of the fusion
process.3

3This was the initial motivation for our work on this theory. A
preliminary sketch of the field theory method of computing nuclear
fusion rates in a plasma appears in Ref. [7].
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FIG. 1. Graphical representation of the dt → nα transition am-
plitude. The thick directed line is the interacting 5He∗ Green’s
function. Solid, directed lines are nonzero spin particles, and the
dashed line is the spin-zero α particle. Shaded boxes are gnα and gdt

couplings. The dt shaded box includes the Coulomb wave function
factor ψ (C)

pdt
(0). Hash marks on the external lines indicate that they

correspond to on-shell asymptotic particles, not propagators.

B. Heuristic description of the method

Before proceeding to a description of our results followed
by the details of our computations, we pause to provide a
pictorial description of our work.

Figure 1 represents the dt → nα fusion amplitude. The
order (as also in all subsequent graphs) from right to left
follows the usual convention for quantum transition ampli-
tudes. The absolute square of this amplitude, multiplied by
appropriate phase-space factors, is the fusion cross section
shown in Eq. (1.6). The 5He∗ propagator obeys the algebraic
equation represented in Fig. 2, with the self-energy function
denoted by the shaded region on the far right described in
Fig. 3. The fact that the free-particle propagator appears with
the wrong minus sign is discussed in the final paragraph of
the following Results subsection and also in detail in the
subsequent companion paper [6]. In Fig. 3, the nα self-energy
function is presented explicitly in Eq. (3.27). The sum of all the
dt graphs is explicitly given by Eq. (4.17). The contribution
of these self-energy functions appears in the absolute square
of the inverse 5He∗ Green’s function (1.8).

C. Results

Since the paper contains lengthy calculations, it is worth-
while to present the dt fusion result here before plunging into
all the details, including Coulomb corrections. A major effect
of these is provided by the familiar Gamow barrier penetration
factor for the initial charged deuteron and triton particles. It
is the square of the Coulomb wave function evaluated at zero

= +

FIG. 2. Diagrammatic structure of the momentum space alge-
braic equation for the interacting 5He∗ Green’s function. The thick,
directed line represents the interacting Green’s function with all its
self-energy corrections. The double line stands for the wrong-sign
free-particle propagator. The shaded region immediately to the right
of the free propagator represents the nα and dt self-energies contained
in �(W ).

= + + + · · ·+
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FIG. 3. Self-energy of the 5He∗ Green’s function, including the
instantaneous Coulomb interaction. The first graph stands for the nα

self-energy function. The infinite set of terms (as indicated by the
final ellipsis) include all the corrections to the dt self-energy function
due to instantaneous Coulomb exchanges between the charged d and
t particles.

particle separation, ψ
(C)
pdt

(0),

∣∣ψ (C)
pdt

(0)
∣∣2 = 2πη

exp{2πη} − 1
, (1.2)

in which for the deuteron and triton, each with a single electron
charge e, in ordinary cgs units (but with the � = 1 convention
that we usually follow),

η = e2

vdt

, (1.3)

where vdt is the relative velocity of the deuteron and triton.
We use mab to denote the reduced mass of a pair of particles
a,b. So the dt momentum in the center-of-mass (c.m.) system
is pdt = mdt vdt , with the energy of this relative motion in the
center-of-mass system given by

E = 1

2
mdt v

2
dt = p2

dt

2mdt

. (1.4)

With our convention for the zero point of the energy W in the
center-of-mass system,

p2
dt

2mdt

= W + εd + εt , (1.5)

in which εd and εt are the deuteron and triton binding energies.
Thus, at a dt threshold where the dt relative momentum
vanishes, W = −εd − εt < 0. In our approximation in which
the particles interact only with an unstable intermediate field,
in addition to the external propagation barrier penetration, the
only other Coulomb corrections are to the dt “bubble graphs”
that appear in the unstable 5He∗ propagator. The inclusion of
all Coulomb effects is detailed in the work leading to Eq. (4.5),
which reads:

σdt→nα = 8

9
4πmnα

p5
nα

vdt

g2
dt

4π

g2
nα

4π

∣∣ψ (C)
pdt

(0)
∣∣2 |G(C)

∗ (W )|2.
(1.6)

Here pnα is the relative momentum in the center-of-mass frame
of the produced n,α particles. By energy conservation, it is
given by

p2
nα

2mnα

= p2
dt

2mdt

+ Q, (1.7)

where Q � 17.59 MeV is the energy release of the reaction.
Since the nα pair is produced in a D wave, the amplitude
contains a factor of p2

nα and the squared amplitude p4
nα . Phase

space of the produced particles gives an additional factor of
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pnα , so an overall factor of p5
nα appears. The couplings of the

initial d,t fields and the final n,α fields to the unstable 5He∗

field are denoted by gdt and gnα .
The unstable interacting Green’s function that appears in

the fusion cross section is given by

|G(C)
∗ (W )|−2

=
[

p2
dt

2mdt

− E∗ − g2
dt

4π

(W )

]2

+
[
g2

dt

4π
2 mdt pdt

∣∣ψ (C)
pdt

(0)
∣∣2 + g2

nα

4π

2

3
mnα p5

nα

]2

.

(1.8)

This is the function given in Eq. (4.27) whose derivation and
description precedes Eq. (4.27). The energy E∗ along with the
coupling parameters g2

dt and g2
nα are determined by fitting the

dt → nα fusion cross section.
The function 
 is a Coulomb-modified dt loop function

that is given by [see Eq. (4.19)]


(W ) = 4mdt

b0
[Re ψ(iη) − ln η] , (1.9)

where b0 = 1/e2 mdt = 24.04 fm and ψ(z) = �′(z)/�(z) is
the logarithmic derivative of the � function. Although the peak
in the fusion cross section, or the maximum of the modified
astrophysical factor Sdt→nα shown in Fig. 4, are determined by
E∗, the positions of these are not directly related to the value
of E∗ since there are shifts brought about by the Coulomb
self-energy correction 
(W ) and by the variation of the factors
that involve pdt and pnα .

The astrophysical S factor is conventionally defined by

S = E e2πη σ. (1.10)

The multiplication by E = mv2/2 removes the two factors of
1/v that naturally appear in the cross section: the 1/v arising
from the division of the reaction rate by the incident flux and
the 1/v factor that appears in the overall η factor in the squared
Coulomb wave function (1.2). The factor exp{2πη} removes
the major exponential factor (the factor which appears in
the Gamow barrier penetration approximation) in the squared
Coulomb wave function (1.2). We prefer, however, to use a
slightly modified astrophysical S factor that we define by

Sdt→nα = p2
dt

�2
[e2πη − 1] σdt→nα

= 2 mdt

�2
E [e2πη − 1] σdt→nα. (1.11)

Here we have multiplied by p2 rather than by E = p2/2m
because this makes S dimensionless.4 Moreover, we have
multiplied by [exp{2πη} − 1] rather than by only the Gamow

4We have previously displayed the � factors explicitly to emphasize
that we are multiplying by a wave number squared, (p/�)2 ∼
(length)−2, although in general we use quantum units in which � = 1.
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FIG. 4. (Color online) Dimensionless version of the astrophys-
ical factor Sdt→nα determined by the definition (1.11) for the dt

reaction compared with the experimental data as a function of the
deuteron center-of-mass energy E. The solid (blue) curve is the best
fit of the simple effective field theory result (1.12). It has a χ 2 per
degree of freedom of 0.784. The dashed (red) curve is based on the
cross section of Bosch and Hale [8]. The multilevel, multichannel
R-matrix analysis of the 5He system on which the Bosch and Hale
cross sections are based includes data for nα and dt elastic scattering,
in addition to those for the associated inelastic reactions, at energies
equivalent to a laboratory deuteron energy up to 11 MeV. It fits the
2665 experimental data points included using 117 free parameters
with a χ 2 per degree of freedom of 1.56. The (magenta) squares are
the data of Arnold et al. [9]; the (olive) diamonds are the data of Jarmie
et al. [10] renormalized by a factor of 1.017; the (green) triangles are
the relative data of Brown et al. [11] renormalized by a factor of
1.025. The necessity of these renormalizations of the experimental
data is discussed in the text. The (blue) circles are the older data of
Argo et al. [12], which we show for completeness but which we do
not use in our fit.

barrier penetration factor exp{2πη} to remove the complete
energy dependence of the squared Coulomb wave function.5

In terms of this notation, our result becomes

Sdt→nα = 8

9
4π mdt mnα p5

nα

g2
dt

4π

g2
nα

4π

2π

b0
|G(C)

∗ (W )|2. (1.12)

A fit of this result to the data reduced to construct Sdt→nα is
presented in Fig. 4. The fit to the dt fusion cross section with
our formula gives the parameter values

E∗ = −154 ± 8 keV,

g2
dt

4π
= 199 ± 8 fm3 MeV2, (1.13)

g2
nα

4π
= 16.4 ± 1.0 fm7 MeV2.

The early cross-section measurements [9,12] used to
determine the parameters of the fit were reported with rather

5We are interested in the energy range 0 < E < 300 keV with
includes the resonance at E � 50 keV. The change from S to S is
of relative order exp{−2πη} and increases as the energy increases.
At E = 300 keV, the change is about 10%.
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large uncertainties (typically ∼10%), which combined relative
and normalization (scale) uncertainties. However, in the more
recent measurement of Jarmie et al. [10], the relative errors
were much smaller (∼0.5%) and were reported separately
from the larger scale uncertainty of 1.26%. The subsequent
measurement of Brown et al. [11] likewise had small relative
errors, but no absolute normalization was determined in this
experiment. For the purpose of reporting the data, Brown et al.
determined an approximate scale by matching in the region of
overlap to the earlier absolute measurement of Jarmie et al.

When fitting these data in the comprehensive 5He R-matrix
analysis that was used to produce the reaction cross sections of
Bosch and Hale [8], separate normalization parameters were
allowed to vary for each data set, the one for the Jarmie data
being constrained in the total χ2 by its 1.26% uncertainty
and the one for the Brown et al. data unconstrained, since it
was purely a relative measurement. The values of the renor-
malization factors found from that analysis, 1.017 for Jarmie
et al. [10] and 1.025 for Brown et al. [11], were applied to the
experimental data sets (cross sections and uncertainties) prior
to performing the more limited fitting of effective field theory
result S̄dt→nα [Eq. (1.12)] over the resonance described here.6

Our result, which entails only three parameters, fits the
data very well. To achieve this, it is necessary to start with
a free-particle Lagrangian for the unstable 5He∗ field with
the “wrong” sign. This would not be acceptable if the theory
were taken to be more fundamental with an extended region
of validity rather than a effective theory whose applicability
is only to the low-energy regime. It is easy to show that the
simple theory with two initial spin-zero particles which interact
via an intermediate (s-channel) field (the simple scalar-particle
analog of our theory) produces an effective range formula with
a negative effective range parameter [6]. A positive effective
range parameter is achieved in this theory if the intermediate
field has a wrong-sign free-particle Lagrangian. Thus the
restricted validity of this simple effective field theory should
be acceptable just as is that of the effective range theory.7

6We also tried letting the normalizations on these data sets float in
this latter analysis, and they varied from the values given above by
about 0.25%, well within the expected variance of these numbers, so
there was no need to employ this different scale.

7Kaplan [13] has obtained a good fit to the neutron-proton singlet
S-wave scattering phase shift out to a laboratory energy of 340 MeV
with a theory that contains pion exchange, a local point (contact)
interaction, and an s-channel intermediate field with a wrong-sign
free-particle Lagrangian. He was motivated to use this minus sign
because of his analysis in Sec. II of the quantum-mechanical delta-
shell potential which led to his Eq. (2.11). Schwinger [3] described
the deuteron as an effective field and derived the effective range
formula for the neutron-proton triplet S-wave scattering as well as
the corresponding approximation for the deuteron form factor and
the low-energy deuteron photodisintegration. A careful reading of
Ref. [3] reveals that, hidden in the nonrelativistic reduction of a
relativistic theory that involves a wave function renormalization for
the deuteron field, the resulting free-particle deuteron propagator
corresponds to a wrong-sign Lagrangian, a sign change brought about
by a negative sign in the wave-function renormalization.

D. Outline

Section II A explains our conventions for the fields and
their free-particle Lagrange functions. Section II B defines the
interaction Lagrange functions for the coupling of the initial dt
and the final nα to the unstable 5He∗ field and the appropriate
spin-orbit combination of the nα fields that enter into their
interaction.

Section III describes the dynamics of our theory in the
absence of the Coulomb interactions. This is done in some
detail because this underlying theory, which involves higher
spin fields, has some complexity, and it clarifies the develop-
ment to proceed with simpler stages. Section III A presents
the calculation of the self-energy functions for the unstable
5He∗ propagator using dimensional continuation to define their
needed regularization and express the intermediate expressions
in term of quantum-mechanical transformation functions that
simplifies the subsequent computation of Coulomb correc-
tions. Section III B describes our result for the dt → nα fusion
cross section in the absence of Coulomb interactions.

Section IV displays the Coulomb corrections to the fusion
process. The dt particles initially interact at a point, thereby
bringing about a factor of the squared Coulomb wave function
at the origin |ψ (C)(0)|2. The dt piece of the resonant-state
propagator also has Coulomb corrections. Using the formalism
developed in Sec. III A, these corrections become expressed
in a dispersion relation form that is a representation of the
logarithmic derivative of the � function ψ(z).

After a brief summary of our work in the concluding
Sec. V, unsuccessful approaches to avoid the introduction of
the wrong-sign 5He∗ free propagator are mentioned. We then
note how extensions of the effective field theory method to
multichannel descriptions of light nuclear reactions might be
obtained without great effort.

Appendix A contains a short account of Galilean invariance
that provides results needed in the text. Efficient quantum field
theory methods that couple spins are explained in Appendix B.
The theory of Coulomb corrections is discussed in Appendix C.

II. EFFECTIVE FIELD THEORY: INGREDIENTS

A. Fields and kinematics

As discussed in the Introduction, each particle in our
reaction system is described by creation and annihilation fields.
The free-field part of the Lagrange function for each of these
fields has the generic form

L(0)
A = χ †

A i
∂

∂t
χA − H(0)

A , (2.1)

with

H(0)
A = χ †

A

[−∇2

2mA

− εA

]
χA. (2.2)

As shown in Appendix A, Galilean invariance requires that
the inertial mass mA of a composite nucleus is the sum of the
masses of the neutrons and protons of which it is composed.
We have written εA > 0 for the binding energy of the composite
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TABLE I. Bosonic fields and their properties.

Particle Spin Operators Mass Binding

Alpha 0+ φ†
α(r,t), φα(r,t) mα = 2mp + 2mn εα

Deuteron 1+ φ
†
d (r,t), φd (r,t) md = mp + mn εd

particle A. The total free particle Hamiltonian,

H (0) =
∑

A

∫
(d3r)H(0)

A , (2.3)

measures the energy of an asymptotic state where all the
particles are separated by large distances.

In view of the structure of the total Hamiltonian (2.3) with
the pieces (2.2), the total energy Eab of a pair a,b of stable
particles separated by large distances is

Eab = p2
a

2ma

− εa + p2
b

2mb

− εb = P2
ba

2Mab

+ p2
ba

2mab

− εa − εb,

(2.4)

in which Mab and mab are the total and reduced masses of the
a,b system; Pba and pba are the total and relative momenta.
The energy Wab in the center-of-mass system is the Galilean
invariant

Wab = Eab − P2
ba

2Mab

= p2
ba

2mab

− εa − εb. (2.5)

Our description of the dt → nα reaction will employ only
the initial deuteron (d), neutron (n), and the final triton (t),
alpha (α) particles, and a single unstable 5He∗ nucleus. The
corresponding bosonic fields and their properties, spin-parity,
masses, and binding energies, are listed in Table I. Note that
we conveniently describe the deuteron spin states as a vector
representing “linear polarization”; the usual J ′

z = m = {±1,0}
states are the {(x ± iy)/

√
2,z} components of this vector.

Properties of the fermionic fields are given in Table II.
As explained in Appendix B, the condition that the unstable

5He∗ field carry only spin 3/2 (with no additional spin-1/2
piece) can be conveyed in the requirement that this vector-
spinor field obeys8

σ · ψ∗(r,t) = 0 = ψ†
∗(r,t) · σ , (2.6)

in which σ are the Pauli spin matrices.
The unstable, resonant 5He∗ state has a “binding” energy ε∗

that is negative so it can decay into a deuteron plus a triton. The
conservation of total energy W in the center-of-mass system
for the dt fusion reaction gives

p2
dt

2mdt

− εd − εt = p2
nα

2mnα

− εn − εα. (2.7)

At threshold, pdt = 0, and the produced n,α pair has a kinetic
energy p2

nα/2mnα = Q. Here Q is the conventional notation for

8This is just the nonrelativistic version of the Rarita-Schwinger
description of spin-3/2 fields [14].

TABLE II. Fermionic fields and their properties.

Particle Spin Operators Mass Binding

Neutron 1
2

+
ψ †

n(r,t), ψn(r,t) mn εn ≡ 0
Triton 1

2

+
ψ

†
t (r,t), ψt (r,t) mt = mp + 2mn εt

5He∗ 3
2

+
ψ †

∗(r,t), ψ∗(r,t) m∗ = 2mp + 3mn ε∗

the energy liberated by the reaction. Since by our convention
εn = 0,

Q = εα − εd − εt � 17.59 MeV. (2.8)

B. Unstable particle interactions

As discussed in the Introduction, the interaction Lagrange
function describes the coupling of the reacting particles to an
intermediate unstable field that describes a 3/2+ resonance
5He∗ in the intermediate state as follows:

L1 = gdt [ψ
†
∗ψt · φd + φd

† · ψ
†
t ψ∗]

+ gnα[ψ†
∗ · �αn + �†

αn · ψ∗] (2.9)

Here the dt field pair contains spin 1/2 as well as spin 3/2.
However, the coupling of this pair to the unstable particle field
with spin 3/2 projects out only the spin-3/2 part of the dt pair.
The coupling of the unstable particle field to the αn pair is
more complicated since, as discussed in detail in Appendix B,
it involves an internal D-wave angular momentum in this pair.
This l = 2 internal angular momentum combines with the spin
1/2 in the neutron to produce the spin-3/2+ field �αn. As
explained in Appendix B, this field is given by

�l
αn(r,t) = φα(r,t) T lm

αn σm ψn(r,t), (2.10)

in which a sum over repeated vector or tensor indices is
implied, and with

T lm
αn = P l

αnPm
αn − 1

3 δlm Pk
αnPk

αn, (2.11)

where

Pk
αn = mnα

mn

1

i

→
∇

k

−mnα

mα

1

i

←
∇

k

, (2.12)

with mnα the reduced mass of the alpha-neutron system. The
arrow over a derivative indicates whether the derivative acts to
the left or to the right. As we shall see, the differential operator
Pk

αn reduces to the relative momenta of the nα pair when the
reaction amplitudes are computed.

III. EFFECTIVE FIELD THEORY: DYNAMICS

The reaction amplitudes may be described by the interaction
picture which involves free-field matrix elements of the time-
ordered, unitary evolution operator,

U =
(

exp

{
i

∫
dt

∫
(d3r)L1

})
+

. (3.1)

The propagators of nonrelativistic fields are retarded functions
in time: Particles are created at an earlier time and then
destroyed at a later time. Hence, on expanding the interaction
picture time evolution operator (3.1), it is easy to see that the

014622-5



LOWELL S. BROWN AND GERALD M. HALE PHYSICAL REVIEW C 89, 014622 (2014)

only contributions to a two-body reaction with an interaction
of the form of Eq. (2.9) are as follows. Starting at an early
time, the initial particle pair is destroyed and the unstable
5He∗ particle is created. In the leading order expansion of
the evolution operator, this unstable particle decays into the
particles in the final state. In the next-to-leading order, the
unstable particle propagates for some time and then decays
into a particle pair. Each particle in this pair now propagates
for another period of time until the pair is destroyed with the
creation of another unstable particle. This chain of “bubbles”
goes on until the final two-particle state is reached. The first
terms in the expansion of the evolution operator give a single
“bubble” surrounded by two unstable free-field propagators.
The next set of expansion terms give two “bubbles” joined
by three unstable free-field propagators, and so forth, to result
in an infinite set of graphs consisting of alternating lines and
“bubbles.”

We consider in the next subsection, Sec. III A, the unstable
particle Green’s function neglecting the Coulomb interaction.
This allows us to focus on the evaluation of the nα and
dt contributions to the self-energy, �nα(W ) and �dt (W ).
These are sufficiently complex computations, even with the
neglect of the instantaneous Coulomb interactions, to warrant
a dedicated discussion. Then, in following Sec. IV, we include
corrections due to the instantaneous Coulomb interactions for
these particles.

A. Unstable particle Green’s function

The unstable particle’s Green’s function may be expressed
as

Glm
∗ (r − r′,t − t ′)

=
∫

(d3p)

(2π )3

dE

2π
eip·(r−r′)−iE(t−t ′)P lm

3/2 G∗(W ). (3.2)

Here P lm
3/2 is the projection matrix (B18) into the spin-3/2

subspace. It is a matrix in the 2 × 2 spinor space and a second-
rank tensor in the vector indices exhibited. Because of Galilean
invariance, the scalar factor G∗(W ) is a function only of the
energy in the center-of-mass frame

W = E − p2

2m∗
. (3.3)

The unstable 5He∗ inverse Green’s function scalar factor
has the form

G−1
∗ (W ) = −(W + ε∗) − �(W + iη), (3.4)

where, as discussed at some length in the Introduction above,
the free-particle piece is taken corresponding to a wrong-sign
Lagrangian. The structure of the corresponding Green’s func-
tion is described by an integral equation in space-time which
reduces to an algebraic equation in momentum-frequency
space, as indicated by the diagram in Fig. 2. The self-energy
�(W ) is the sum of a dt part and an nα part:

�(W ) = �dt (W ) + �nα(W ). (3.5)

The self-energy functions, corresponding to dt and nα loop
graphs, is displayed in Fig. 5.

= +

n

α

d

t

FIG. 5. The self-energy diagrams of the 5He∗, neglecting the
instantaneous Coulomb interaction, corresponding to Eq. (3.5).
Shaded boxes indicate the gnα and gdt vertices appropriate to each
graph. The first loop graph on the right-hand side describes the nα

contribution Eq. (3.27); the second loop graph corresponds to the dt

contribution Eq. (3.26).

The dt contribution involves the propagator or Green’s
function for the spin-1 deuteron, which has the simple tensor
structure Gkl

d = δkl Gd , where Gd is a scalar function, and
the Green’s function for the triton, which is a unit matrix in
the 2 × 2 spinor space times a scalar function Gt . The unit
tensor δkl describing the deuteron spin and the unit matrix
in the deuteron spin space both act as unity when acting
upon the components of the unstable field Green’s function.
Hence, the dt loop can be written as the scalar function

�dt (W ) = ig2
dt

∫
(d3r̄) dt e−ip·r̄+iE t Gd (r̄,t) Gt (r̄,t). (3.6)

The scalar part of the Green’s functions have the generic form

G(r − r′,t − t ′) = −i〈0|(χ (r,t)χ †(r′,t ′))+|0〉

= −iθ (t − t ′)
∫

(d3p)

(2π )3
eip·(r−r′)e−iE(p)(t−t ′),

(3.7)

in which θ is the unit step function and

E(p) = p2

2m
− ε (3.8)

is the energy which includes the binding energy −ε as well as
the kinetic energy with a mass m that is the sum of the nucleon
masses that make up the nucleus described by the field χ .

Such Green’s functions have the structure of a time-
dependent, quantum-mechanical transformation function of
a free particle. It will prove convenient to write them in this
form, namely as

G(r − r′,t − t ′) = −i〈r,t |r′,t ′〉(0) θ (t − t ′). (3.9)

Here we have included the superscript to indicate that we
are evaluating the free-particle transformation function with
no Coulomb interactions. Later, in Sec. IV, when we turn
to the Coulomb corrections, this superscript will indicate the
evaluation of the transformation function in the presence of
the Coulomb interaction with (0) → (C). It is useful to use
this relation because it is then natural to pass to center-of-mass
and relative coordinates and write

Gb(rb − r′
b,t − t ′) Ga(ra − r′

a,t − t ′)

= −〈R,t |R′,t ′〉(0)
ba c.m. 〈r,t |r′,t ′〉(0)

ba rel θ (t − t ′). (3.10)
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Here, as usual,

R = mara + mbrb

ma + mb

, r = rb − ra, (3.11)

are the center-of-mass and relative coordinates. The free-
particle dynamics in the transformation function of the relative
motion 〈r,t |r′,0〉(0)

ba rel is described by the Hamiltonian

Hba rel = p2
ba

2mab

− εb − εa, (3.12)

which contains the binding energies displayed in Eq. (3.8) so
as to provide the correct reference energy. We shall find that the
representation (3.10) is extremely convenient when we turn to
compute the Coulomb corrections to the self-energy function.9

To return to the evaluation of the self-energy function �dt , we
note that at the coincident points rd = rt = r̄, R = r̄, and we
encounter∫

(d3r̄) e−ip·r̄〈r̄,t |0,0〉(0)
ba c.m. = exp

{
−i

p2

2Mba

t

}
. (3.13)

In the present case, Mba = md + mt = 2mp + 3mn = m∗.
Hence, the self-energy function involves a Fourier transform
in time with a single energy variable W = E − p2/2m∗, as
must be the case in virtue of the Galilean invariance of the
theory, and we have

�dt (W ) = −ig2
dt

∫ ∞

0
dt eiWt 〈0,t |0,0〉(0)

dt rel. (3.14)

To evaluate the loop function that appears in the self-energy
�nα(w), we note that it entails

〈0|�k
αn(r̄,t)�l

αn(r̄′,t)|0〉
= 〈0|φα(r̄,t) T km

αn σmψn(r̄,t)ψ†
n(r̄′,t)σnT nl

αnφ†
α(r̄′,t)|0〉

= 〈r̄,t |r̄′,t ′〉(0)
ba c.m.σ

mσn
[∇k∇m − 1

3δkm∇2
]

× [∇n∇ l − 1
3δnl∇2

] 〈r,t |0,0〉(0)
ba rel

∣∣
r=0. (3.15)

Here we have made use of the translational invariance of
the free-particle transformation function 〈r,t |r′,0〉(0)

ba rel = 〈r −
r′,t |0,0〉(0)

ba rel to write all the derivatives on the left as shown.
Since the r → 0 limit yields a rotationally invariant function
whose tensor structure can only involve the unit tensor δ

..

,

9With Coulomb interaction present, the dt self-energy illustrated
by the second loop diagram in Fig. 5 does not factor into the
product of two simple d and t propagators. Instead, it involves a
four-point Green’s function with Coulomb interactions between the d

and t fields. However, the self-energy function entails this four-point
Green’s function with common initial space-time coordinates and
common final coordinates which has exactly the decomposition into
center-of-mass and relative coordinates displayed on the right-hand
side of Eq. (3.10) with the difference that the dynamics of the
transformation function for the relative motion involves Coulomb
forces. We shall make use of this in Sec. IV regarding Couloumb
corrections.

we have[∇k∇m − 1
3δkm∇2][∇n∇ l − 1

3δnl∇2]〈r,t |0,0〉(0)
ba rel

∣∣
r=0.

= 1
15

[
δknδml + δklδmn − 2

3δkmδnl
]
(∇2)2〈r,t |0,0〉(0)

ba rel

∣∣
r=0,

(3.16)

as contractions with various δ
..

establishes. Placing this result
in Eq. (3.15), using the Pauli matrix composition law (B9) and
the form (B18) of the spin-3/2 projection matrix, we conclude
that

〈0|�k
αn(r̄,t) �l

αn(0,0)|0〉
= 〈r̄,t |0,0〉(0)

αn c.m.
1
3 P kl

3/2(∇2)2 〈r,t |0,0〉(0)
αn rel

∣∣
r=0. (3.17)

The projection matrix P kl
3/2 that appears here can be omitted.

It either acts upon the 5He∗ propagator that only contains spin
3/2+. Hence, it can be replaced by unity, and just as in the
previous evaluation of the dt self-energy function, we have

�nα(W ) = −ig2
nα

∫ ∞

0
dteiWt (∇2)2〈r,t |0,0〉(0)

αn rel

∣∣
r=0.

(3.18)

To complete the computation, we need to evaluate expres-
sions that are divergent in three spatial dimensions. These
divergences can be removed by “subtractions”—by deleting
the divergent pieces and replacing them by appropriate mass
and wave function renormalizations. In our case, with the
highly divergent nα piece, this subtraction method is a
cumbersome method. Moreover, it is not a proper, well-defined
mathematical procedure. The proper procedure is to, first,
regulate the theory to make it well defined and then perform
whatever renormalizations that are needed. Any regularization
scheme must make the theory unphysical in some sense
because if it were not, one could have a well-defined, finite
theory, and one should use this new theory rather than that
which one started with. One regularization scheme is that of
Pauli and Villars. It produces a regularized theory with sectors
that have negative probabilities until the renormalizations are
made and the regularization removed. Here we shall find
it very convenient to use dimensional regularization where
the three spatial dimensions are continued to an arbitrary ν
dimensional space, and the limit ν → 3 is performed only
after all computations have been performed.

In ν spatial dimensions{
1

(∇2)2

}
〈r,t |0,0〉(0)

ba rel

∣∣∣∣
r=0

= ei(εb+εa ) t

∫
(dνp)

(2π )ν

{
1

(p2)2

}
exp

{
−it

p2

2mba

}

= ei(εb+εa ) t �ν−1

(2π )ν

∫ ∞

0
pν−1dp

{
1
p4

}
exp

{
−it

p2

2mba

}
,

(3.19)

where in the second line we have passed to hyperspherical
coordinates with �ν−1 the area of a unit ν − 1 sphere
embedded in a ν-dimensional space. We change variables,
writing explicitly i = exp{πi/2} to be able to carefully keep
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track of the phase, to get{
1

(∇2)2

}
〈r,t |0,0〉(0)

ba rel

∣∣∣∣
r=0

= ei (εb+εa ) t �ν−1

(2π )ν

(
2mba

t

)ν/2

e−νπi/4 1

2

∫ ∞

0
uν/2 du

u

{
1

− (2mba/t)2 u2

}
e−u

= ei (εb+εa ) t �ν−1

(2π )ν

(
2mba

t

)ν/2

e−νπi/4 1

2

{
�

(
ν
2

)
− (2mba/t)2 �

(
ν
2 + 2

)
}

. (3.20)

We may now complete the evaluation of the one-loop self-energy functions as follows:{
�dt (W )
�nα(W )

}
= −i

∫ ∞

0
dt eiW t

{
1

(1/3) (∇2)2

} {
g2

dt 〈r,t |0,0〉(0)
dt rel

∣∣
r=0

g2
nα 〈r,t |0,0〉(0)

nα rel

∣∣
r=0

}
. (3.21)

The a,b center-of-mass channel momentum is defined by

p2
ba

2mab

= W + εa + εb, (3.22)

and so we encounter integrals of the form

− i

∫ ∞

0
dt eiwt

{
t−ν/2

t−((ν/2)+2)

}
= e−πiν/4

∫ ∞

0
dv e−v

{
w(ν/2)−1 v−ν/2

−w(ν/2)+1 v−((ν/2)+2)

}
= e−πiν/4

{
w(ν/2)−1 �(1 − (ν/2))

−w(ν/2)+1 �(−1 − (ν/2))

}
, (3.23)

in which

w =
⎧⎨
⎩

p2
dt

2mdt

p2
nα

2mnα

⎫⎬
⎭ (3.24)

for the two cases. Hence,{
�dt (W )
�nα(W )

}
= �ν−1

(2π )ν
e−νπi/2 1

2

{
g2

dt p
ν
dt

2mdt

p2
dt

�
(

ν
2

)
�

(
1 − ν

2

)
g2

nα (1/3) pν+4
nα

2mnα

p2
nα

�
(

ν
2 + 2

)
�

(
1 − (

2 + ν
2

))
}

= �ν−1

(2π )ν
e−νπi/2 1

2

{
g2

dt pν
dt

2mdt

p2
dt

π

sin π( ν
2 )

g2
nα (1/3) pν+4

nα
2mnα

p2
nα

π

sin π( ν
2 +2)

}
. (3.25)

We now find that there is no impediment to taking the
limit ν → 3. This is a great advantage of the application of
the dimensional continuation10 method of regularization in
our work—other methods would require the introduction of
counter terms to cancel divergent quantities. We have captured
the ν → 3 limit

�dt (W ) = −g2
dt

4π
2mdt i pdt (3.26)

and

�nα(W ) = −1

3

g2
nα

4π
p4

nα 2mnα i pnα. (3.27)

10The previous exposition is meant to be self-contained. If the reader
needs a more extended discussion, a full, pedagogical description of
the dimensional method is presented, for example, in chapters 3 and
4 of Ref. [1]. We should note that the tensor algebra used before the
extension to ν �= 3 spatial dimensions that commenced in Eq. (3.19)
was restricted to ν = 3. This use of the ν = 3 tensor algebra is justified
because, with the dimensional continuation method, no divergence
appears in the ν → 3 limit.

With these self-energy functions, the unstable particle
Green’s functions reads

G−1
∗ (W ) = −(W + ε∗) + i

g2
dt

4π
2mdtpdt + i

g2
nα

4π

2

3
mnα p5

nα.

(3.28)

B. dt → nα reaction amplitude and cross section

Expanding out the interaction picture time-ordered evo-
lution operator (3.1) in powers of the interaction Lagrange
function (2.9) and resumming the resulting bubble chains
expresses the dt → nα fusion amplitude as

T l
nα dt (pnα; pdt ) = Ql

nα dt (pnα)T̃nα dt (W ), (3.29)

with

T̃nα dt (W ) = gnα G∗(W ) gdt , (3.30)

as was indicated diagrammatically in Fig. 1. The kinematical
structure of the reaction amplitudes has the following ingredi-
ents. The relative momentum pnα is constrained by the energy
conservation equation

p2
nα

2mnα

= W + εn + εα. (3.31)
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The tensor (2.11), together with σ k , is sandwiched between
the nα fields to form the composite field �

†l
αn(r,t) that initiates

the reaction via the expansion of the time-ordered interac-
tion operator (3.1). The differential operations that appear
in �

†l
αn(r,t) become replaced by momenta in constructing

the scattering amplitude, and these momenta combine to
produce pnα—as they must to keep the theory Galilean in-
variant. The construction entails the angular-momentum l = 2
tensor

T mk(p) = pmpk − 1
3 p2δmk (3.32)

contracted with the projection matrix P kl
3/2 of the unstable

5He∗ propagator [leaving the scalar part G∗(W ) displayed in
the scalar amplitude (3.30)] to produce the factor shown in
Eq. (3.29),

Ql
nαdt (pnα) = σmT mk(pnα)P kl

3/2. (3.33)

The total cross section involves the solid angle integration∫
d�

4π
Qk

nαdt (pnα)Ql
nαdt (pnα)

=
∫

d�

4π
P km

3/2T mn(pnα)σnσ rT rs(pnα)P sl
3/2

= 1

15

(
p2

nα

)2
[
δmrδns + δmsδnr − 2

3
δmnδrs

]

× P km
3/2[δnr + iεnrqσ q]P sl

3/2

= 1

3

(
p2

nα

)2
P kl

3/2. (3.34)

The calculation of the last line of Eq. (3.34) from that preceding
it is facilitated by using a matrix notation and noting that
the form �σ · �S enters, of which P3/2 is an eigenvector with
eigenvalue +1.

Thus the dt → nα reaction total cross section in our ap-
proximation that has an unstable, 3/2+ resonant intermediate
5He state is given by

σdt→nα = 1

6

mnα

(2π )2

pnα

vdt

∫
d� tr

× T l
nαdt (pnα; pdt )

†
T l

nαdt (pnα; pdt ), (3.35)

where now tr denotes the trace over the spin-1/2 parts. Using
the result (3.34) with the trace formula trP ll

3/2 = 2(3/2) + 1 =
4 which simply counts the number of spin-3/2 states, we
obtain

σdt→nα = 8

9
4πmnα

p5
nα

vdt

g2
dt

4π

g2
nα

4π
|G∗(W )|2. (3.36)

The energy dependence of the cross section is best revealed if
we use

W = p2
dt

2mdt

− εd − εt

= p2
dt

2mdt

+ Q − εα

= p2
nα

2mnα

− εα, (3.37)

where, we recall, εn ≡ 0 sets the energy scale, and the energy
release in the reaction Q is given by the binding energy
difference, Q = εα − εd − εt . Thus

pnα =
[

2mnα

(
p2

dt

2mdt

+ Q

)]1/2

= (2mnαQ)1/2

[
1 + p2

dt

2mdtQ

]1/2

, (3.38)

where we write the second equality to emphasize that, since
in the energy region of interest p2

dt /2mdt � Q, the momenta
pnα is nearly a constant determined by the energy release Q.
Thus we write the squared unstable particle’s Green’s function
as

|G∗(W )|−2

=
[

−
(

p2
dt

2mdt

− E∗

)
− Re�dt (W ) − Re�nα(W )

]2

+ [Im�dt (W ) + Im�nα(W )]2

=
[

p2
dt

2mdt

− E∗

]2

+
[
g2

dt

2π
mdtpdt + g2

nα

6π
mnαp5

nα

]2

.

(3.39)

in which we write the unrenormalized energy ε∗ in terms of
the initial dt energy as

E∗ = εd + εt − ε∗. (3.40)

The first equality in Eq. (3.39) is in a form that we shall shortly
make use of when we take account of Coulomb corrections.

IV. COULOMB CORRECTIONS

The dt → nα reaction was described by the diagram
in Fig. 1, including Coulomb corrections. These Coulomb
corrections make two changes to the work that was just
performed. The dt entrance channel that connects these
particles to the unstable, interacting 5He∗ resonant Green’s
function involves a point interaction. Hence, one effect of the
Coulomb force between the dt in the fusion process is to
multiply the cross section by the square of the Coulomb wave
function ψ

(C)
pdt

(0) at the origin. Thus the initial shaded box
at the right in Fig. 1 must now contain ψ

(C)
pdt

(0) multiplying
the coupling constant gdt . The other effect of the Coulomb
interactions is to modify the dt loop graphs in the 5He∗

resonant Green’s function by including arbitrary numbers of
instantaneous Coulomb interactions as depicted in Fig. 3.
These heuristic remarks are substantiated in Appendix C. Here
we shall simply state and discuss the results of these Coulomb
corrections.

The cross section involves the square of the amplitude and
thus the square of the Coulomb wave function at the origin,

∣∣ψ (C)
pdt

(0)
∣∣2 = 2πη exp{−2πη}

1 − exp{−2πη} . (4.1)

This is essentially the familiar Gamow barrier penetration
factor. For our deuteron-triton system, each with a single
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electron charge e, in ordinary cgs units,

η = e2

vdt

= e2mdt

pdt

. (4.2)

It is sometimes convenient to write

η = 1

b0pdt

, (4.3)

with, in our units in which � = 1, b0 is the Bohr radius for the
dt system,

b0 = 1

e2mdt

= 24.04 fm = 0.1218
c

MeV
, (4.4)

where 1 fm = 10−13 cm, and we have made use of �c =
197.33 MeV fm in writing the last equality. In our theory,
the Coulomb corrections to the intermediate-state nuclear
interactions appear only in the unstable field propagator. Thus,
including all the Coulomb effects, the previous fusion cross
section (3.36) becomes

σdt→nα = 8

9
4πmnα

p5
nα

vdt

g2
dt

4π

g2
nα

4π

∣∣ψ (C)
pdt

(0)
∣∣2 |G(C)

∗ (W )|2. (4.5)

Here we use an additional superscript on the unstable
particle’s interacting Green’s function G

(C)
∗ (W ) to note that

it now includes the effect of the Coulomb interaction. The
only effect of this interaction is on the previous dt loop
function (3.14) that contains charged particles, with

�dt (W ) → �
(C)
dt (W )

= −ig2
dt

∫ ∞

0
dteiWt 〈0,t |0,0〉(C)

dt rel, (4.6)

corresponding to the infinite series of diagrams indicated in
Fig. 3 containing the dt intermediate state. Introducing a
complete set of incoming wave intermediate eigenstates gives

〈0,t |0,0〉(C)
dt rel =

∫
(d3p′)
(2π )3

〈0,t |p′in〉(C)
dt rel〈p′in|0,0〉(C)

dt rel

= ei(εd+εt )t
∫

(d3p′)
(2π )3

exp

{
−i

p′2

2mdt

t

}∣∣ψ (C)
p′ (0)

∣∣2
,

(4.7)

in which mdt is the reduced mass of the dt system and ψ
(C)
p′ (0)

is the Coulomb wave function (4.1). Using the dt relative
momentum pdt so the energy in the center of mass is given by

W + εd + εt = p2
dt

2mdt

, (4.8)

performing the time integration in Eq. (4.6) with the decompo-
sition (4.7), and performing the angular part of the momentum
integral produces

�(C)
dt (W ) = g2

dt

mdt

π2

∫ ∞

0
dp′∣∣ψ (C)

p′ (0)
∣∣2 p′2

p2
dt − p′2 + i0+ .

(4.9)

At large momenta, the Coulomb wave function approaches
the free-particle limit, p′ → ∞ : ψ

(C)
p′ (0) → 1. Hence, the

integral here does not converge at large momenta. We have
noted this divergence by temporarily placing an overline on the
function. Previously, we dealt with this convergence problem
by employing the dimensional continuation method, which
simply removes this divergence in three dimensions. Here,
however, we have an integrand involving the square of the
Coulomb wave function and the application of the dimensional
continuation method is more complex. There is no real problem
here because the divergence produces an additional constant
that is simply removed by an additive renormalization of the
energy ε∗, a renormalization which we shall assume has been
implicitly performed. Thus we simply subtract the asymptotic
limit and replace

p′2

p2
dt − p′2 + i0+ → p′2

p2
dt − p′2 + i0+ + 1 = p2

dt

p2
dt − p′2 + i0+ ,

(4.10)

remove the overline from the self-energy function, and write

�
(C)
dt (W ) = g2

dt

mdtp
2
dt

π2

∫ ∞

0
dp′

∣∣ψ (C)
p′ (0)

∣∣2

p2
dt − p′2 + i0+ . (4.11)

This shows explicitly that the Coulomb-corrected self-
energy function �

(C)
dt (W ) is the boundary value of a function

that is analytic in the upper half complex p2
dt /2mdt plane.

This is because it is the Fourier transform of a retarded,
causal response function. We conclude that the real part of
�

(C)
dt (W ) must accompany its imaginary part to keep the proper,

complete analytic function. For physical, real energies we may
use

Im
1

p2
dt − p′2 + i0+ = −πδ

(
p2

dt − p′2) = − π

2pdt

δ(pdt − p′)

(4.12)

to compute the imaginary part,

Im�
(C)
dt (W ) = −g2

dt

mdtpdt

2π

∣∣ψ (C)
pdt

(0)
∣∣2

. (4.13)

To have an explicit representation of the real part, we use∣∣ψ (C)
p′ (0)

∣∣2 = 2πη′

exp{2πη′} − 1
(4.14)

and change the integration variable to t = η′ = 1/(p′b0),
obtaining

�
(C)
dt (W ) = g2

dt

2mdt

πb0

∫ ∞

0
dtt

1

t2 − η2 + i0+
1

exp{2πt} − 1
,

(4.15)

in which η = 1/(pdtb0). This new form of the self-energy
function is simply related to the ψ function—the logarith-
mic derivative of the � function—because of the integral
representation11

ψ(z) = ln z − 1

2z
− 2

∫ ∞

0
dtt

1

t2 + z2

1

exp{2πt} − 1
, (4.16)

11See, for example, Sec. 1.7.2, Eq. (27), of Ref. [15] or Sec. 8.361,
Eq. (3), of Ref. [16].
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where it is assumed that Rez > 0. Hence,12

�
(C)
dt (W ) = −g2

dt

mdt

πb0

[
ψ(iη) − ln η − π

2
i − i

2η

]
, (4.17)

which gives the real part

Re�(C)
dt (W ) = −g2

dt

4π

(W ), (4.18)

where


(W ) = 4mdt

b0
[Reψ(iη) − ln η] . (4.19)

We pause to record some formulas that can prove to be
useful checks on numerical computations. It follows from the
standard series development13 of the ψ function that

Reψ(iη) = −γ +
∞∑

k=1

1

k

η2

k2 + η2
, (4.20)

which gives the small η behavior

Reψ(iη) = −γ + ζ (3)η2 + · · ·
� −0.5772157 + 1.20206η2. (4.21)

Moreover,

Reψ(iη) = −γ + η2

1 + η2
+ 1

2

η2

4 + η2
+ R(η), (4.22)

where we have the bound

|R(η)| � B(η) = η2
∞∑

k=3

1

k3
= η2

[
ζ (3) − 1 − 1

8

]

= η2 [0.07706] . (4.23)

The large η limit14 gives

Reψ(iη) − ln η = 1

12η2
− 1

120

1

η4
+ · · · . (4.24)

The inverse unstable field Green’s function now reads

G(C)−1
∗ (W ) = −(W + ε∗) − �

(C)
dt (W ) − �nα(W ), (4.25)

with �
(C)
dt (W ) the function that we have just computed, while

�nα(W ) = −i
2

3

g2
nα

4π
mnαp5

nα (4.26)

is as before.
The absolute square of the unstable field Green’s function

that is needed for the fusion cross section (4.5) is produced by

12After the completion of this derivation of the dt self-energy
function (4.17) with Coulomb corrections, we became aware of a
similar result for the proton-proton self-energy function given by
Kong and Ravndal [17]. Although our two derivations share some
similarities, they differ in detail.

13See, for example, Sec. 1.7, Eq. (3), of Ref. [15].
14See, for example, Sec. 1.18, Eq. (7), of Ref. [15].

the trivial notational change �dt → �
(C)
dt in the formula (3.39),

producing

|G(C)
∗ (W )|−2 =

[
p2

dt

2mdt

− E∗ − g2
dt

4π

(W )

]2

+
[
g2

dt

2π
mdtpdt

∣∣ψ (C)
pdt

(0)
∣∣2 + g2

nα

6π
mnαp5

nα

]2

,

(4.27)

in which we again write the unrenormalized energy of the
unstable particle in terms of the initial dt energy as

E∗ = εd + εt − ε∗. (4.28)

V. CONCLUSION AND DISCUSSION

We have demonstrated that an excellent description of the
dt → nα reaction in the resonance region is obtained with an
effective quantum field theory that entails only the interaction
of the initial and final particles dt and nα with an unstable 5He∗
3/2+ unstable field. The fit, with a χ2 per degree-of-freedom
less than unity, is achieved with just three parameters: the
energy of the 5He∗ resonance E∗ and the two coupling param-
eters gdt and gnα . We have calculated the Coulomb corrections
exactly in Sec. IV and taken into account their effect on both
the incoming dt particles and on the strong interactions which
transmute these particles into the final nα particles.

It is worthwhile noting that in a previous draft of our work,
we found that the dt → nα resonance could not be fit by using
an intermediate 3/2+ unstable field which had the right sign
free-particle Lagrangian. The fit was so poor that a χ2 value to
describe it is not meaningful. Roughly, if the parameters were
adjusted to fit the maximum of the cross-section resonance,
then the data around half maximum were about 30% above the
fit. This result led us to add an additional contact interaction
that coupled the initial and final particles in a 3/2+ state. We
chose this form of the contact interaction so it would enter into
the self-energy function of the 3/2+ field’s Green’s function
and would be a candidate to alter the resonance shape produced
by the theory. As described in Eq. (2.10), the final nα particles
are produced in a 3/2+ state by the field combination �αn and,
hence, the contact interaction was chosen to have the form

λ[�†
αn · φdψt + ψ

†
t φ

†
d · �αn]. (5.1)

As should be expected, the introduction of the additional
free parameter λ improved the fit. However, the improvement
was not significant. With the parameters again chosen to
have the resonance maximum fitted, the data around half
maximum were now about 20% above the fit. Therefore,
we reverted to the simple, previous single interaction with
an intermediate unstable field and changed the sign of its
free-particle propagation to achieve the excellent description of
the dt fusion reaction that is presented in this paper. The quality
of this fit, about 1% deviation for most of the data points, was
a dramatic improvement over the other work just discussed.

The relationship between the effective field theory applied
here and the R-matrix approach is presented in the following
paper [6]. It establishes an identity between the effective field
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theory approach and that of the R matrix, in the limit that the R-
matrix channel radii go to zero. In this limit, the R-matrix pa-
rameterization provides an excellent fit of the data when gener-
alized to allow for “unphysical” negative values of the reduced
widths. These unphysical couplings are directly related to the
wrong-sign free-particle Lagrange function used in the present
work. This is a promising indication that carrying out a multi-
channel, many-resonance effective field theory description of
light nuclear reaction data is possible by suitably generalizing
current R-matrix methods and codes that are already in use.
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APPENDIX A: GALILEAN INVARIANCE

The consequences of translational and rotational invariance
are obvious. The consequences of Galilean invariance—the
invariance of the theory under boosts to a moving coordinate
frame—are less obvious, although perhaps they are clear once
they have been derived. Here we sketch out the derivation of
some of these consequences.15

We denote the generator of boosts to moving frames by G.
It has the construction

G = Pt − MR(t), (A1)

where, for a general set {χa,χ
†
a } of nonrelativistic fields,

P =
∑

a

∫
(d3r)χ †

a (r,t)
1

i
∇χa(r,t) (A2)

is the total momentum operator of the system, and

MR(t) =
∑

a

∫
(d3r)χ †

a (r,t)marχa(r,t) (A3)

defines a the center-of-mass operator R, with ma the kinemat-
ical mass of the particle, bound state, or resonance created and
annihilated by the a-th field and M = ∑

ama is the total mass
of all these (perhaps quasi-) particles. The kinematical mass
ma is the mass that appears in the kinetic energy part of the
Hamiltonian density χ

†
a (−∇2/2ma)χa for the a-th field.

15A detailed exposition of the Galilean invariance of a nonrelativistic
field theory is presented, for example, in the discussion of Problem 1
on Page 118 of Ref. [1]. The explicit solution of this problem has been
done in the MIT 8.323 Second homework solutions by J. Goldstone
(February, 1995), but this may not be readily accessible.

The continued iteration of the infinitesimal Galilean boosts
yields the unitary transformation

U (v) = exp{iG · v} = exp{i [Pt − MR(t)] · v} (A4)

to a frame moving with the finite velocity v. Standard methods
now show that the response of a field χa to a finite Galilean
boost is given by

χa(r,t) → U−1(v)χa(r,t)U (v)

= exp
{−ima

[
r · v + 1

2 v2t
]}

χa(r + vt,t). (A5)

We shall make use of three implications of this transformation.
Nucleons can be put into bound or resonant states. Hence,

the effective field theory can contain interactions of the
schematic form

Hint ∼
∫

(d3r)χ †
bn

· · · χ †
b1

χam
· · · χa1 . (A6)

In view of the response of the individual fields given by
Eq. (A5), Galilean invariance requires that

mbn
+ · · · + mb1 = mam

+ · · · + ma1 . (A7)

Thus, for example, the inertial mass of the deuteron is the sum
of the neutron and proton masses, md = mn + mp, the triton
mass is mt = 2mn + mp, and the α mass is mα = 2mn + 2mp.

The second consequence of Galilean invariance that we
mention is that a generic free-particle Lagrangian must be of
the form

LA =
∫

(d3r)χ †
A (r,t)

×
[
i

∂

∂t
− 1

2mA

(
1

i
∇

)2

− εA

]
χA(r,t). (A8)

Galilean invariance does not require the overall sign of the
Lagrangian that we have written here. As discussed in the text,
placing an overall minus sign factor in front of the free-particle
Lagrange function may be useful for an effective theory
that describes only low-energy processes. However, Galilean
invariance requires does that the relative signs of the time and
spatial derivatives must appear as they are shown here.16

The final application that we need involves field derivatives.
To obtain Galilean invariant interactions, we need field
combinations with derivatives that undergo a simple phase
change under Galilean transformations. This does not happen
with a single derivative of a single field. However, with a pair
of fields χa , χb, we can define a derivative operation,

Pk
ba = mab

ma

1

i

→
∇

k

−mab

mb

1

i

←
∇

k

, (A9)

16In this regard, we note that the free-particle Lagrangians for
the fields ti and sa presented in Eq. (2.3) of Ref. [5] violate
Galilean invariance. This emphasizes the need for paying attention to
fundamental principles when constructing effective field theories as
we are doing here.
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in which the → calls for the derivative to act to the right and
the ← calls for the derivative to act to the left. Here

mab = mamb

Mab

(A10)

is the reduced mass of the a,b pair with

Mab = ma + mb (A11)

the total mass. It is now easy to see that

U−1(v)χb(r,t)Pk
baχa(r,t)U (v)

= e−i(mb+ma )[r·v+ 1
2 v2t]χb(r + vt,t)Pk

baχa(r + vt,t),

(A12)

which is the desired transformation law.

APPENDIX B: SPIN STRUCTURE

Here we shall describe some algebraic properties of the spin
matrices that are needed in the text. We shall keep to our � = 1
convention to simplify the notation. The action on any field
χ of an infinitesimal rotation generated by the field operator
angular momentum J is given by

{L + S} χ (r,t) = [χ (r,t),J] , (B1)

in which

L = r × 1

i
∇ (B2)

are the orbital angular-momentum differential operators and
S are the spin matrices. The structure of the rotation group is
conveyed by

[J k,J l] = iεklmJm, (B3)

where εklm is the completely antisymmetrical numerical tensor
associated with vector cross product, with ε123 = 1. This
numerical tensor satisfies the “double cross” relation

εklmεkpq = δlpδmq − δlqδmp. (B4)

Since Lk acts on the coordinates of the field while Sk acts on
the (notationally suppressed) components of the fields, Lk and
Sk commute among each other, while

[Lk,Ll] = iεklmLm (B5)

and

[Sk,Sl] = iεklmSm. (B6)

We turn now to examine the spin matrices S for spin s with s =
1/2,1,3/2. These matrices must obey the commutator (B6) and
have the square

S2 = s(s + 1). (B7)

1. Spin 1/2

For spin 1/2,

S = 1
2σ , (B8)

in which σ k are the familiar Hermitian Pauli matrices that obey

σ kσ l = δkl + iεklmσm. (B9)

The antisymmetrical part of this constraint implies that the
spin-1/2 matrices Sk satisfy the angular-momentum commu-
tation relation (B6) while setting k = l and summing over
these identified indices from 1 to 3 shows that

S2 = 3
4 = 1

2

(
1
2 + 1

)
, (B10)

which identifies the spin value 1/2.

2. Spin 1

We write the spin matrices for spin 1 as

S = S. (B11)

The latter are given by

(Sk)lm = iεlkm, (B12)

since one can easily verify from the relation (B4) that the
angular-momentum commutation relation (B6) holds and that

S2 = 1(1 + 1) = 2. (B13)

3. Spin 3/2

The combination of spin 1/2 and spin 1 is described by the
spin matrix

S = 1
2σ + S. (B14)

This matrix obviously obeys the angular-momentum commu-
tator (B6). But we need a constraint to keep to the spin-3/2
subspace. To obtain this constraint, we note that the Pauli
result (B9) and the properties of the spin-1 matrix noted above
imply the characteristic equation

(σ · S)2 + (σ · S) − 2 = 0. (B15)

The eigenvalues of the matrix, which we denote by a prime,
must obey this characteristic matrix equation, and, hence, they
are given by

(σ · S)′ =
{−2,
+1.

(B16)

Therefore we have

S2 = 3
4 + 2 + σ · S

=
{

1
2

(
1
2 + 1

)
, for (σ · S)′ = −2,

3
2

(
3
2 + 1

)
, for (σ · S)′ = 1;

(B17)

the eigenvalues −2 and 1 of the matrix σ · S correspond to
spins s = 1/2 and s = 3/2.

We need the matrix P3/2 that projects into the s = 3/2
subspace. A little computation utilizing the characteristic
equation (B15) shows that

P3/2 = 1
3 {σ · S + 2} (B18)

obeys

(σ · S) P3/2 = P3/2 = P3/2 (σ · S) (B19)

and

P 2
3/2 = P3/2, (B20)
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so it is indeed the correct projection matrix. Writing out the
components gives

P lm
3/2 = 1

3 {σ kiεlkm + 2δlm}. (B21)

In view of the result (B17), a spin-3/2 field ψ3/2 must obey
the constraint

σ · Sψ3/2 = ψ3/2. (B22)

and if this constraint is obeyed, the field contains only spin
3/2. To obtain an equivalent constraint that is algebraically
simpler, we note that

σ l (σ · S)lm = −εlknεlkmσ n = −2σm. (B23)

Hence, in view of Eq. (B19),

σ l (σ · S)lm P mn
3/2 = −2σmP nm

3/2 = σmP nm
3/2 ; (B24)

whence

σ lP lm
3/2 = 0, (B25)

and, similarly,

P lm
3/2σ

m = 0. (B26)

Therefore,

σ · ψ3/2(r,t) = 0 = ψ
†
3/2(r,t) · σ , (B27)

constrain ψ3/2 and ψ
†
3/2 to contain only spin 3/2.

In the text, we need the spin-3/2 combination of n, α fields
that couple to the 3/2+ 5He∗ resonant state. The composition
of the 3/2+ state from the 1/2+ neutron and 0+ alpha requires
that the parity of the relative orbital state of the n, α pair be
even, which is to say that the orbital angular momentum l
be an even integer, with l = 2, the only possibility in virtue
of the rules of angular-momentum addition. The differential
operation

T kl
αn = Pk

αnP l
αn − 1

3δklPm
αnPm

αn (B28)

transforms as l = 2. Here, Pk
αn is defined by Eq. (A9) and a

proof akin to that with Eq. (A12) shows that

�l
αn(r,t) = φα(r,t)T lm

αn σmψn(r,t) (B29)

has the correct Galilean transformation law. Using the Pauli
spin formula (B9) and the symmetry T lk

αn = +T kl
αn we compute

σ k�k
αn(r,t) = φα(r,t)δklT kl

αnψn(r,t) = 0. (B30)

Hence, in view of Eq. (B27) and the discussion following it,
we conclude that �k(r,t) does indeed contain only spin 3/2.

APPENDIX C: COULOMB CORRECTIONS

To place our work in context, we first briefly review the
case in which there are only strong interactions with no
Coulomb corrections. The four-point nαdt Green’s function
is the vacuum expectation value of a time-ordered product,

Gnαdt (x
′
n,x

′
α; xd,xt )

= i2〈0|(ψn(x ′
n)φα(x ′

α)φ†
d (xd )ψ†

t (xt ))+|0〉, (C1)

in which the space time coordinate x is a short-hand notation
for r,t . It has the decomposition

Gnαdt (x
′
n,x

′
α; xd,xt )

=
∫

(d4x̄n)(d4x̄α)(d4x̄d )(d4x̄t )Gn(x ′
n − x̄n)Gα(x ′

α − x̄α)

× �nαdt (x̄n,x̄α,x̄d ,x̄t )Gd (x̄d − xd )Gt (x̄t − xt ). (C2)

Here �nαdt (x̄n,x̄α,x̄d ,x̄t ) contains only connected graphs.
In our nonrelativistic theory, the single-particle propagators
contain no self-energy corrections and thus have the generic
form of the time-retarded functions,

G(x − x ′) = −iθ (t − t ′)
∫

(d3p)

(2π )3
eip·(r−r′)−iE(p)(t−t ′)

= −iθ (t − t ′)〈r,t |p′,t ′〉(0), (C3)

where in the second line we denote the free-particle quantum-
mechanical transformation function by the superscript (0). The
reaction amplitude involves the asymptotic early and late time
limits td = tt → −∞ and tn = tα → +∞ and the identifica-
tion of the propagator momenta p with the initial momenta,
pd and pt , and final momenta, pn and pα , by the appropriate
Fourier transformation. Therefore, aside from conventional
factors and overall δ functions of energy and momentum con-
servation, the reaction amplitude Tnαdt (pn,pα; pd ,pt ) involves
a Fourier transform17 of �nαdt (x̄n,x̄α,x̄d ,x̄t ).

We now consider effect that Coulomb corrections have
on the charged initial dt state. With Coulomb interactions
present, there are Coulomb exchanges in the propagation of
the initial dt particles before strong interactions operate. Thus
the product of the two initial free-particle propagators Gd (x̄d −
xd )Gt (x̄t − xt ) in Eq. (C2) must be replaced by the four-point
dt Green’s function that includes the Coulomb interaction.
The general reaction amplitude involves the identification
of the two initial times, td = tt . Our theory, in which the
strong interactions are represented by the unstable, s-channel
intermediate field ψ

†
∗ that has a local coupling to the d and t

fields, forces the identification x̄d = x̄t or r̄d = r̄t and t̄d = t̄t ,
with t̄d > td . Hence, the required four-point Coulomb Green’s
appears in the restricted form,

−G
(C)
dt (rd ,t̄d ,rt = rd ,t̄t = t̄d ; rd ,td ,rt ,tt = tt )

= 〈0|ψd (r̄d ,t̄)ψt (rd ,td )ψ†
t (rt ,td )ψ†

d (rd ,td )|0〉(C)

= 〈r̄d = r̄t ,t̄d |rd ,rt ,td〉(C). (C4)

The second line here follows from the usual nonrelativistic
theory where a field operator ψ† acting to the right adds a
single particle to the state, and an operator ψ acting to the left
adds a particle.

We have noted that the transition amplitude involves taking
the spatial Fourier transform. Hence, passing to the transition

17Here we are sketching the nonrelativistic analog of the relativistic
reduction formula that is discussed, for example, in Sec. 2 of chapter
6 of Brown [1].
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amplitude involves 〈r̄d = r̄t ,t̄d |pd ,pt ,td〉(C). On introducing
relative and center-of-mass coordinates, this becomes

〈r̄d = r̄t ,t̄d |pd ,pt ,td〉(C)

= 〈rrel = 0|pdt 〉(C)〈rd |Pdt 〉(0)e−iE(t̄d−td ). (C5)

Here pdt is the relative momentum of the dt (which is the same
notation as used in the text), Pdt is the total momentum of this
pair of particles, and E is the total energy in the initial state.
Now

〈rrel = 0|pdt 〉(C) = ψ (C)
pdt

(0) (C6)

is precisely the Coulomb wave function at the origin introduced
in the text. Only this factor alters the Coulomb transformation

function (C5) from that of a free particle,

〈r̄d = r̄t ,t̄d |pd ,pt ,td〉(C)

= ψ (C)
pdt

(0)〈r̄d = r̄t ,t̄d |pd ,pt ,td〉(0). (C7)

Hence, the reduction formula for the transition amplitude with
Coulomb as well as strong interactions is the same as that for
the amplitude with only strong interactions and no Coulomb
corrections except for the overall multiplication of the ψ

(C)
pdt

(0)
factor corresponding to initial Coulomb interactions previous
to the first strong interaction. Of course, there are additional
internal Coulomb corrections to the strong interactions. For our
theory, these appear as multiple instantaneous Coulomb ex-
changes between the d and the t in the dt loop that contributes
to the unstable 5He∗ Green’s function as shown in Fig. 3.
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