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Polarized yx.-charmonium production in antiproton-nucleus interactions
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Starting from the Feynman diagram representation of multiple scattering we consider the polarized y.(1P)-
charmonia production in antiproton-nucleus reactions close to the threshold (pi., = 5-7 GeV/c). The rescattering
and absorption of the incoming antiproton and outgoing charmonium on nucleons are taken into account, including
the possibility of the elastic and nondiagonal (flavor-conserving) scattering x.;N — x.,»N, J,J' = 0,1,2. The
elementary amplitudes of the latter processes are evaluated by expanding the physical x, states in the Clebsch-
Gordan series of the c¢ states with fixed values of internal orbital angular momentum (L) and spin projections on
the x. momentum axis. The total interaction cross sections of these c¢ states with nucleons have been calculated
in previous works using the QCD factorization theorem and the nonrelativistic quarkonium model, and turned
out to be strongly L, dependent due to the transverse size difference. This directly leads to finite values of
the x.-nucleon nondiagonal scattering amplitudes. We show that the x, N — x. N transitions significantly
influence the x., production with helicity zero at small transverse momenta. This can serve as a signal in future
experimental tests of the quark structure of x, states by the PANDA Collaboration at the Facility for Antiproton

and Ion Research (FAIR).
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I. INTRODUCTION

It is well established that, in the perturbative QCD (pQCD)
regime, r, — 0, the total cross section of a quarkonium state
interaction with a proton scales as the square of the transverse
separation r; between quark and antiquark, o;,(r,) o r2. This
indicates that extracting the total quarkonium-nucleon cross
section gives access to the transverse size of the quarkonium,
although at r, > 0.2-0.5 fm the deviations from a simple
proportionality become important (the energy dependence of
the dipole-nucleon cross section also modifies this relation).
If the relative coordinate wave function of the quarkonium
is nonisotropic (P,D, ... states), it is, thus, natural to
expect that the cross section will depend on the quarkonium
polarization.

This was first predicted in Ref. [1], where the cross sections
of the charmonium- and bottomonium-nucleon interaction
have been calculated on the basis of the QCD factorization
theorem and the nonrelativistic quarkonium model. Indeed,
for the 1P x. and yx;, states this resulted in a quarkonium
polarization-dependent total interaction cross section with a
nucleon. Qualitatively similar results were obtained later in
Ref. [2], however, with somewhat different absolute values of
the charmonium-nucleon cross sections.

Analyzing charmonium production in relativistic heavy-
ion collisions, the authors of Ref. [1] predicted that the
survival probabilities of x states with different polarization
will, therefore, be different. This color filtering effect has
been included afterwards in the Ultra-relativistic Quantum
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Molecular Dynamics model simulations of heavy-ion col-
lisions [3] to successfully describe J/y production at Su-
per Proton Synchrotron energies. Unfortunately, heavy-ion
collisions involve too complex processes and it is difficult
to use them to access the true charmonium-nucleon cross
sections [4].

Antiproton-nucleus collisions give the unique opportunity
to study nuclear interactions of the slowly moving charmonium
states exclusively formed in pp — W reactions inside the
nuclear medium [5,6]. Here, ¥ stands for any charmonium
state (J/¥,¥', %, ...) decaying to pp. In this paper we
show that, owing to the polarization-dependent x.-nucleon
cross sections, the produced x states in near-threshold
p-nucleus collisions should reveal a significant polariza-
tion signal. Complementary information can be obtained in
yA — J/¥A* reactions at E, ~ 10 GeV which will be
studied at the upgraded Thomas Jefferson National Accelerator
Facility.

We calculate the Feynman multiple scattering diagrams
in the generalized eikonal approximation (GEA) [7,8]. The
direct formation mechanism pp — x., as well the corrections
due to the rescattering of incoming antiproton and outgoing
charmonium states on nucleons, including the possibility of
nondiagonal transitions, are taken into account. The nondiag-
onal transitions yx.;N — x.pN (J # J') are easily possible
due to the small (~140 MeV) mass splitting between the
various . states. We show that the nondiagonal transitions
strongly enhance the polarization signal with respect to the
color filtering mechanism only.

In Sec. II we describe our model. Section III contains the
results of the numerical calculations for the transverse momen-
tum differential cross sections of x. production with different
total angular momenta and helicities. At the end of Sec. III we
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FIG. 1. (a) The diagram for the production of the charmonium
state x; with four-momentum k in the impulse approximation.
(b) The diagram taking into account elastic rescattering of the
incoming antiproton on a nucleon. (c) The diagram with rescattering
XsN» = x;N; of the initially produced x, state on a nucleon.
(d) The diagram with the initial production of another state x,
followed by the nondiagonal transition x5, N2 — x;N,. p};, k1,and p)
are the four-momenta of the intermediate antiproton and charmonium
states and of the scattered nucleon N, respectively.

propose concrete signals for the future PANDA experiment at
FAIR. Section IV summarizes the main results of this work.
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The Appendix contains the derivation of the expressions for
the multiple scattering amplitudes.

II. MODEL

In the following for brevity we denote as x,; the x.;
charmonium with the total angular momentum J (J = 0,1,2).
When explicitly needed, we will also use the notation y, for
the x., states with the fixed helicity v (v = —J, ... ,J).

Let us first consider only one- and two-step reactions.
In this approximation, all possible diagrams contributing
to the exclusive process pA — x;(A — 1)* are shown in
Fig. 1. We neglect the contribution of the processes where
p first excites to N* and next the reaction N* + p — x;
takes place. This should be a reasonable assumption since
at the beam momentum of 5.7 GeV/c the diffractive cross
section o(pp — N*p+c.c)=0.134+0.02 mb [9] is two
orders of magnitude smaller than the elastic pp cross section
(~15 mb) at the same beam momentum. (Another reason is
that the Dalitz plots for the x. — ppm® decay reported by
the CLEO Collaboration [10] do not show any structures
at M; ~2 GeV? or at MZJTO ~ 2 GeV?2. Hence the .

70 —
coupling to the N*N (4c.c.) states is not expected to be
significant.) The amplitudes for the processes (a), (b), (c),
and (d) are, respectively,

Mppk —Pp) " ik=pp)x
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where ¢, = p> — pj is the four-momentum transfer from the
nucleon-scatterer. Here E; and E, are the single-particle
energies of the involved nucleon states N; (proton) and
N,, neglecting the energy difference between the scattered
nucleon N} and the initial nucleon No. M;.5,(p1) [M,.5,(P1)]
is the invariant amplitude of the x, (x,) production in
the antiproton-nucleon annihilation. M;y(q2), M;jn(q2), and
M N5, n(q2) are, respectively, the invariant amplitudes of the
antiproton and y, elastic scattering and of the nondiagonal
transition x,; — x; on a nucleon. The inverse propagators

(

of the intermediate antiproton and charmonium states
are

—Dy(py) = (P —m® +ie, (5)
—D,(ky) = ki —m3 + ie, (6)

[and similar for Dy, (k;)] where p% =ps+q and k| =
pp + p1; m and m; are the nucleon and charmonium masses,
respectively. The normalization of the x,; N elastic scattering
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amplitude is chosen such that the optical theorem is
Im M5 (0) = 2 praymay, (N
and similar for the other elementary amplitudes. The differen-

tial cross section of the inclusive charmonium x; production
on the nucleus A is

218(E; + E) — w)
dopasy, -1y = pzpl N Z Z MY (1)
4 Ny Ya

+ ) M2 1)+ M (1,2)

N,

2 3

+ M”77 (1,2)] (8)

Q)20

where the summations over all involved nucleon states (N,
N,) and over all possible states of the final nucleus (¥4_;) are
taken. The many-body wave functions are normalized as

fd% A s XD =1 (9)

We have already implicitly applied the independent particle
model for the nucleons in the target nucleus by neglecting all
position and momentum correlations between them (including
those due to antysymmetrization), i.e., we assumed that

A
YA X, .o xa) = [ [ dixi) (10)

i=l1

with ¢;(x;) being single-nucleon states normalized as
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This allowed us to separate out the single particle energies
E| and E; in Egs. (1)—(4). This is also the reason why the
summation over the first nucleon (N) is taken in Eq. (8) for
the probabilities rather than for the amplitudes.

The inverse propagators (5) and (6) can be simplified if one
treats nucleons nonrelativistically, which gives

—Dy(ps + q2) = 2prs( — g5 + i€), (12)

—Dy(p; + p1) = 2pin (A — p +ie), (13)
where

A0 _ m? + E? + 2E;E; —m? (14)
! 2P1ab ’

and the z axis is directed along the p beam momentum. For
the calculations of the production amplitudes on a nucleus we
apply the GEA approach [7,8]. This approach is based on the
coordinate representation of the propagator

1 ; :
= / dZ"OE)e M (15)
Ay — pi+ie
(and similar for the antiproton propagator) and on the as-
sumption that the elementary amplitudes depend on the trans-
verse momentum transfer only, i.e. M;.;,(P1/), My,.5p(P11)
Mpn(t2), Myn(t2) and M. g n(t2). Here t; = qr = k; — pys
is the transverse momentum transfer in the elastic scattering

fd3xi|¢i(xi)|2 -1 (11 pN — pN', x;N — N’ or.in the nondiagonal transition
x5 N — xyN’. Then the amplitudes (2),(3) and (4) take the
following form:
i
M’ (2,1) = J3E 2B a0 /d3x1"'d3xAW271(Xz,X3, cooX)PaXXo, .., X4)
12E22 pray
X 01 = e CIN [ e O~ )M (), (16)
i
WA= [ dapi e xpa s xa)
1 2 lab
x O(zy — Zl)g*i(k*l)p)xl+i(A(}+pu.rk:)(szz1) / dzl‘zeiitZ(brb')MJN(tz)Mj;,;p(kt —t), (17)
M 1,2) = ! Bxi - dPxavi_ (X2,X XA)Ya(X1,X X4)
s «/2_E12E22plab(27'[)2 1 AV A_1\A2,X3, ... ,X4 AR, A2, - .. XA
X Oy — zp)e KPS, +pa k@) / P PN ()M, (ki — ). (18)

The amplitudes squared and summed over all possible states of the final nucleus (A — 1) can be evaluated by using the

completeness relation:

D vaniGaKs, L KYE (XX, Xa) = 8P (R — x0)8P (K5 — x3) - 8P (Ra — X4). (19)

Va1
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For the impulse approximation (IA) term we have

S Mgk 3. 13 3o ke i(k—p )1 —x1)
YoM )P = = | BRdx - dP Xy (RiXa, L XOVAKLX, L Xa)e K

2E;
Ya-1
_ |MJ:ﬁp(kr)|2/ 3 o
= p | XXk = pp), 0)
where
R EE T T

is the Wigner function (i.e., the phase space occupation number) of the struck nucleon. To obtain the last form of Eq. (20), we
directly applied the independent particle model relation (10) and introduced the new variables X = (X; 4+ x;)/2 and x = X; — X;.
The squares of the amplitudes of Figs. 1(b)-1(d) are calculated as

1

E |MJ(2,1)|2 = (27‘[)42E (4mp )2 /d3i1d3x1 e d3XAI//:;(i1,X2, o XAYA (XX, ,XA)eikr(b]_bl)"!‘i(kz_p]ab)(Z]_Z])
1 lab
Ya-1

x O(Z) — 22)0(z1 — 22) / P HdPe PO A T ME (©) My — )My ()

1 z
= dzt My, (K, —t 2M- t 2/d3X X’k —t ,kZ_ / d B, 2,
(27T)22E1(4mp1ab)2/ 2 My 5p (K — )7 [ Mpn(t2)] fiXk; —t; Dlab) N 22 [¢2(B,z2)]
(22)
I ) . L
DM 2P = G 2, mipra)? /d3X1d3X1-~~d3waA(X1,Xz,...,xA)wA(xl,xQ,...,xA)e k(B —bi)i 421 ~21)
1 lab
Va1
X O =206 =) ./ dzﬁd%eﬂz(brﬁlHtZ(brb')MjN(fz)Mj;ﬁp(kf — )M Nt M5,k — t)
B : /d2t2|MJN(t2)|2|MJ._ (K _tZ)lzdeXfl(Xk b AO)/Jroodzzlfﬁz(B 2)?
(2m)22E 1 (4mpiay)? PP K A7) | , ,
(23)
Z |MJIJ(1,2)|2
Ya-1
! X *(X ik, (b, — iA0 (3 —
= Q) 2E,(dmpy )2 /d3x1d3xl'”d3XAwA(X17X2v--~»XA)1//A(X1’X2a-~~»XA)6 k(b1 =bu)+i A, G1=21)
1 lab

X O(z2 — 21)O(z2 — 21) f PPHdP e’ OPo-iebbo g @M (ke — BIM v ()M () — )

1
©(27)2E 1 (4mpyp)?

The last form of Eqs. (22)—(24) is obtained assuming that the momentum scale of the elementary amplitudes variation is much
larger than 1/L, where L ~ 1 fm is the characterisic scale on which the nucleon wave function changes. (If |b; — by| ~ L or
Ifn — by| ~ L then the exponent exp{ifz(bz — f)]) — ity(by, — by)} in the first Egs. (22)—(24) oscillates rapidly as a function of
t, or f, and the integration over d 2t,d?t, gives almost zero.) This allows us to make the replacement ¢,(x) — ¢2(B,z,), where
B = (b, + by)/2, and perform the integration over d*b,.

Let us discuss now the interference terms. The leading ones are between the A diagram [Fig. 1(a)] and the elastic rescattering
diagrams [Figs. 1(b) and 1(c)]:

“+o00
2 2
/ Lo Mo | Moy — 1) / PXf (XK, — t.A%) / iz 162 B ). (24)
Z

M5, Ke)

MJZ,IMJ*I Cco=—2"
Z (DM +ec 2E,(2m)*4mpyay

/d3i1d3xl XAV (KX, X)W A (XX, X el KTPPEIXD
Va1
x O(z1 — z2) / d*tre PP, S (K — )M () + c.c.

_iMpN(0) [M 5, (k)|
dmpiap 2E;

VA
fd3Xf1 X,k — pp)/ dz|dr(B,22)|* + c.c., (25)
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Z M’ (1,2)M7*(1) + c.c.
Ya-1
iM55, k)

. - A0 z
=_— " | P{dx - XY R X X)YAK] X, Xy )e! KTPPE XTGPk G
Eiantans | va v

x O(zy — 21) f d*tre PPN ()M 5k, — t) + coc

iMyn(0) M5,k k* = pan + AG\ [T e
_ 4 JN( ) | J,[)p( t)l /dSXfl X,kt, Plab + J / d22|¢2(B,22)|2 el(A[}fk +Ppran)(z22—2) + c.c., (26)
4mpuap 2E, 2 z

where we again assumed the smallness of the matrix element variation on the momentum scale of the order of L~!. By using
the optical theorem (7) we see that the both interference terms (25) and (26) are the absorptive corrections to the TA term (20).
[For the term (26) one has to require in addition that k* = py,, + A(}, i.e., restrict the kinematics of the final charmonium
to the quasifree regime; see also Eq. (A15).] On the other hand, the interference term between the IA diagram [Fig. 1(a)] and
the nondiagonal transition diagram [Fig. 1(d)] has a pure quantum mechanical origin and cannot be interpreted in a probabilistic
picture:

Z MM (1, 2)M7*(1) + c.c.
Ya-1
iM5,, (k)

; 3 (A0 z
— d3i1d3X1 . d3XA E(R1X2, o XA)WA (XX, - .. XA o KPR EI—XD)+i(A ), +prap—k*)z2—21)
2E, ) 4mpra / val Wl )

X ®(ZZ — Z]) f d2l2€7it2(b27bl)MJN/;J]N(tz)M]] ;[-,,,(k, — tz) 4+ c.c.

_ iM}k;ﬁP(k’)

k¥ — piab + A,
2E14mprap

Mo OOM (k) / &SX f (Xk .

+00
A0 1z _
) / dz|¢a(B,zp) [ &' Bn K P 2) 4
Z

27)

Finally, the interference term between the charmonium elastic rescattering diagram [Fig. 1(c)] and the nondiagonal transition
diagram [Fig. 1(d)] is calculated as follows:

> MM (1,2)M7*(1.2) + c.c.
Va1
1
T Qr)R2E (dmpiy)?

3 13 3 % ik, (b;—b)+i(AY —Az+iAZ—iAY 2
/d Xid'x) - X (KXo LX) VA (XX, L Xy )e T s

X O(z2 — Z21)O(z2 — 21) _/ dzfzdztzeib(bz_f)l)_itZ(bz_bl)MJN’;JlN(tZ)MJI (ke — )My (®RIM],;,(k — B) +c.c.

1 * *
= (2”)22E1(4mplab)2 /dthMJN’;JIN(tz)Mll;ﬁp(kt - tZ)M]N(tZ)M];p‘p(kt - tz)
A% + A0 +o0 .
x / X (X’k’ —t = / dzy & A0V, B 20) +c.c. (28)
zZ

The interference terms between the antiproton rescattering diagram [Fig. 1(b)] and the charmonium rescattering and nondiagonal
transition diagrams [Figs. 1(c) and 1(d)] disappear in our approximation since they include the products of the factors ®(z, —
21)0O(Z1 — 22).

A. Absorptive corrections

The above formulas for the products of matrix elements can be generalized to take into account the multiple elastic rescattering
effects (see the Appendix). The sum of the interference terms between the diagonal amplitudes (A16) with elastic rescatterings
of the antiproton and y; charmonium on all possible nonoverlapping sets of nucleons can be expressed as

Z ZM’(l,setl)Mf*(l,setz)
setl#set2 Yra_g

_ 1My k)P

) ) e
F / ERdx) - PP ELX, L XDV AKX, - Xg e S BT EbD
1
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A .
1
< [T 1+ ——[Mpn (001 — 2)5PMb; — by) + My (0)O(z; — 21)8P(b; — by)
iy 4mpiap

—M5\(0)OE — z)8P(b; — b)) — M (0)O(z; — 218 (b; — 51)])

A

|MJ;]3p(kz)|2 3 0 tot z ) ot 400 )
- 2F, X fi1(X ki, A7) l_[ I —oun dzi|i(B.zi)I” — oy dzilg:B,z)|" ), (29)
i=2 —o00 z

where we again assumed the slowness of the ground state wave function variation with transverse coordinates. The sets of
nucleons-scatterers are denoted as “setl” and “set2”. We neglect in Eq. (29) the product terms with the same nucleon-scatterer in
the direct and conjugated amplitudes which give the proper rescattering contributions discussed in the next subsection. Note that
the struck nucleon N, is fixed in the both amplitudes and is excluded from the sets of scatterers. In Eq. (29) we assumed that the
motion of nucleons inside the nucleus is quasiclassical, i.e., the product ¢{(X + x/2)¢ (X — x/2) in the Wigner function (21)
changes much faster as a function of the relative coordinate x than as a function of the center-of-mass variable X. This allows
us to replace x; — X and X; — X in the multiple product factors and perform the integration of the wave functions over the
relative coordinate x separately.

In the case of identical nucleons and large A the multiple product factors are reduced to the exponential absorption for the
antiproton and charmonium,

A—1 VA

Z +00 +00
(1 —opy / dza|¢a(B,zo) > — ol f dZ2|¢>2(B,Z2)|2> > exp <—U,ta(}f/ / dzp(B,22) — oy / de,O(B,Zz)> .
—00 VA —00 VA
(30)

Here p(B,z,) = A|¢»(B,z,)|? is the nucleon density. Thus, Eq. (29) is an extension of the IA term (20) for the absorption of the
incoming antiproton and of the outgoing y; charmonium.

The leading order contribution of the nondiagonal transition (see Fig. 14 in the Appendix) to the total amplitude squared
appears as the interference of the diagonal (A16) and the nondiagonal (A22) amplitudes summed over all possible nonoverlapping
sets of nucleons-scatterers:

> Y MM A2, seth M7 (1 set2) + cc.
setl#set2 Ya_;
iM% (k) . N
= ﬁ%ww(mm;ﬁp(k» / IR Xy - EPXAYFR1X0 - X)YAKX, LX)
1 lab
x O(z2 — 21)8@(by — bl)eik,<fn—b1)+iAf}zl—iAf}lz1+i<Af}l—A9>zz

A
<[] (1 +——[Mpn (@01 — 287 (; = b1) + My n (0O — 21)O(z2 — 287y — by) + My (0)
i=3

4mpian
X O(zi — 22)6P(b; — b)) — M3y (0)OZ; — 2:)8 (b; — by) — M7\ (0)O(z; — 21)8P(b; — Bo]) +c.c.

_iM; (k)
2E4mpiap

3 A(} + A(}l
Min. gy nOMy.5pke) | X f1 | XK, ———

oo 2 (A —ASY2-2)
2 / dzy |¢a(B,zp) 2! A —2)@
Z

A z i[Myn(0) — M3, (0)] [= oo
x]‘[(l—ag% | amsmar+ (M (© = Miy O [ dzioal —asy [ dzinar ) +ce
i=3 -

dmpiap 2
(31)

The struck nucleon (N;) and the nucleon on which the nondiagonal transition happen (N,) are excluded from both sets of
nucleons-scatterers. Without taking into account the absorptive correction, this expression is reduced to the interference term
27).

B. Rescattering contributions

We will now take into account the interference between the amplitudes where the elastic or nondiagonal rescattering happen
on the same nucleon (N,). Fixing the struck nucleon (N;) and the nucleon scatterer (V) in the direct and conjugated amplitudes,
we sum all possible interference terms with nonoverlapping sets of other participating nucleons.
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Four terms appear as the result. (i) The term due to the antiproton elastic rescattering [c.f. Eq. (22)] given by the product of
the direct and conjugated amplitudes (A16):

Z ZMJ(Z,l,setl)MJ*(2,1,set2)

setl#set2 Yo
_ 1
(2m)*2E  (4mpiap)?

3¢ 43 3 < iK; (b —b)+iAY(Z—
A% dPx) - XA Y (KXo, - XDV AKXy, < X )e B PP A G2

x O(Z) — 2)0(21 — 22) / A2 1yd? 1™ PO e (ke — b)) My (82) M (ki — )My (ta)
X H (1 e My 001 2)8P (b; —b1) + My (0)O(z; — 21)8% (b; — by)

M (0)OE) — 2)8P (b; — by) — My (0)O(z; — 21)8 (b; — Bm)

= ! / d*0|M 5k, — 07 My (1)) / X fi(X.k — 6,A9)
(27)22E  (4mpigp ) or P !
A “+00
X / dzo |¢2(B9Z2)| 1_[ ( 01[3% / dz; |¢Z(B5Z1)| - UtO[ / dZi|¢j(B,Zi)|2> . (32)
_ i=3 V4

(ii) The diagonal term with rescattering [c.f. Eq. (23)] due to the product of the direct and conjugated amplitudes (A16):

>0 Y M2, sethM7*(1,2,5e12)

setl#set2 Ya_;
_ 1
Qm)2E (4mpiap)?

3¢ 73 3 < ik;(b;—b)+iAY(Z —z
/d Ridx - XA R1 X - XD WAX]L X, X )e PO A G

X O(z2 — 71)O(z2 — 1) f d*hyd 1y PO ®b0 e @M (K — T My ()M (K, — t)

xH(l

— M3 (0O — z))8P(b; — by) — M (0)0(z; — £1)87 (b; — Bm)

an(0)0(z1 — z))8P(b; — b)) + My (0)0(z; — 21)8P(b; — by)

1
= oMy )2 MK —t 2/d3x Xk, — tp, A
(27T)22E1(4mp1ab)2/ 2UM N ()7 IM g5 p(K — t2)] fi(Xk —t,AY)
+oo A 7 +o00
x / dz |¢z<Bﬁzz>lzl_[< — o5 / dzil¢i(B,z)I> — o' / dzi|¢i(B,z,»>|2>. (33)
zZ i=3 —00 zZ

(iii) The nondiagonal rescattering term [c.f. Eq. (24)] due to the the product of the direct and conjugated amplitudes (A22):

Z ZM“(l,2,set1)Mflf*(1,2,set2)

setlz#set2 Yoy

ikr(Bl—bl)-ﬁ-iA(}] (Zi—z1)

1
= )2 E, G /d3i1d3xl XA (R X X)W AKX, XA )e
al

X O(z — 7)O(z5 — zl)/dztzdzt ¢ (b2=b1)—ita(br— b‘)M}kN/ 7 N(tz)M,1 p(Ke — M NN )M g5 (K — )
A

« 1‘[(
1=

X Oz — 22)8° ><b,- — b)) — M}y (00O — z)8(b; — b))

n(0)0(z1 — z)8P(b; — by) + My, n(0)O(z; — 21)O(z2 — 2:)8@ (b; — by) + M x(0)

— My (0)O(z; — 21)O(z2 — 2:)8 (b; — by) — M (0)O(z; — 22)8P(b; — Bn])
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1 +00
= do\Min. g NP M50k, —t 2/d3X X,k—t,AO/ d B.2)))?
(271)22E1(4mp1ab)2/ UM gy v )17 My 5p (K — )] fi(X ke —t5,A7) : 22 |¢2(B,z2)]
A z 22 +00
xH(] o [ dzioan? - oy [ dzip P - apy [ dz,-|¢,-<B,z,~)|2). (34)
i=3 —00 VA 22

And, (iv) the interference of the nondiagonal and diagonal terms with rescattering [c.f. Eq. (28)] given by the product of the

direct and conjugated amplitudes (A22) and (A16):
>0 MM (2. seth)M7*(1,2,5e12) + c.c.
setl#set2 Ya_;

1
CQr)2E (4mpip)?

4 E A0 AO S A05 A
/d3xld3xl XAV (R X, X)) YA (XX, X )e K PrmbOFI Ay, At A n A, @

Iipp

X O(z2 —21)O(z2 — z1) / dzfzdzlzeih(brb‘)7it2(h27b‘)MJN’;J.N(tz)MJ. pr(Ke — )My @M ; (ke — )

A i
xl_[ (1 +
i=3

4mprap

[Mn(0)0(z) — 2:)8P(b; — by) + My, n(0)O(z; — 21)O(z2 — 2)8P(b; — by)

+ Mn(0)O(z; — 22)8P(b; — by) — M5y (0)OE) — 2:)8P (b; — by)

— My (0)8(z; — 71)O(z2 — 2:)8P(b; — by) — My (0)O(z; — 22)8P(b; — 51)]) + c.c.

1
©(2m)2E (4mpiap)?

/dztzMJN’;J,N(tz)MJ,;ﬁp(kz — )My ()M, ;,(k — to)

AY +AG\ e .
x / d°X fi (X’k’ - tz’%) / dzy ¢ X0 =A@ "D g (B 7))
zZ

A

i=3

C. Elastic antiproton-nucleon scattering amplitude

Forthe p N elastic amplitude we neglect the spin and isospin
dependence and apply the following form:

Myn(ar) = 2ipymo’Si(1 — ipgp)e 5472, (36)
with p5, = Re Mx(0)/ Im M5y (0). The empirical data [11]
tell us that ratio p;, quickly changes sign at /s =~ 3-4 GeV,
i.e.,justin the region of the x. formation. On the other hand, the
recent calculations within the Reggeized Pomeron exchange
model [12], which seems to agree with empirical data at higher
energies [13], predict a smooth behavior of p5, >~ —0.05 in the
interval \/s =~ 3-5 GeV. For the slope parameter we choose the
value By, =125+ 1 GeV~2 which is in a good agreement
with empirical slopes at /s >~ 3.4-7.0 GeV (or at pjyp >~ 5—
25 GeV/c) [14]. The total pp cross section has being suitably
parametrized by the Particle Data Group (PDG) in [15]:

o (prap) = 384+ 77.6pp ™ + 0.26 In*(piap)
— L.2In(piab), (37)

oo 4mP lab

22

zZ (M O _M* 0 22 +o00
x l_[(l—ff;%/ dzl¢i(B,z)I* + (M0 = M )]fz dzi|¢i<B7zi>|2—o}%/ dzi|¢i<B,zi)|2> +ec.

(35)

[
with the beam momentum py,, in GeV/c and the cross section
in mb.

D. Formation amplitude pp — x,

The elementary process p(A;)p(A1) — xj» is depicted in
Fig. 2 in the pp center-of-mass (c.m.) frame. Generally, due
to a finite transverse momentum of the proton, the direction of

FIG. 2. Illustration of elementary transition p(Az)p(A1) = Xyv,
where A;, Ay, and v are particle helicities. The picture refers to the
c.m. frame of colliding antiproton and proton. The Z axis is directed
along the c.m. velocity f.
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the c.m. velocity

=D tPL (38)
P + E 1

does not coincide with the original beam direction. Therefore,

the transformation from the laboratory frame to the coordinate

system shown in Fig. 2 is obtained in the following way.

First, we apply the Lorentz boost from the laboratory frame

(x,y,z) to the pp c.m. frame (x’,y’,7z’) such that the antiproton

momentum components become

PHYSICAL REVIEW C 89, 014621 (2014)

where y = 1/4/1 — B2. Second, we perform a rotation of
coordinate axes (x’,y’,z") to the new axes (¥,7,Z) such that
the 7 axis becomes alongated with the c.m. velocity B. If we
denote the polar and azimuthal angles defining the direction
of the vector B in the laboratory frame [or equivalently in
the (x’,y’,z") frame] as (®g,¢p) then the rotation can be done
about the axis defined by vector [e, x B] by the angle g,
according to the convention of Refs. [16—18]. In the resulting
coordinate system (X,¥,7) the Cartesian components of the
antiproton three-momentum are, therefore, given by the

) y orthogonal matrix transformation (c.f. [19])
P; =Ps— (Ep - m(l)pﬂ)) YB. (39)
|
Pf; cos? ¢pcosOp + sin® ¢p  cosggsingg(cosOg — 1) —cos g sin Op P),g/
py | = | singscosps(cos ©p — 1) sin® g cos O +cos’ s —singysin®y | | p) (40)
Py sin @ cos ¢g sin O sin ¢ cos Op p;}

In the notations of Refs. [16—18], the formation amplitude
of the x,-charmonium state with helicity v is
2J +1
4

1/2
) B ;. D}, (¢.0,—¢),

(41)

where Dl{/\(¢,®,—¢) is the rotation matrix, A = A5 — Ay is
the net helicity. The angles (®,¢) in Eq. (41) are the polar and
azimuthal angles of the antiproton momentum in the (¥,¥,7)
coordinate system (see Fig. 2), i.e., ® = arccos[pg/(p;‘;2 +

p}\:;z + p;~‘32)1/2] and¢ o arctan(p:;;/pl)g) (O < ¢ < 271’).F01‘the

zero transverse momentum of the proton the net helicity is
conserved since DY, (0,0,0) = §,;. The coefficients B)\Jp 5, are
normalized as

(JVIB|O®,Aph1) = (

Y18 =1 42)

Aphi
The invariant amplitude is proportional to the amplitude (41)
My, = ks {(JV|B|OG,A5A1), (43)

where the coefficient «; can be reconstructed from the partial
decay width I, ,_, 5, which gives the relation

5 1/2
647 mJFXJ—W_P

Jm3 —4m?

The partial wave amplitudes B,\Jm encode the dynamics of
the charmonium formation. It is, however, possible to obtain
some general relations from the symmetry considerations
[17]. It follows from the charge conjugation invariance,
that B/{ﬁ)\] = n.(=1)’ B{l,\ﬁ, where 1, = (—1)+S =1 is the
charge parity of the charmonium (for y states L = S = 1).
It is convenient to introduce the notations By/+/2 = Bi "
and By = B{_ for each J. Then the charge conjugation
invariance leads to the condition |BY,|* = |B]_|* = |B;|%.
The parity invariance of the amplitude (41) gives the relation

(44)

Kj =

(
B, =n,(=1'B%; _;, where n, =(~=1)"*" =1 is the
charmonium parity. This results in the relations |Bfr +|2 =
|B/ _|> = | By|*/2. Moreover, in the case of xi, the charge

conjugation invariance leads to the condition By = 0. The
partial wave amplitudes By and B, are normalized as

2|Bi > + |Byl* = 1. (45)

The recent experimental data [20] for the angular distributions
from the pp — xo — J/¥y — ete”y decay provide the
value |By|?> = 0.13 £0.08. The smallness of the transition
amplitude for the net helicity zero can be understood as
a signature of hadronic helicity conservation for exclusive
processes within perturbative QCD with massless quarks and
spin-1 gluons [21].

In calculations of the products of the matrix elements for
the processes pp — xj» and pp — xy, we will assume
for simplicity the proton longitudinal momentum to be pj =
(AJ 4+ AJ")/2. This approximation is good enough for the
present exploratory studies. (More rigorously, in the first
amplitude on should set p{ = AJ and in the second amplitude
Py = Aé‘ .) Then, the azimuthal angle ¢ will cancel in the final
results for the squares of the matrix elements. This can be seen
if we use the property of the rotation matrix (c.f. [19])

Dy, B,y) = e M), . (B)e "™ (46)

with dj;,;(B) being the real-valued functions. The conse-
quence is that the formulas (29), (31), (33), (34), and (35)
derived earlier depend on the combinations

M-]]V;)Lﬁ)\l (qt)M_}kv;)\ﬁ)\l (Qz)

VRIL+DRJI+1D)
K 4 B’\ﬁk‘

=Ky,

B/%, d\(©)d},(©).
47)

The phases of the helicity amplitudes BAJ] 1, are unknown. We

will fix By = 1 for J = 0 and B, = 1/+/2 for J = 1. In most
calculations we will assume the zero phases of the J =2
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helicity amplitudes, i.e., By = +/0.13 and B, = /0.87/2.
However, we will also test several different choices of the
phases of By and B; for J =2 This will influence the
interference terms (31) and (35) only.

E. Transition amplitudes x;, N — x;N

Following [1] we decompose the internal ¢¢ wave function
of the physical yx,,-charmonium state in the basis of wave
functions with fixed orbital (L;) and spin (S;) magnetic
quantum numbers as

[Jv) =Y 1L 1S (1L5 18: | v), (48)
LS.

where z axis is directed along the charmonium momentum in
the target nucleus rest frame (Fermi motion is neglected here).
(1L,;18,|Jv) are the Clebsch-Gordan coefficients. To avoid
misunderstanding, we speak here about the internal orbital
angular momentum of a c¢ pair. (The projection of the c.m.
orbital momentum of the cc pair on the z axis is identically
zero.) Assuming that the interaction does not change the
internal spin and angular momentum of the c¢ pair, we can
approximate the rescattering amplitude as

(JvI811v) = > (V1L 1S.) (1L 18]8]1L; 15)
L..S,

X (1L 18:[J1v), (49)

where the symbols of the initial and final nucleons are
dropped for brevity. Assuming that the ratios between diagonal
and nondiagonal transitions do not change with increasing
transverse momentum transfer, Eq. (49) can be rewritten for
the invariant matrix elements:

MJV;le(qt)

= ¢ Bvai/2 > (IVIIL;18)M 5 (0)(1L; 1S | Jyv).
LZVSZ

(50)

In the two-gluon exchange mechanism B,y ~ 3 GeV~? for
the discussed energy range [22]. For the forward scattering
amplitudes at fixed L, and S, we have

My_5.(0) = 2ipymo;s (1 — ipyn). (51)

Here p,ny =ReM; 5(0)/ImM; 5 (0). From the soft
Pomeron exchange one has p, y 2~ 0.15, while pQCD gives
oy~ 22 0.3. In numerical calculations we have chosen p, y =
0.22, i.e., the average of these two values, since the sensitivity
to p,n in the interval 0.15-0.3 turns out to be quite modest
(see the right panel of Fig. 11 below).

The most important inputs of our calculations are the
Cross sections ai‘:‘SZ = o, which have been calculated in
Ref. [1] on the basis of the nonrelativistic quark model and
the QCD factorization theorem. The following values have
been obtained in [1]: 09 = 6.8 mb and o4 = 15.9 mb. The
cross sections differ by approximately a factor of 2, since the
transverse size squared of the c¢ configuration with L, = +1
is two times larger compared to the one of the configuration
with L, = 0. The exact ratio o} /oy deviates from 2 because

PHYSICAL REVIEW C 89, 014621 (2014)

TABLE I. Transition amplitude for different initial (/;) and final
(J) total angular momenta and helicities (v) of the x.. For v < 0
one should use the relation M, _,,;,—,(0) = (—=1)’*1M,.;,,(0). The
quantities M; = M;_5,(0),L. = 0,1 denote the amplitudes with
fixed value of the z component of the orbital angular momentum
neglecting their spin dependence.

J v Ji MJV;le(O)

0 0 0 M, + My)/3
0 0 1 0

0 0 2 V2(M, — My)/3
1 0 1 M,

1 0 2 0

1 1 1 (M, 4+ My)/2
1 1 2 (M, — My)/2
2 0 2 (M, 4+ 2My)/3
2 1 2 (M, 4+ My)/2
2 2 2 M,

the cross sections are obtained in Ref. [1] by weighting the
probability density distribution of the relative quark coordinate
with the transverse-size-dependent interaction cross section of
a cc pair with a nucleon. The latter cross section was evaluated
in [1] based on nonperturbative QCD.

In Table I we list the transition amplitudes M ,.;,,(0) for
the different values of J, v, and J;. The nondiagonal transition
amplitudes between physical . states are proportional to the
difference between the amplitudes with L, =1 and L, =
0. Hence, the nondiagonal transitions are governed by the
difference o7 — 0, which turns out to be nonzero according
to the quark model predictions on the structure of the x, states
and QCD factorization theorem.

F. Occupation numbers

The squares of x,; production amplitudes on a nucleus
[c.f. Eq. (20) etc.] are proportional to the coordinate- and
momentum-dependent occupation number fi(X,p) of the
struck proton which is formally defined as the Wigner function
(21). The cross section on the nucleus (8) includes the sum
over all possible struck protons (N;). Thus, the cross section
depends on the total proton occupation number n(X,p) defined
as

2n(X,p) = Y fitX,p). (52)
Ny

By introducing the factor of 2 we assumed the spin saturation
of the proton system in the nucleus. In the present work we
will use a simple expression for n(X,p), which is based on the
local Fermi distribution but takes into account the corrections
due to the short-range N Ncorrelations (SRCs):

n(X,p) = (I — P)O(pr — p)
Q2n)’
2

Here p,(X) is the proton density, pr(X) = (37%p,)!/3 is the
proton Fermi momentum, and P, =~ 0.25 is the proton fraction

+ ppa2|¥p(P)I*O(p — pr).  (53)
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above Fermi surface [23,24]. The deuteron wave function
¥p(p) in the momentum representation is normalized as

+00
MA dp p*lyp(p))* = 1. (54)

The coefficient a,(X) is chosen from from the condition

400
Pr=dnay [ dp PP (55)

Pr
For the deuteron wave function we take the result of calcula-
tions with the Paris potential [25].

Overall, the in-medium effects should grow with the
mass number of a target nucleus. Hence we selected the
208Pb nucleus for the numerical studies below. The density
distributions of protons and neutrons have been taken in the
two-parameter Fermi parametrization as described in [26].

III. NUMERICAL RESULTS

We calculate the transverse momentum differential cross
sections of the y;,-charmonium production,

dopasya-y _ IMP
- 2
42k, 1672 p2,

, (56)

which can be obtained by integrating Eq. (8) over the longi-
tudinal momentum k° and replacing \/(E; + E|)> — k? —m3
by pra at the final step. | M|? stands for the full matrix element
squared for the charmonium production on the nucleus. It
is important to note that in deriving Eq. (56) we implicitly
assumed that the contribution of negative k* is strongly
suppressed by the rescattering matrix elements which enter
in |M|?. This allowed us to limit the integration to the positive
values of k* only. The cross section (56) is invariant with
respect to the change v — —v, as can be seen from explicit
expressions for the different contributions to |M |2 in the
previous section.

Figures 3-8 show the transverse momentum differential
Xc-charmonia production cross sections with the different
total angular momenta J and helicities v. The calculations
were performed at an antiproton beam momentum of pp =
5.553 GeV/c corresponding to on-shell x.; formation in pp
collisions. The kinks in the k; dependence at k, >~ 0.25 GeV/c
are caused by the sharp change in the momentum dependence
of the occupation numbers at the Fermi momentum as
discussed in the previous section.

For the states xoo, X11» X20, and x»;, whose formation
is allowed in pp collisions, the cross sections at
low k, are dominated by the direct term (29) and at
k; > 0.25 GeV/c by the term with antiproton rescattering
(32). The latter makes the large excess above the SRC tail of
the direct term.

The “exotic” states xjo and xp, cannot be formed in
pp collisions and are, therefore, strongly suppressed in
antiproton-nucleus collisions. Their production at small k;
is mainly caused by the antiproton rescattering term and at
k: > 0.25 GeV/c by the SRC tail of the direct term. In the
latter case the transverse momentum is provided by the target
proton. Hence the charmonium spin quantization axis does not
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p?%®Pb, p,,p=5.553 GeV/c

101 E‘ T L E L B T
3 full —
[ Xco dir. e
10° | int,
i p-resc. @
] dia.-resc. --e-
C\% 10 nondia.-resc. - |
Q (-)int.-resc. o
NO
9 102 ¢ e
= ol o
> ..»“__???BDDDDDDBBD
o
2
S0 e 4
10 ¢ 4
L 00009
10_5 L L YAAALAMOA LG

015 02 025 03 0.35
k, (GeV/c)

0 0.05 0.1

FIG. 3. (Color online) Transverse momentum dependence of the
differential x. production cross section (56) in 5.553 GeV/c beam
momentum antiproton interactions with the nucleus 2°*Pb. Full
calculation including all contributions to the matrix element is shown
by the solid line. Other lines show the partial contributions of
the different terms. Direct term (29): blue dotted line. Interference
term (31): brown dashed line. Antiproton rescattering term (32):
red squares. Diagonal rescattering term (33): magenta circles.
Nondiagonal rescattering term (34): purple triangles. Interference
rescattering term (35): brown diamonds (contributes with “—" sign).

p2%8Pb, p,,,=5.553 GeV/c

10 ¢ : :
Xc1 (V=O)

do/d?k, (ub c?/GeV?)

10° |

RasiacleIovovy 9@99(;

0 005 01 015 02 025 03 0.35
ki (GeV/c)

FIG. 4. (Color online) Same as Fig. 3, but for x.; production with
helicity v = 0.
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p°%Pb, p,,,=5.553 GeV/c

100 E T T T
[ full — ]
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p-resc. & ]
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FIG. 5. (Color online) Same as Fig. 3, but for x.; production with
helicity v = 1. The interference term (31) contributes with “—" sign.
The contributions of the diagonal and interference rescattering terms
(33) and (35) almost coincide with each other.

coincide with the beam direction anymore [® > 0in Eq. (47)].
As the consequence, the charmonium helicity may deviate
from the difference of the antiproton and proton helicities. The
production cross sections of the “exotic” xjo and y,, states on

p?%®Pb, p,,p=5.553 GeV/c

100 E‘ T S L I T E
: full —
ez (v=0) dir. - ]
_ |nt .........
107 b ) 3
p-resc. & ]
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o
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[0} 2|
S 10 (-)int.-resc. ~o- ]
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5 .
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2
a8
%G 107 F
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©
10 5600060600006966656000065000000a .. ;
5 * e«woeoeeeo;
10' P S S S S S S S Y P S S S B S S S

015 02 025 03 0.35
ki (GeV/c)

0 0.05 0.1

FIG. 6. (Color online) Same as Fig. 3, but for ., production with
helicity v = 0. The interference rescattering term (35) contributes
with “—" sign.
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p2%8Pb, p,,,=5.553 GeV/c
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FIG. 7. (Color online) Same as Fig. 3, but for x., production with
helicity v = 1. The interference term (31) contributes with “—" sign.

the nucleus are, however, several orders of magnitude lower
than for the other “nonexotic” states xoo, X11> X20> and x21.
We will discuss now the nondiagonal transitions. Note,
first, that such transitions do not contribute to the o and x2;
production as one can see from Table I. On the other hand, the

52%8Pb, p,,,=5.553 GeV/c

103 ¢ : : :
i full —
dir. -
Xez (v=2) p-resc. |
dia.-resc. —e- |

do/d?k, (ub c%/GeV?)

10'6 1 1 1
0 005 01 015 02 025 03 0.35

k; (GeV/c)

FIG. 8. (Color online) Same as Fig. 3, but for x., production with

helicity v = 2.
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p?%Pb, p|,,=5.553 GeV/c
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p2°®Pb, k=0.010 GeV/c
10" ‘

Xeo —
Xc1 (V=1 ) """""
Xc2 (V=O)

k, (GeV/c)

FIG. 9. (Color online) The relative contribution R [see Eq. (57)]
of the y., production with helicity v = 0 to the total x., production in
antiproton collisions at 5.553 GeV/c with 2®Pb nucleus vs transverse
momentum. The normalization is performed on the same contribution
| By|> = 0.13 in the nonpolarized j p collisions.

nondiagonal transitions 11 < 21 and 00 <> 20 do contribute
the production of the respective x;, states. In particular,
the transition 00 — 20 influences the x,¢ production at low
transverse momenta significantly. This is caused by the large
partial partial width T', 5, >~ 2.3 keV as compared to
Iy —pp 20.06 keV and I'y,_, 5, 2 0.14 keV. As a result,
the cross section of x»¢ production is enhanced by ~20% at
small k; due to the interference term (31).

This is better seen in Fig. 9 which shows the normalized
ratio

X20

R=_— X0 (57)
(X20 + 2x21)|Bo|?

as a function of k,. In the abscence of any in-medium effects
[impulse approximation, Eq. (20)] we have R =1 at k, = 0.
Including absorption [direct term, Eq. (29)] increases R by
about 5%, which reflects the genuine color filtering effect.
Indeed, one can see from Table I that the absorption cross
section of the x,; state is slightly larger than the absorption
cross section of the x,o state (since Im M; > Im M;). The
interference term (31) leads to an additional and quite
significant enhancement of R, so that it reaches ~20%. The
enhancement is not affected by the rescattering terms, which
do not influence the ratio R at small k;, practically.

In Fig. 10 we display the beam momentum dependence of
the transverse momentum differential cross sections for the

5.0 55 6.0 6.5 7.0
Piap (GeV/c)

FIG. 10. (Color online) Transverse momentum differential cross
section of x.9, Xc1» and x. production with different helicities
plotted vs beam momentum at the fixed k, = 0.010 GeV/c. For
orientation, vertical arrows show the beam momenta of the on-shell
Xc0» Xc1, and X formation in p p collisions (pr, = 5.194, 5.553, and
5.727 GeV /c, respectively). Note that the cross sections are peaked
at slightly higher beam momenta due the finite value of the nucleon
binding energy (7.9 MeV for the 2%Pb nucleus).

“nonexotic” x. states at low transverse momentum.! Due to
Fermi motion and SRCs there is a strong overlap of the x.0, Xc1,
and x., production in the considered region of beam momenta.
This makes possible the interference between these states,
since the phase multiplication factor A(}l - A(} in Eq. 31) is
small.

Figure 11 shows the beam momentum dependence of
the ratio R at k, =0.010 GeV/c. The ratio reaches a
flat maximum at a beam momentum of about 5.5 GeV/c
corresponding to Ag + A = 0, where the occupation number
in the interference term (31) is maximal. We also see that
‘R drops quickly with increasing beam momentum between

'"We have chosen a small but finite value of k, in order to avoid
the singularities in the space integral of the occupation numbers
for the on-shell charmonia production at k, = 0. The singularities
appear from the volume integration in the direct term (29) when
k; =0 and A(} = 0 and in the interference term (31) when k, = 0
and A + Aj = 0. This is because of the two-parameter Fermi
distribution density tail which is infinite in radius. It follows from
Eqgs. (52) and (53) that f;(X,0) = 2/Z)n(X,0) = 2/Z)(1 — P,) =
const independent of position X. The singularities are integrable, i.e.,
the integration of the cross section (56) over d’k, gives the finite
result. In the rescattering terms (32)—(35) singularities do not appear
due to the integration over d’t,.
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FIG. 11. (Color online) The normalized fraction of the ., production with helicity v = 0 [see Eq. (57)] at k, = 0.010 GeV/c on the ***Pb
nucleus as a function of the antiproton beam momentum. Vertical arrows show the beam momenta of the on-shell x., x.1, and x.» formation
in pp collisions (pp, = 5.194, 5.553, and 5.727 GeV/c, respectively). The left panel shows the calculations with fixed value of p,y = 0.22
including combinations of the different terms as indicated. The right panel shows the sensitivity of the full calculation to the choice of parameter

oy~ [see Eq. (S1)].

~5.50 GeV/c and ~5.56 GeV /c. Our results reveal a modest
sensitivity to the choice of the ratio of the real and imaginary
parts of the x N-scattering amplitude (right panel of Fig. 11).
However, this sensitivity reaches at most ~10% and is visible
only for far-off-shell x., production.

It is important to note that all previous results were obtained
with the zero phases for the By and B; helicity amplitudes for
J = 2. Figure 12 shows the sensitivity of the ratio R to the
choice of phases for the By and By amplitudes of x, formation
in p p collisions. The By phase turns out to be very important:
it governs the shape of the beam momentum dependence of
‘R. The B; phase somewhat shifts R vertically but does not
influence much the shape of pj,, dependence. This is expected
since the direct (leading order) contribution to x»; production
is much larger compared to the direct contribution to x»
production (compare Figs. 7 and 6). Hence the interference
is relatively less important for y»;.

Finally, we would like to make few comments on the
possibility of experimental measurements of the polarization
effects in the x, production at the PANDA @FAIR experiment.
The PANDA experimental program [27] already includes the
studies of the pp — x. — J/¥y — eTe "y reaction. The
separation of the different y. flavors is possible via the different
energies of the photon.? This can also be done in the case of
nuclear target.

2In the laboratory frame this obviously corresponds to a rather broad
distribution over the photon energies. Thus, the photon energy should
be determined in the eTe™y c.m. frame, which gives E, =303, 389,
and 430 MeV for x., xc1, and ., respectively. Together with the

For the pA reactions, the change in the population of the
low k; x;,-states with respect to the one for p p reactions will
manifest itself in the change of the polar angle distribution of
the J/vr-emission for the x; — J/¥y decay in the y; rest
frame. Neglecting the x» 1, contribution, this distribution can
be expressed as

Wi©)= > Pp,W(0), (58)
v==+1,0
where
XJv
P, =— 59)
7 X0+ 2xn

is the relative fraction of x,, states. In particular, for J =
2, Pyy = RI|By|?, Pr+1 = (1 —R|By*)/2. The polar angle
distribution of J/1’s in the x;, radiative decay is

J
Wi(©) oc Y |AL* ([dh (@) + [d]_,©)]).

v'=0

(60)

This equation includes the helicity amplitudes A‘{, of
the radiative decay which can be further expressed via the
amplitudes ay, ...,a;4; of electric or magnetic multipole
transitions such that a;, a,, and a3 correspond to E1, M2,
and E3 transitions [17]. The helicity amplitudes | Bo|? and a
for x., are experimentally known only with an accuracy of
about 30%—-60% from E835 measurements [20]. Hence it is

requirement that the e™ e~y invariant mass be equal to the respective
X mass, this gives a clean trigger condition of the x. — J/v{y decay.
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FIG. 12. (Color online) Same as in Fig. 11, but for the different values of the phases of By and B; amplitudes for J = 2 as indicated.

very important to perform the polarization studies within the
same experimental setup not only for pA, but also for the
pp reaction. Only such parallel measurements could really
address the nuclear effects discussed in the present work.

7
pm+l

/
2 p;zwz [\

/
> pnl+ng+l

/ Pnytnotl

Pry+ng+2

VA Pa

a1

FIG. 13. The diagonal transition diagram for the production of
the charmonium state y; [cf. Fig. 1(a)] including multiple elastic
rescatterings for the incoming p and outgoing x .

IV. SUMMARY

We have calculated the transverse momentum differential
cross sections of the polarized x, production in the antiproton-
induced reactions on nuclei close to the production threshold.
The incoming antiproton was assumed to be unpolarized. We
have used the multiple scattering Feynman diagram formalism
in the GEA approach of Refs. [7,8]. For the elementary ampli-
tudes we used expressions motivated by the phenomenology
of pp interactions and QCD. The modifications of the proton
occupation numbers due to the short-range NN correlations
in the nuclear ground state have been taken into account.
The calculated differential cross sections have a characteristic
two-slope structure. The slope is changed at k, >~ 0.25 GeV//c
due to the SRC tail of the proton momentum distribution at
high transverse momenta.

As the polarization observable we have chosen the relative
fraction R of the y., states with helicity O at small transverse
momenta normalized such that R =1 in the pp — x=
reaction. The color filtering mechanism alone leads at most
to a 10% increase of R in pA reactions with respect to the
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FIG. 14. The diagram with one nondiagonal transition y;, Ny, 4n,+2 = XN,

for the incoming p, intermediate x;, and outgoing .

pp case. The interference of the direct pp — x»9 formation
amplitude with the two-step pp — xo0, XoolN — x20N ampli-
tude strongly influences R. As a consequence, within a beam
momentum range of 5-7 GeV/c, R varies by 30%—50%. The
specific shape of the pj,p dependence of R is determined by
the unknown phase difference of the By helicity amplitudes for
J = 2and J = 0. However, the amplitude of the deviations of
‘R from the p p value is proportional to the difference between
the total interaction cross sections of the 1 P charmonium states
with L, = land L, = 0.

To conclude, we suggest that the experimental measure-
ments of the py, dependence of the relative fraction of y.,
states with helicity 0 at small transverse momenta in pA

J

(LY}

w1+np+2 [Cf. Fig. 1(d)] including multiple elastic rescatterings

reactions would provide a sensitive test of the constituent
quark model description of the x. states. Such studies
can be performed in the future PANDA experiment at
FAIR.
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APPENDIX: MULTIPLE SCATTERING DIAGRAMS

The diagonal transition term with with n; elastic rescatterings of the antiproton before its annihilation and n, elastic
rescatterings of the outgoing charmonium yx, is shown in Fig. 13. The full transition amplitude (i.e., S-matrix element) between
the initial state antiproton + nucleus A and final state charmonium + nucleus (A — 1) is

1

2A-1
SJWA—I;P_wA = <_) /dsxé'.'deA/d3xl "'d3wa:—](x/2’ '-'7Xi4)1/fA(X1’X2’ "'7XA)/ (

VvV

/ Vd®p
X ..
@m)

C(Qn)y

Vd?pa . e .
PA ipyXyr D) X, +iPus X - HiPAX, SN

Vdp)
27)3

Vdip,
@2n)?

..N’/l;ﬁNl...Nne_lplxl_m_lprA, (Al)

where n = n; + n, + 1 is the number of involved nucleons, S; Nj-o-NJ: NN, is the amplitude of the transition between plane-wave
states, and V is a normalization volume. Integrating out the momenta and coordinates of the spectator nucleons in the final state

gives the following expression:

1 2n—1
SIyaiipya = (W) /d3x§-~d3x;/d3x1 e dPxap_ (X, XXt 1y X WA X, LX)
3 3 3 3
Vdpy Vb [VAp1 VAP iptiving g (A)
(2m)} @2n)} 2n)} (2m)} 2P
The S-matrix element between plane-wave states is expressed as follows
. MJN;---N,’I;’N N,
Sing-Ngpny-N, = 1) 8V (pp + pr+prt- A pp—k—py == py) o (A3)

[2E;V2EV(2mV)Xn-D20V]1/2’
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where we assumed that the initial and final nucleons are nonrelativistic. For the following it is convenient to introduce the
four-momentum transfer by the ith nucleon as

qlzpl—p:, l:2,,l’l (A4)

The corresponding transverse and longitudinal momentum transfers are then t; = q;; = p;; — p}, and g; = pi — p*.
The invariant amplitude is calculated with a help of Feynman rules which gives

MynE)Myn(ta1) - My (tn, 12) My pp(P1) Mpn (tn, 1) - - Mpn(t2)
M NNy N, = .
Dy(Vy—1) - Dy(vn42) Dy(v1) Djs(vp41) -+ Dp(v2)

We assumed here that the elementary amplitudes depend on the transverse momentum transfers only. The antiproton inverse
propagators are

(A5)

i 2
—Dy(v) = (pﬁ + qu) —m*+is= 2pan(=li +ie), i=2,...,n1+ 1. (A6)

Jj=2

The charmonium inverse propagators are

ny+1
—D;(v) = | pp+p1+ Z q; | —m)+ie=2puw(AY -1 +ie),
j=2
) (A7)
—Dy(w)=\p;+p+ qu —m} +ie= 2P1ab(A(} —1; +ie),
j=2
wherei =n; +2,...,n — 1. In Egs. (A6) and (A7) we used the accumulated longitudinal momentum transfers defined as
Y dd for i=2,....n +1,
L={pi+Xi% ¢ for i=1, (A3)

PT"‘Z;:zl]f for i=n +2,....n—1.

By using the coordinate representation of the propagators (15) we can now perform the longitudinal momentum integrations
in (A2). After some algebra we come to the following expression:

/dp’fmdp,’f/dpi~~dpﬁ3(p1ab+pf+q§+~-+q,i — k%) exp{ip5ah + - +ipfz, —iha) — - —ily 120 4
+i(A) =) +i(AS = lya)zm o4 H (A = lyinn) 2 4, — iPT21 — - —iDE2a)

= Qn)" '8y —22) - 8z, — z)exp {i AT () + 20+ + 20 L))
X /dq§ ---dg’exp {—iqZZZ2 — e —igiz, — illz? - ilzzg — = iz,,l+,,2z2]+,,2 + i(Plab — kK +q+ - +f]§)Z1}

= (271)2("*1)8(52 —22) - 8(z) —za)8(z2 —z3 + zg) o 8(zn — Zm1 + zgl)S(anH -1+ z21+1)5(zm+2 -1 — z?)

X 8(zm+3 — Zm+2 — Zo42) -8 (20 — zum1 — 20_1) exp {i (prab — k5 4+ AG)z, —iAGz1 ] (A9)

In order to obtain the last expression in (A9) we substituted the expression p{ = k* — pip, — g5 — - - - — ¢ in the formulas (A8)
for the accumulated longitudinal momentum transfers and, after performing the integrations over dq; - - - dg?, simplified the
arguments of § functions by using recursive relations

0 0 0
ittt =44k T, =02,
(A10)
0_ 0 0 _ 0 I 3
i =2 =y~ T %o — A =4 —Zi-1 — %, L=nm+3....n

Transverse momentum integrations in (A2) are performed as follows:
/ d*ph, -~ d*p), / d*py- - d*pudP P+ttt — KMy (t) - My (t, 1) My p(P10Myn (tn, 42) - - My (t)
x exp{ip5,by + - -+ +ip,,b, — ip1;b; — - -+ — ipucby}
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= 2m)*" V5D (b)) — by) - - 8P (), — b,) exp(—ik;by) / d’ty - d’ty exp{—ity(by — by) — -+ — it, (b, — b))

X Mpn(t2) - Mpn (tn, 1) Myp(& — ty — -« = t) My (tn,42) - - Myn(ty).

(Al11)

We see that due to the § functions in Egs. (A9) and (A11) the primed and nonprimed coordinates coincide and the integration over
d3x§ . -d3x,’, in Eq. (A2) leads to the appearance of the product ¥} _, (X2, ...,X4)¥a(Xi, ...,X4) in the transition amplitude.

Using Egs. (A9) and (A11) and assuming again the nonrelativistic nucleons (i.e., neglecting the energy transfer in rescattering

processes) we can rewrite the amplitude (A2) as
S _I@2m)(E; + Ey —a))M
Ja—1:p¥a — (2EﬁV2wV)1/2 JYa-1:p¥as

(A12)

where the matrix element My, .5y, should be replaced by the following one:

M’(1,2,....n)

l-nfl
QENY2Q2m)2n =D (dmpyg !

X O (21 = 20, 41)O (2042 = 21)O (243 — Zni42) -+ On — za1) xp {i (Pra — k* + AG)z, — iAjz) — ik;by}

/cﬂxl AU (e e XDVAKL o X)OE — 22) - Ozt — 7))

X /d2l2 - d?tyexp{—ity(by —by) — -+ — ity (by — b)IM N () - - My (tn, 1) Mypp(ky —tp — -+ — t,)

X My (tn42) -+ Myn(ty). (A13)

The product of ® functions in this equation is governed by the order of scatterings of the incoming antiproton and outgoing
charmonium. Hence, summing all possible diagrams with the different order of scatterings on the fixed sets of nucleons-scatterers
(n scatterers for the p and n, scatterers for the charmonium) is equivalent to the replacement of the product of the ® functions
in (A13) by the following one:

O(z1 —22) - O(21 = Zu,41)O(2n+2 — 21) -+ - Ozn — 21). (Al4)

Let us now constrain the kinematics of the produced charmonium such that | pj,, — k%] < piab, 1.€., to the quasifree region. Due
to the presence of 8(E; + E| — w) in the expressions for the § matrix (A12) and in the differential cross section (8), such a
constraint leads to the condition

Db — K+ A = (A9)?/2p < A, (A15)

And thus we can neglect the term i (pyp, — k° + A(})z,, in the exponent of Eq. (A13) which depends on the longitudinal coordinate
z,, of the last scatterer. This leads us to the following expression for the matrix element of the diagonal transition with multiple
elastic rescatterings:

M’(1,2,...,n)

l-nfl

T QEN2Qr)2 D (dmprgp )y

/d3xl P AV (XX YAXL, L X0)O(2) — 22) - 6(21 - Zn1+1)

XO(zn42 —21) -+ Oz, —z)exp{ —i Az — ikzbl}/dztz -+ d?ty exp{—ity(by — by) — - -+ — ity (b, — by)}

X Myn(t2) - My (tn,1)Mypp(ke —ty — -+ — t) My (tn,42) - - Myn (). (A16)

The diagram with one nondiagonal transition, n; elastic rescatterings of the incoming antiproton, n, elastic rescatterings
of intermediate charmonium x,, and n3 elastic rescatterings of the outgoing charmonium x; is shown in Fig. 14. In total,
n = n; + ny + n3 + 2 nucleons are involved in the reaction. It is clear then, that the formulas (A1)-(A4) are valid also in this
case, but with the newly defined value of n. For the invariant amplitude we have now instead of Eq. (A5):

 Myn@)M N (t—y) - My (t,4ma3) Mynas v (b 4mar2) Mon (tnynpt) -+ Mon (tn,+2) My, (P11)

Myn:..N' 5NN =
I MR DyWam1)- - Dy (Vnysnis2) Dy, (vn+m+1) -~ D, (vay+2) Dy, (01)
My (ta41) - - Mpn(t2)

. Al7
) Dﬁ(Un]Jrl)"'Dﬁ(v2) ( )
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The antiproton inverse propagators are given by Eq.(A6). The x ,-charmonium inverse propagators are

ni+1 2
—Dj(v)=|ps+p+ Z q; | — ma +ie= 2P1ab(A91 — I +ig),
j=2
Al
. (A18)
D)= |ps+pi+d aj| —mi +ie=2pu(AY —1i +ie),
j=2
wherei =n; +2,...,n; +ny + 1. The x;-charmonium inverse propagators are
l 2
D)= pptpi+ Y qi| —mi+ie=2pu(A) — 1 +ie), (A19)
j=2
where i =n; +ny +2,...,n — 1. The accumulated longitudinal momentum transfers /; are given by Eqs. (A8) with the new
value of n.
The longitudinal momentum integration in (A2) becomes now
/dpéz - dpy f dpi -+ dpid(pus + i+ 65+ +a; — k) explipizy + - +ipiz, — ity — o —ilizy g,

+ I(A(}l - ll)z(l) + I(A(}l - l”l+2)Z21+2 +ot l(A(}l - lnl+"2+l)Z21+n2+1

+l(A(} - lnl+n2+2)zg]+n2+2 + e + Z(A.(; - l”_l)zg—l - iprl - lpflzn}
= 2n)" '8y — 22) -8z, — z) exp {i AY (2] + 20 o+ F 2y t) FIAT (D i+ 20

n—1
X quzZ ---dglexp{—igizo — - —iqiz, — illz? — = iln_lzg_l + i(plab — K+ + Q;)Zl}

= Q2r)* " V8(h — 22) -+ 8z — zn)S(z2 — 23+ 29) -+ 8(2my — Zmr1 + 2, )8 (Zmr1 — 21 + 20, 41)8(2n42 — 21 — 21)
X S(Z’11+3 —Zm+2 Z21+2) o .S(Z" —Zn-17 Z2—1) exp {i(plab -k + A(})Z” - iA(}lzl + Z(A(}l - A(})Z”1+i12+2}’
(A20)

The derivation of the last expression in (A20) was performed in full analogy with the case of the longitudinal integral (A9)
for the diagonal amplitude. We again used the formulas (A8) for the accumulated longitudinal momentum transfers with
Py = k¥ — pab — g5 — - - - — g% and applied the recursive relations (A10) in the arguments of the §-functions (with newly defined
n=n;+ny,+n3+2).

Transverse momentum integral in (A2) for the nondiagonal amplitude has the following form:

/ d*ph,---d*pl, / d’pii- @ pud@ P+ o+ Aty = K)Mpn(t) - Mpn (b, 1) M5 p(P1oOM (b, 42) - -

X MJ[N(tn1+n2+1)MJN;J1N(tnlJranrZ)MJN (tn1+n2+3) ot MJN(tn)eXp{iPIth/Z +- 4+ lp:nb;l - ipltbl - = ipntbn}
= Q2r) " D8P b, — by) - - 8P (b), — b,) exp(—ik;b)) / d*ty - d*ty exp{—ita(by — by) — - — ity (b, —b)}Mpn(ta) - --
X MﬁN (tn1+l)MJ1;ﬁp(kt - t2 - t11)M11N(tnl+2) e MJ,N(tnl-‘rnz-'rl)MJN’;JIN(tn1+n2+2)MJN (tn1+n2+3) e MJN(tn)-
(A21)

Using (A20) and (A21) we can express the amplitude of the nondiagonal transition including multiple elastic rescatterings in the
form (A12) with the matrix element My, .5y, replaced by

MM (1,2,....n)

l-nfl

s 3 DY 3 * —_— ... —_—
= QE) R D Ampry /d X dPxayi (o, X)WaX, - XA)O@ — 22) - O (21 — 2y 41)

X ®(an+2 - Z1)®(Zn1+ﬂz+2 - Zn1+2) T ®(an+n2+1 - Z1)®(Zﬂl+nz+2 - Zn1+nz+1)®(zn1+nz+3 - Zn1+n2+2) T
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X O (20 — 2y pmys2) exp { —i AL 21 — ikeby + i (A0 — Az 4m12) /d%z &Pty expl—ita(by — by) — - -

— ity (by — bOIMpn(6) - - My (tn, 1) M5 p (K
XM ynoN (b mpr2) My (tnynas3) <+ - Myn (),

—ty— = )My N (tes2) - Moy (tnynai1)

(A22)

where we summed the diagrams with the different order of rescatterings (with the fixed struck nucleon N; and nucleon Ny, 44,2
on which the nondiagonal transition takes place) and made the assumption of the quasifree kinematics | pj,p — k% << prap Of the
final x ;. Equations (A16) and (A22) are the generalizations of the corresponding Egs. (1) and (18) for the case of multiple elastic

rescatterings of the antiproton and charmonia.
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