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Starting from the Feynman diagram representation of multiple scattering we consider the polarized χc(1P )-
charmonia production in antiproton-nucleus reactions close to the threshold (plab = 5–7 GeV/c). The rescattering
and absorption of the incoming antiproton and outgoing charmonium on nucleons are taken into account, including
the possibility of the elastic and nondiagonal (flavor-conserving) scattering χcJ N → χcJ ′N , J,J ′ = 0,1,2. The
elementary amplitudes of the latter processes are evaluated by expanding the physical χc states in the Clebsch-
Gordan series of the cc̄ states with fixed values of internal orbital angular momentum (Lz) and spin projections on
the χc momentum axis. The total interaction cross sections of these cc̄ states with nucleons have been calculated
in previous works using the QCD factorization theorem and the nonrelativistic quarkonium model, and turned
out to be strongly Lz dependent due to the transverse size difference. This directly leads to finite values of
the χc-nucleon nondiagonal scattering amplitudes. We show that the χc0N → χc2N transitions significantly
influence the χc2 production with helicity zero at small transverse momenta. This can serve as a signal in future
experimental tests of the quark structure of χc states by the PANDA Collaboration at the Facility for Antiproton
and Ion Research (FAIR).
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I. INTRODUCTION

It is well established that, in the perturbative QCD (pQCD)
regime, rt → 0, the total cross section of a quarkonium state
interaction with a proton scales as the square of the transverse
separation rt between quark and antiquark, σq̄q(rt ) ∝ r2

t . This
indicates that extracting the total quarkonium-nucleon cross
section gives access to the transverse size of the quarkonium,
although at rt > 0.2–0.5 fm the deviations from a simple
proportionality become important (the energy dependence of
the dipole-nucleon cross section also modifies this relation).
If the relative coordinate wave function of the quarkonium
is nonisotropic (P,D, . . . states), it is, thus, natural to
expect that the cross section will depend on the quarkonium
polarization.

This was first predicted in Ref. [1], where the cross sections
of the charmonium- and bottomonium-nucleon interaction
have been calculated on the basis of the QCD factorization
theorem and the nonrelativistic quarkonium model. Indeed,
for the 1P χc and χb states this resulted in a quarkonium
polarization-dependent total interaction cross section with a
nucleon. Qualitatively similar results were obtained later in
Ref. [2], however, with somewhat different absolute values of
the charmonium-nucleon cross sections.

Analyzing charmonium production in relativistic heavy-
ion collisions, the authors of Ref. [1] predicted that the
survival probabilities of χ states with different polarization
will, therefore, be different. This color filtering effect has
been included afterwards in the Ultra-relativistic Quantum

*Corresponding author: larionov@fias.uni-frankfurt.de

Molecular Dynamics model simulations of heavy-ion col-
lisions [3] to successfully describe J/ψ production at Su-
per Proton Synchrotron energies. Unfortunately, heavy-ion
collisions involve too complex processes and it is difficult
to use them to access the true charmonium-nucleon cross
sections [4].

Antiproton-nucleus collisions give the unique opportunity
to study nuclear interactions of the slowly moving charmonium
states exclusively formed in p̄p → � reactions inside the
nuclear medium [5,6]. Here, � stands for any charmonium
state (J/ψ,ψ ′,χc, . . . ) decaying to p̄p. In this paper we
show that, owing to the polarization-dependent χc-nucleon
cross sections, the produced χc2 states in near-threshold
p̄-nucleus collisions should reveal a significant polariza-
tion signal. Complementary information can be obtained in
γA → J/ψA∗ reactions at Eγ ∼ 10 GeV which will be
studied at the upgraded Thomas Jefferson National Accelerator
Facility.

We calculate the Feynman multiple scattering diagrams
in the generalized eikonal approximation (GEA) [7,8]. The
direct formation mechanism p̄p → χc, as well the corrections
due to the rescattering of incoming antiproton and outgoing
charmonium states on nucleons, including the possibility of
nondiagonal transitions, are taken into account. The nondiag-
onal transitions χcJ N → χcJ ′N (J �= J ′) are easily possible
due to the small (∼140 MeV) mass splitting between the
various χc states. We show that the nondiagonal transitions
strongly enhance the polarization signal with respect to the
color filtering mechanism only.

In Sec. II we describe our model. Section III contains the
results of the numerical calculations for the transverse momen-
tum differential cross sections of χc production with different
total angular momenta and helicities. At the end of Sec. III we
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FIG. 1. (a) The diagram for the production of the charmonium
state χJ with four-momentum k in the impulse approximation.
(b) The diagram taking into account elastic rescattering of the
incoming antiproton on a nucleon. (c) The diagram with rescattering
χJ N2 → χJ N ′

2 of the initially produced χJ state on a nucleon.
(d) The diagram with the initial production of another state χJ1

followed by the nondiagonal transition χJ1N2 → χJ N ′
2. p′

p̄ , k1, and p′
2

are the four-momenta of the intermediate antiproton and charmonium
states and of the scattered nucleon N ′

2, respectively.

propose concrete signals for the future PANDA experiment at
FAIR. Section IV summarizes the main results of this work.

The Appendix contains the derivation of the expressions for
the multiple scattering amplitudes.

II. MODEL

In the following for brevity we denote as χJ the χcJ

charmonium with the total angular momentum J (J = 0,1,2).
When explicitly needed, we will also use the notation χJν for
the χcJ states with the fixed helicity ν (ν = −J, . . . ,J ).

Let us first consider only one- and two-step reactions.
In this approximation, all possible diagrams contributing
to the exclusive process p̄A → χJ (A − 1)∗ are shown in
Fig. 1. We neglect the contribution of the processes where
p̄ first excites to N̄∗ and next the reaction N̄∗ + p → χJ

takes place. This should be a reasonable assumption since
at the beam momentum of 5.7 GeV/c the diffractive cross
section σ (p̄p → N̄∗p + c.c.) = 0.13 ± 0.02 mb [9] is two
orders of magnitude smaller than the elastic p̄p cross section
(�15 mb) at the same beam momentum. (Another reason is
that the Dalitz plots for the χc → p̄pπ0 decay reported by
the CLEO Collaboration [10] do not show any structures
at M2

p̄π0 � 2 GeV2 or at M2
pπ0 � 2 GeV2. Hence the χc

coupling to the N̄∗N (+c.c.) states is not expected to be
significant.) The amplitudes for the processes (a), (b), (c),
and (d) are, respectively,

MJ (1) = MJ ;p̄p(k − pp̄)√
2E1

∫
d3x1 · · · d3xAψ∗

A−1(x2, . . . ,xA)e−i(k−pp̄)x1ψA(x1,x2, . . . ,xA), (1)

MJ (2,1) = 1√
2E12E2(2π )6

∫
d3x ′

2d
3x1 · · · d3xAψ∗

A−1(x′
2,x3, . . . ,xA)ψA(x1,x2, . . . ,xA)

×
∫

d3p′
2d

3p1d
3p2e

ip′
2x′

2−ip1x1−ip2x2δ(3)(pp̄ + q2 + p1 − k)
MJ ;p̄p(k − p′

p̄)Mp̄N (q2)

Dp̄(p ′̄
p)

, (2)

MJ (1,2) = 1√
2E12E2(2π )6

∫
d3x ′

2d
3x1 · · · d3xAψ∗

A−1(x′
2,x3, . . . ,xA)ψA(x1,x2, . . . ,xA)

×
∫

d3p′
2d

3p1d
3p2e

ip′
2x′

2−ip1x1−ip2x2δ(3)(pp̄ + p1 + q2 − k)
MJN (q2)MJ ;p̄p(k1 − pp̄)

DJ (k1)
, (3)

MJ1J (1,2) = 1√
2E12E2(2π )6

∫
d3x ′

2d
3x1 · · · d3xAψ∗

A−1(x′
2,x3, . . . ,xA)ψA(x1,x2, . . . ,xA)

×
∫

d3p′
2d

3p1d
3p2e

ip′
2x′

2−ip1x1−ip2x2δ(3)(pp̄ + p1 + q2 − k)
MJN ′;J1N (q2)MJ1;p̄p(k1 − pp̄)

DJ1 (k1)
, (4)

where q2 = p2 − p′
2 is the four-momentum transfer from the

nucleon-scatterer. Here E1 and E2 are the single-particle
energies of the involved nucleon states N1 (proton) and
N2, neglecting the energy difference between the scattered
nucleon N ′

2 and the initial nucleon N2. MJ ;p̄p(p1) [MJ1;p̄p(p1)]
is the invariant amplitude of the χJ (χJ1 ) production in
the antiproton-nucleon annihilation. Mp̄N (q2), MJN (q2), and
MJN ′;J1N (q2) are, respectively, the invariant amplitudes of the
antiproton and χJ elastic scattering and of the nondiagonal
transition χJ1 → χJ on a nucleon. The inverse propagators

of the intermediate antiproton and charmonium states
are

−Dp̄(p′
p̄) = (p′

p̄)2 − m2 + iε, (5)

−DJ (k1) = k2
1 − m2

J + iε, (6)

[and similar for DJ1 (k1)] where p′
p̄ = pp̄ + q2 and k1 =

pp̄ + p1; m and mJ are the nucleon and charmonium masses,
respectively. The normalization of the χJ N elastic scattering
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amplitude is chosen such that the optical theorem is

Im MJN (0) = 2plabmσ tot
JN , (7)

and similar for the other elementary amplitudes. The differen-
tial cross section of the inclusive charmonium χJ production
on the nucleus A is

dσp̄A→χJ (A−1)∗ = 2πδ(Ep̄ + E1 − ω)

2plab

∑
N1

∑
ψA−1

∣∣∣∣MJ (1)

+
∑
N2

[MJ (2,1) + MJ (1,2)

+MJ1J (1,2)]

∣∣∣∣
2

d3k

(2π )32ω
, (8)

where the summations over all involved nucleon states (N1,
N2) and over all possible states of the final nucleus (ψA−1) are
taken. The many-body wave functions are normalized as∫

d3x1 · · · d3xA|ψA(x1,x2, . . . ,xA)|2 = 1. (9)

We have already implicitly applied the independent particle
model for the nucleons in the target nucleus by neglecting all
position and momentum correlations between them (including
those due to antysymmetrization), i.e., we assumed that

ψA(x1,x2, . . . ,xA) =
A∏

i=1

φi(xi) (10)

with φi(xi) being single-nucleon states normalized as∫
d3xi |φi(xi)|2 = 1. (11)

This allowed us to separate out the single particle energies
E1 and E2 in Eqs. (1)–(4). This is also the reason why the
summation over the first nucleon (N1) is taken in Eq. (8) for
the probabilities rather than for the amplitudes.

The inverse propagators (5) and (6) can be simplified if one
treats nucleons nonrelativistically, which gives

−Dp̄(pp̄ + q2) = 2plab
( − qz

2 + iε
)
, (12)

−DJ (pp̄ + p1) = 2plab
(
0

J − pz
1 + iε

)
, (13)

where

0
J = m2 + E2

1 + 2Ep̄E1 − m2
J

2plab
, (14)

and the z axis is directed along the p̄ beam momentum. For
the calculations of the production amplitudes on a nucleus we
apply the GEA approach [7,8]. This approach is based on the
coordinate representation of the propagator

1

0
J − pz

1 + iε
= −i

∫
dz0�(z0)ei(0

J −pz
1)z0

, (15)

(and similar for the antiproton propagator) and on the as-
sumption that the elementary amplitudes depend on the trans-
verse momentum transfer only, i.e. MJ ;p̄p(p1t ), MJ1;p̄p(p1t ),
Mp̄N (t2), MJN (t2) and MJN ′;J1N (t2). Here t2 ≡ q2t = kt − p1t

is the transverse momentum transfer in the elastic scattering
p̄N → p̄N ′, χJ N → χJ N ′ or in the nondiagonal transition
χJ1N → χJ N ′. Then the amplitudes (2),(3) and (4) take the
following form:

MJ (2,1) = i√
2E12E22plab(2π )2

∫
d3x1 · · · d3xAψ∗

A−1(x2,x3, . . . ,xA)ψA(x1,x2, . . . ,xA)

×�(z1 − z2)e−i(k−pp̄)x1

∫
d2t2e

−it2(b2−b1)MJ ;p̄p(kt − t2)Mp̄N (t2), (16)

MJ (1,2) = i√
2E12E22plab(2π )2

∫
d3x1 · · · d3xAψ∗

A−1(x2,x3, . . . ,xA)ψA(x1,x2, . . . ,xA)

×�(z2 − z1)e−i(k−pp̄)x1+i(0
J +plab−kz)(z2−z1)

∫
d2t2e

−it2(b2−b1)MJN (t2)MJ ;p̄p(kt − t2), (17)

MJ1J (1,2) = i√
2E12E22plab(2π )2

∫
d3x1 · · · d3xAψ∗

A−1(x2,x3, . . . ,xA)ψA(x1,x2, . . . ,xA)

×�(z2 − z1)e−i(k−pp̄)x1+i(0
J1

+plab−kz)(z2−z1)
∫

d2t2e
−it2(b2−b1)MJN ′;J1N (t2)MJ1;p̄p(kt − t2). (18)

The amplitudes squared and summed over all possible states of the final nucleus (A − 1) can be evaluated by using the
completeness relation:

∑
ψA−1

ψA−1(x̃2,x̃3, . . . ,x̃A)ψ∗
A−1(x2,x3, . . . ,xA) = δ(3)(x̃2 − x2)δ(3)(x̃3 − x3) · · · δ(3)(x̃A − xA). (19)
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For the impulse approximation (IA) term we have∑
ψA−1

|MJ (1)|2 = |MJ ;p̄p(kt )|2
2E1

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)ei(k−pp̄)(x̃1−x1)

= |MJ ;p̄p(kt )|2
2E1

∫
d3X f1(X,k − pp̄), (20)

where

f1(X,p) =
∫

d3xφ∗
1

(
X + x

2

)
φ1

(
X − x

2

)
eipx (21)

is the Wigner function (i.e., the phase space occupation number) of the struck nucleon. To obtain the last form of Eq. (20), we
directly applied the independent particle model relation (10) and introduced the new variables X = (x̃1 + x1)/2 and x = x̃1 − x1.

The squares of the amplitudes of Figs. 1(b)–1(d) are calculated as

∑
ψA−1

|MJ (2,1)|2 = 1

(2π )42E1(4mplab)2

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)eikt (b̃1−b1)+i(kz−plab)(z̃1−z1)

×�(z̃1 − z2)�(z1 − z2)
∫

d2 t̃2d
2t2e

i t̃2(b2−b̃1)−it2(b2−b1)M∗
J ;p̄p(kt − t̃2)M∗

p̄N (t̃2)MJ ;p̄p(kt − t2)Mp̄N (t2)

= 1

(2π )22E1(4mplab)2

∫
d2t2|MJ ;p̄p(kt − t2)|2|Mp̄N (t2)|2

∫
d3Xf1(X,kt − t2,k

z − plab)
∫ Z

−∞
dz2 |φ2(B,z2)|2,

(22)∑
ψA−1

|MJ (1,2)|2 = 1

(2π )42E1(4mplab)2

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)eikt (b̃1−b1)+i0

J (z̃1−z1)

×�(z2 − z̃1)�(z2 − z1)
∫

d2 t̃2d
2t2e

i t̃2(b2−b̃1)−it2(b2−b1)M∗
JN (t̃2)M∗

J ;p̄p(kt − t̃2)MJN (t2)MJ ;p̄p(kt − t2)

= 1

(2π )22E1(4mplab)2

∫
d2t2|MJN (t2)|2 |MJ ;p̄p(kt − t2)|2

∫
d3Xf1

(
X,kt − t2,

0
J

) ∫ +∞

Z

dz2 |φ2(B,z2)|2,
(23)∑

ψA−1

|MJ1J (1,2)|2

= 1

(2π )42E1(4mplab)2

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)eikt (b̃1−b1)+i0

J1
(z̃1−z1)

×�(z2 − z̃1)�(z2 − z1)
∫

d2 t̃2d
2t2e

i t̃2(b2−b̃1)−it2(b2−b1)M∗
JN ′;J1N

(t̃2)M∗
J1;p̄p(kt − t̃2)MJN ′;J1N (t2)MJ1;p̄p(kt − t2)

= 1

(2π )22E1(4mplab)2

∫
d2t2

∣∣MJN ′;J1N (t2)
∣∣2 ∣∣MJ1;p̄p(kt − t2)

∣∣2
∫

d3Xf1
(
X,kt − t2,

0
J1

) ∫ +∞

Z

dz2 |φ2(B,z2)|2. (24)

The last form of Eqs. (22)–(24) is obtained assuming that the momentum scale of the elementary amplitudes variation is much
larger than 1/L, where L ∼ 1 fm is the characterisic scale on which the nucleon wave function changes. (If |b1 − b2| ∼ L or
|b̃1 − b2| ∼ L then the exponent exp{i t̃2(b2 − b̃1) − it2(b2 − b1)} in the first Eqs. (22)–(24) oscillates rapidly as a function of
t2 or t̃2 and the integration over d2t2d

2 t̃2 gives almost zero.) This allows us to make the replacement φ2(x2) → φ2(B,z2), where
B = (b̃1 + b1)/2, and perform the integration over d2b2.

Let us discuss now the interference terms. The leading ones are between the IA diagram [Fig. 1(a)] and the elastic rescattering
diagrams [Figs. 1(b) and 1(c)]:

∑
ψA−1

MJ (2,1)MJ∗(1) + c.c. = iM∗
J ;p̄p(kt )

2E1(2π )24mplab

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)ei(k−pp̄)(x̃1−x1)

×�(z1 − z2)
∫

d2t2e
−it2(b2−b1)MJ;p̄p(kt − t2)Mp̄N (t2) + c.c.

= iMp̄N (0)

4mplab

|MJ ;p̄p(kt )|2
2E1

∫
d3Xf1(X,k − pp̄)

∫ Z

−∞
dz2|φ2(B,z2)|2 + c.c., (25)
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∑
ψA−1

MJ (1,2)MJ∗(1) + c.c.

= iM∗
J ;p̄p(kt )

2E1(2π )24mplab

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)ei(k−pp̄)(x̃1−x1)+i(0

J +plab−kz)(z2−z1)

×�(z2 − z1)
∫

d2t2e
−it2(b2−b1)MJN (t2)MJ;p̄p(kt − t2) + c.c.

= iMJN (0)

4mplab

|MJ ;p̄p(kt )|2
2E1

∫
d3Xf1

(
X,kt ,

kz − plab + 0
J

2

) ∫ +∞

Z

dz2|φ2(B,z2)|2 ei(0
J −kz+plab)(z2−Z) + c.c., (26)

where we again assumed the smallness of the matrix element variation on the momentum scale of the order of L−1. By using
the optical theorem (7) we see that the both interference terms (25) and (26) are the absorptive corrections to the IA term (20).
[For the term (26) one has to require in addition that kz = plab + 0

J , i.e., restrict the kinematics of the final charmonium χJ

to the quasifree regime; see also Eq. (A15).] On the other hand, the interference term between the IA diagram [Fig. 1(a)] and
the nondiagonal transition diagram [Fig. 1(d)] has a pure quantum mechanical origin and cannot be interpreted in a probabilistic
picture:∑

ψA−1

MJ1J (1,2)MJ∗(1) + c.c.

= iM∗
J ;p̄p(kt )

2E1(2π )24mplab

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)ei(k−pp̄)(x̃1−x1)+i(0

J1
+plab−kz)(z2−z1)

×�(z2 − z1)
∫

d2t2e
−it2(b2−b1)MJN ′;J1N (t2)MJ1;p̄p(kt − t2) + c.c.

= iM∗
J ;p̄p(kt )

2E14mplab
MJN ′;J1N (0)MJ1;p̄p(kt )

∫
d3X f1

(
X,kt ,

kz − plab + 0
J1

2

) ∫ +∞

Z

dz2|φ2(B,z2)|2 e
i(0

J1
−kz+plab)(z2−Z) + c.c.

(27)

Finally, the interference term between the charmonium elastic rescattering diagram [Fig. 1(c)] and the nondiagonal transition
diagram [Fig. 1(d)] is calculated as follows:∑

ψA−1

MJ1J (1,2)MJ∗(1,2) + c.c.

= 1

(2π )42E1(4mplab)2

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)eikt (b̃1−b1)+i(0

J1
−0

J )z2+i0
J z̃1−i0

J1
z1

×�(z2 − z̃1)�(z2 − z1)
∫

d2 t̃2d
2t2e

i t̃2(b2−b̃1)−it2(b2−b1)MJN ′;J1N (t2)MJ1;p̄p(kt − t2)M∗
JN (t̃2)M∗

J ;p̄p(kt − t̃2) + c.c.

= 1

(2π )22E1(4mplab)2

∫
d2t2MJN ′;J1N (t2)MJ1;p̄p(kt − t2)M∗

JN (t2)M∗
J ;p̄p(kt − t2)

×
∫

d3Xf1

(
X,kt − t2,

0
J1

+ 0
J

2

) ∫ +∞

Z

dz2 e
i(0

J1
−0

J )(z2−Z)|φ2(B,z2)|2 + c.c. (28)

The interference terms between the antiproton rescattering diagram [Fig. 1(b)] and the charmonium rescattering and nondiagonal
transition diagrams [Figs. 1(c) and 1(d)] disappear in our approximation since they include the products of the factors �(z2 −
z1)�(z̃1 − z2).

A. Absorptive corrections

The above formulas for the products of matrix elements can be generalized to take into account the multiple elastic rescattering
effects (see the Appendix). The sum of the interference terms between the diagonal amplitudes (A16) with elastic rescatterings
of the antiproton and χJ charmonium on all possible nonoverlapping sets of nucleons can be expressed as∑

set1 �=set2

∑
ψA−1

MJ (1,set1)MJ∗(1,set2)

= |MJ ;p̄p(kt )|2
2E1

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)ei0

J (z̃1−z1)+ikt (b̃1−b1)
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×
A∏

i=2

(
1 + i

4mplab
[Mp̄N (0)�(z1 − zi)δ

(2)(bi − b1) + MJN (0)�(zi − z1)δ(2)(bi − b1)

−M∗
p̄N (0)�(z̃1 − zi)δ

(2)(bi − b̃1) − M∗
JN (0)�(zi − z̃1)δ(2)(bi − b̃1)]

)

= |MJ ;p̄p(kt )|2
2E1

∫
d3Xf1

(
X,kt ,

0
J

) A∏
i=2

(
1 − σ tot

p̄N

∫ Z

−∞
dzi |φi(B,zi)|2 − σ tot

JN

∫ +∞

Z

dzi |φi(B,zi)|2
)

, (29)

where we again assumed the slowness of the ground state wave function variation with transverse coordinates. The sets of
nucleons-scatterers are denoted as “set1” and “set2”. We neglect in Eq. (29) the product terms with the same nucleon-scatterer in
the direct and conjugated amplitudes which give the proper rescattering contributions discussed in the next subsection. Note that
the struck nucleon N1 is fixed in the both amplitudes and is excluded from the sets of scatterers. In Eq. (29) we assumed that the
motion of nucleons inside the nucleus is quasiclassical, i.e., the product φ∗

1 (X + x/2)φ1(X − x/2) in the Wigner function (21)
changes much faster as a function of the relative coordinate x than as a function of the center-of-mass variable X. This allows
us to replace x1 → X and x̃1 → X in the multiple product factors and perform the integration of the wave functions over the
relative coordinate x separately.

In the case of identical nucleons and large A the multiple product factors are reduced to the exponential absorption for the
antiproton and charmonium,(

1 − σ tot
p̄N

∫ Z

−∞
dz2|φ2(B,z2)|2 − σ tot

JN

∫ +∞

Z

dz2|φ2(B,z2)|2
)A−1

� exp

(
−σ tot

p̄N

∫ Z

−∞
dz2ρ(B,z2) − σ tot

JN

∫ +∞

Z

dz2ρ(B,z2)

)
.

(30)

Here ρ(B,z2) = A|φ2(B,z2)|2 is the nucleon density. Thus, Eq. (29) is an extension of the IA term (20) for the absorption of the
incoming antiproton and of the outgoing χJ charmonium.

The leading order contribution of the nondiagonal transition (see Fig. 14 in the Appendix) to the total amplitude squared
appears as the interference of the diagonal (A16) and the nondiagonal (A22) amplitudes summed over all possible nonoverlapping
sets of nucleons-scatterers:∑

set1 �=set2

∑
ψA−1

MJ1J (1,2,set1)MJ∗(1,set2) + c.c.

= iM∗
J ;p̄p(kt )

2E14mplab
MJN ′;J1N (0)MJ1;p̄p(kt )

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)

×�(z2 − z1)δ(2)(b2 − b1)eikt (b̃1−b1)+i0
J z̃1−i0

J1
z1+i(0

J1
−0

J )z2

×
A∏

i=3

(
1 + i

4mplab

[
Mp̄N (0)�(z1 − zi)δ

(2)(bi − b1) + MJ1N (0)�(zi − z1)�(z2 − zi)δ
(2)(bi − b1) + MJN (0)

×�(zi − z2)δ(2)(bi − b1) − M∗
p̄N (0)�(z̃1 − zi)δ

(2)(bi − b̃1) − M∗
JN (0)�(zi − z̃1)δ(2)(bi − b̃1)

]) + c.c.

= iM∗
J ;p̄p(kt )

2E14mplab
MJN ′;J1N (0)MJ1;p̄p(kt )

∫
d3X f1

(
X,kt ,

0
J + 0

J1

2

) ∫ +∞

Z

dz2 |φ2(B,z2)|2ei(0
J1

−0
J )(z2−Z)

×
A∏

i=3

(
1 − σ tot

p̄N

∫ Z

−∞
dzi |φi(B,zi)|2 + i

[
MJ1N (0) − M∗

JN (0)
]

4mplab

∫ z2

Z

dzi |φi(B,zi)|2 − σ tot
JN

∫ +∞

z2

dzi |φi(B,zi)|2
)

+ c.c.

(31)

The struck nucleon (N1) and the nucleon on which the nondiagonal transition happen (N2) are excluded from both sets of
nucleons-scatterers. Without taking into account the absorptive correction, this expression is reduced to the interference term
(27).

B. Rescattering contributions

We will now take into account the interference between the amplitudes where the elastic or nondiagonal rescattering happen
on the same nucleon (N2). Fixing the struck nucleon (N1) and the nucleon scatterer (N2) in the direct and conjugated amplitudes,
we sum all possible interference terms with nonoverlapping sets of other participating nucleons.
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Four terms appear as the result. (i) The term due to the antiproton elastic rescattering [c.f. Eq. (22)] given by the product of
the direct and conjugated amplitudes (A16):∑

set1 �=set2

∑
ψA−1

MJ (2,1,set1)MJ∗(2,1,set2)

= 1

(2π )42E1(4mplab)2

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)eikt (b̃1−b1)+i0

J (z̃1−z1)

×�(z̃1 − z2)�(z1 − z2)
∫

d2 t̃2d
2t2e

i t̃2(b2−b̃1)−it2(b2−b1)M∗
J ;p̄p(kt − t̃2)M∗

p̄N (t̃2)MJ ;p̄p(kt − t2)Mp̄N (t2)

×
A∏

i=3

(
1 + i

4mplab
[Mp̄N (0)�(z1 − zi)δ

(2)(bi − b1) + MJN (0)�(zi − z1)δ(2)(bi − b1)

−M∗
p̄N (0)�(z̃1 − zi)δ

(2)(bi − b̃1) − M∗
JN (0)�(zi − z̃1)δ(2)(bi − b̃1)]

)

= 1

(2π )22E1(4mplab)2

∫
d2t2|MJ ;p̄p(kt − t2)|2 |Mp̄N (t2)|2

∫
d3X f1

(
X,kt − t2,

0
J

)

×
∫ Z

−∞
dz2 |φ2(B,z2)|2

A∏
i=3

(
1 − σ tot

p̄N

∫ Z

−∞
dzi |φi(B,zi)|2 − σ tot

JN

∫ +∞

Z

dzi |φi(B,zi)|2
)

. (32)

(ii) The diagonal term with rescattering [c.f. Eq. (23)] due to the product of the direct and conjugated amplitudes (A16):∑
set1 �=set2

∑
ψA−1

MJ (1,2,set1)MJ∗(1,2,set2)

= 1

(2π )42E1(4mplab)2

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)eikt (b̃1−b1)+i0

J (z̃1−z1)

×�(z2 − z̃1)�(z2 − z1)
∫

d2 t̃2d
2t2e

i t̃2(b2−b̃1)−it2(b2−b1)M∗
JN (t̃2)M∗

J ;p̄p(kt − t̃2)MJN (t2)MJ ;p̄p(kt − t2)

×
A∏

i=3

(
1 + i

4mplab
[Mp̄N (0)�(z1 − zi)δ

(2)(bi − b1) + MJN (0)�(zi − z1)δ(2)(bi − b1)

−M∗
p̄N (0)�(z̃1 − zi)δ

(2)(bi − b̃1) − M∗
JN (0)�(zi − z̃1)δ(2)(bi − b̃1)]

)

= 1

(2π )22E1(4mplab)2

∫
d2t2|MJN (t2)|2 |MJ ;p̄p(kt − t2)|2

∫
d3Xf1

(
X,kt − t2,

0
J

)

×
∫ +∞

Z

dz2 |φ2(B,z2)|2
A∏

i=3

(
1 − σ tot

p̄N

∫ Z

−∞
dzi |φi(B,zi)|2 − σ tot

JN

∫ +∞

Z

dzi |φi(B,zi)|2
)

. (33)

(iii) The nondiagonal rescattering term [c.f. Eq. (24)] due to the the product of the direct and conjugated amplitudes (A22):∑
set1 �=set2

∑
ψA−1

MJ1J (1,2,set1)MJ1J∗(1,2,set2)

= 1

(2π )42E1(4mplab)2

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)eikt (b̃1−b1)+i0

J1
(z̃1−z1)

×�(z2 − z̃1)�(z2 − z1)
∫

d2 t̃2d
2t2e

i t̃2(b2−b̃1)−it2(b2−b1)M∗
JN ′;J1N

(t̃2)M∗
J1;p̄p(kt − t̃2)MJN ′;J1N (t2)MJ1;p̄p(kt − t2)

×
A∏

i=3

(
1 + i

4mplab
[Mp̄N (0)�(z1 − zi)δ

(2)(bi − b1) + MJ1N (0)�(zi − z1)�(z2 − zi)δ
(2)(bi − b1) + MJN (0)

×�(zi − z2)δ(2)(bi − b1) − M∗
p̄N (0)�(z̃1 − zi)δ

(2)(bi − b̃1)

−M∗
J1N

(0)�(zi − z̃1)�(z2 − zi)δ
(2)(bi − b̃1) − M∗

JN (0)�(zi − z2)δ(2)(bi − b̃1)]

)
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= 1

(2π )22E1(4mplab)2

∫
d2t2|MJN ′;J1N (t2)|2 |MJ1;p̄p(kt − t2)|2

∫
d3X f1

(
X,kt − t2,

0
J1

) ∫ +∞

Z

dz2 |φ2(B,z2)|2

×
A∏

i=3

(
1 − σ tot

p̄N

∫ Z

−∞
dzi |φi(B,zi)|2 − σ tot

J1N

∫ z2

Z

dzi |φi(B,zi)|2 − σ tot
JN

∫ +∞

z2

dzi |φi(B,zi)|2
)

. (34)

And, (iv) the interference of the nondiagonal and diagonal terms with rescattering [c.f. Eq. (28)] given by the product of the
direct and conjugated amplitudes (A22) and (A16):∑

set1 �=set2

∑
ψA−1

MJ1J (1,2,set1)MJ∗(1,2,set2) + c.c.

= 1

(2π )42E1(4mplab)2

∫
d3x̃1d

3x1 · · · d3xAψ∗
A(x̃1,x2, . . . ,xA)ψA(x1,x2, . . . ,xA)eikt (b̃1−b1)+i(0

J1
−0

J )z2+i0
J z̃1−i0

J1
z1

×�(z2 − z̃1)�(z2 − z1)
∫

d2 t̃2d
2t2e

i t̃2(b2−b̃1)−it2(b2−b1)MJN ′;J1N (t2)MJ1;p̄p(kt − t2)M∗
JN (t̃2)M∗

J ;p̄p(kt − t̃2)

×
A∏

i=3

(
1 + i

4mplab

[
Mp̄N (0)�(z1 − zi)δ

(2)(bi − b1) + MJ1N (0)�(zi − z1)�(z2 − zi)δ
(2)(bi − b1)

+MJN (0)�(zi − z2)δ(2)(bi − b1) − M∗
p̄N (0)�(z̃1 − zi)δ

(2)(bi − b̃1)

−M∗
JN (0)�(zi − z̃1)�(z2 − zi)δ

(2)(bi − b̃1) − M∗
JN (0)�(zi − z2)δ(2)(bi − b̃1)

]) + c.c.

= 1

(2π )22E1(4mplab)2

∫
d2t2MJN ′;J1N (t2)MJ1;p̄p(kt − t2)M∗

JN (t2)M∗
J ;p̄p(kt − t2)

×
∫

d3X f1

(
X,kt − t2,

0
J1

+ 0
J

2

) ∫ +∞

Z

dz2 e
i(0

J1
−0

J )(z2−Z)|φ2(B,z2)|2

×
A∏

i=3

(
1 − σ tot

p̄N

∫ Z

−∞
dzi |φi(B,zi)|2 + i

[
MJ1N (0) − M∗

JN (0)
]

4mplab

∫ z2

Z

dzi |φi(B,zi)|2 − σ tot
JN

∫ +∞

z2

dzi |φi(B,zi)|2
)

+ c.c.

(35)

C. Elastic antiproton-nucleon scattering amplitude

For the p̄N elastic amplitude we neglect the spin and isospin
dependence and apply the following form:

Mp̄N (qt ) = 2iplabmσ tot
p̄p(1 − iρp̄p)e−Bp̄pq2

t /2, (36)

with ρp̄p = Re Mp̄N (0)/ Im Mp̄N (0). The empirical data [11]
tell us that ratio ρp̄p quickly changes sign at

√
s � 3–4 GeV,

i.e., just in the region of the χc formation. On the other hand, the
recent calculations within the Reggeized Pomeron exchange
model [12], which seems to agree with empirical data at higher
energies [13], predict a smooth behavior of ρp̄p � −0.05 in the
interval

√
s � 3–5 GeV. For the slope parameter we choose the

value Bp̄p = 12.5 ± 1 GeV−2 which is in a good agreement
with empirical slopes at

√
s � 3.4–7.0 GeV (or at plab � 5–

25 GeV/c) [14]. The total p̄p cross section has being suitably
parametrized by the Particle Data Group (PDG) in [15]:

σ tot
p̄p(plab) = 38.4 + 77.6p−0.64

lab + 0.26 ln2(plab)

− 1.2 ln(plab), (37)

with the beam momentum plab in GeV/c and the cross section
in mb.

D. Formation amplitude p̄ p → χJ

The elementary process p̄(λp̄)p(λ1) → χJν is depicted in
Fig. 2 in the p̄p center-of-mass (c.m.) frame. Generally, due
to a finite transverse momentum of the proton, the direction of

x̃

z̃

β

ỹ

p̄(λp̄)

λ1

χJν
φ

Θ

p( )

FIG. 2. Illustration of elementary transition p̄(λp̄)p(λ1) → χJν ,
where λp̄ , λ1, and ν are particle helicities. The picture refers to the
c.m. frame of colliding antiproton and proton. The z̃ axis is directed
along the c.m. velocity β.
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the c.m. velocity

β = pp̄ + p1

Ep̄ + E1
(38)

does not coincide with the original beam direction. Therefore,
the transformation from the laboratory frame to the coordinate
system shown in Fig. 2 is obtained in the following way.
First, we apply the Lorentz boost from the laboratory frame
(x,y,z) to the p̄p c.m. frame (x ′,y ′,z′) such that the antiproton
momentum components become

p′
p̄ = pp̄ −

(
Ep̄ − γ

γ + 1
(pp̄β)

)
γβ, (39)

where γ = 1/
√

1 − β2. Second, we perform a rotation of
coordinate axes (x ′,y ′,z′) to the new axes (x̃,ỹ,z̃) such that
the z̃ axis becomes alongated with the c.m. velocity β. If we
denote the polar and azimuthal angles defining the direction
of the vector β in the laboratory frame [or equivalently in
the (x ′,y ′,z′) frame] as (�β,φβ) then the rotation can be done
about the axis defined by vector [e′

z × β] by the angle �β ,
according to the convention of Refs. [16–18]. In the resulting
coordinate system (x̃,ỹ,z̃) the Cartesian components of the
antiproton three-momentum are, therefore, given by the
orthogonal matrix transformation (c.f. [19])

⎛
⎜⎝

px̃
p̄

p
ỹ
p̄

pz̃
p̄

⎞
⎟⎠ =

⎛
⎜⎝

cos2 φβ cos �β + sin2 φβ cos φβ sin φβ(cos �β − 1) −cos φβ sin �β

sin φβ cos φβ(cos �β − 1) sin2 φβ cos �β + cos2 φβ −sin φβ sin �β

sin �β cos φβ sin �β sin φβ cos �β

⎞
⎟⎠

⎛
⎜⎝

px ′
p̄

p
y ′
p̄

pz′
p̄

⎞
⎟⎠ . (40)

In the notations of Refs. [16–18], the formation amplitude
of the χJ -charmonium state with helicity ν is

〈Jν|B|�φ,λp̄λ1〉 =
(

2J + 1

4π

)1/2

BJ
λp̄λ1

DJ
νλ(φ,�,−φ),

(41)

where DJ
νλ(φ,�,−φ) is the rotation matrix, λ = λp̄ − λ1 is

the net helicity. The angles (�,φ) in Eq. (41) are the polar and
azimuthal angles of the antiproton momentum in the (x̃,ỹ,z̃)
coordinate system (see Fig. 2), i.e., � = arccos[pz̃

p̄/(px̃
p̄

2 +
p

ỹ
p̄

2 + pz̃
p̄

2
)1/2] and φ = arctan(pỹ

p̄/px̃
p̄) (0 � φ < 2π ). For the

zero transverse momentum of the proton the net helicity is
conserved since DJ

νλ(0,0,0) = δνλ. The coefficients BJ
λp̄λ1

are
normalized as ∑

λp̄λ1

∣∣BJ
λp̄λ1

∣∣2 = 1. (42)

The invariant amplitude is proportional to the amplitude (41)

MJν;λp̄λ1 = κJ 〈Jν|B|�φ,λp̄λ1〉, (43)

where the coefficient κJ can be reconstructed from the partial
decay width �χJ →p̄p which gives the relation

κJ =
⎛
⎝64π2m2

J �χJ →p̄p√
m2

J − 4m2

⎞
⎠

1/2

. (44)

The partial wave amplitudes BJ
λp̄λ1

encode the dynamics of
the charmonium formation. It is, however, possible to obtain
some general relations from the symmetry considerations
[17]. It follows from the charge conjugation invariance,
that BJ

λp̄λ1
= ηc(−1)J BJ

λ1λp̄
, where ηc = (−1)L+S = 1 is the

charge parity of the charmonium (for χ states L = S = 1).
It is convenient to introduce the notations B0/

√
2 ≡ BJ

++
and B1 ≡ BJ

+− for each J . Then the charge conjugation
invariance leads to the condition |BJ

−+|2 = |BJ
+−|2 = |B1|2.

The parity invariance of the amplitude (41) gives the relation

BJ
λp̄λ1

= ηp(−1)J BJ
−λp̄,−λ1

, where ηp = (−1)L+1 = 1 is the

charmonium parity. This results in the relations |BJ
++|2 =

|BJ
−−|2 = |B0|2/2. Moreover, in the case of χ1, the charge

conjugation invariance leads to the condition B0 = 0. The
partial wave amplitudes B0 and B1 are normalized as

2|B1|2 + |B0|2 = 1. (45)

The recent experimental data [20] for the angular distributions
from the p̄p → χc2 → J/ψγ → e+e−γ decay provide the
value |B0|2 = 0.13 ± 0.08. The smallness of the transition
amplitude for the net helicity zero can be understood as
a signature of hadronic helicity conservation for exclusive
processes within perturbative QCD with massless quarks and
spin-1 gluons [21].

In calculations of the products of the matrix elements for
the processes p̄p → χJν and p̄p → χJ1ν we will assume
for simplicity the proton longitudinal momentum to be pz

1 =
(J

0 + 
J1
0 )/2. This approximation is good enough for the

present exploratory studies. (More rigorously, in the first
amplitude on should set pz

1 = J
0 and in the second amplitude

pz
1 = 

J1
0 .) Then, the azimuthal angle φ will cancel in the final

results for the squares of the matrix elements. This can be seen
if we use the property of the rotation matrix (c.f. [19])

DJ
MM ′(α,β,γ ) = e−iαMdJ

MM ′ (β)e−iγM ′
(46)

with dJ
MM ′ (β) being the real-valued functions. The conse-

quence is that the formulas (29), (31), (33), (34), and (35)
derived earlier depend on the combinations

MJ1ν;λp̄λ1 (qt )M
∗
Jν;λp̄λ1

(qt )

= κJ1κJ

√
(2J1 + 1)(2J + 1)

4π
B

J1
λp̄λ1

BJ∗
λp̄λ1

d
J1
νλ(�)dJ

νλ(�).

(47)

The phases of the helicity amplitudes BJ
λp̄λ1

are unknown. We

will fix B0 = 1 for J = 0 and B1 = 1/
√

2 for J = 1. In most
calculations we will assume the zero phases of the J = 2
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helicity amplitudes, i.e., B0 = √
0.13 and B1 = √

0.87/2.
However, we will also test several different choices of the
phases of B0 and B1 for J = 2 This will influence the
interference terms (31) and (35) only.

E. Transition amplitudes χJ1 N → χJ N

Following [1] we decompose the internal cc̄ wave function
of the physical χJν-charmonium state in the basis of wave
functions with fixed orbital (Lz) and spin (Sz) magnetic
quantum numbers as

|Jν〉 =
∑
Lz,Sz

|1Lz; 1Sz〉〈1Lz; 1Sz|Jν〉, (48)

where z axis is directed along the charmonium momentum in
the target nucleus rest frame (Fermi motion is neglected here).
〈1Lz; 1Sz|Jν〉 are the Clebsch-Gordan coefficients. To avoid
misunderstanding, we speak here about the internal orbital
angular momentum of a cc̄ pair. (The projection of the c.m.
orbital momentum of the cc̄ pair on the z axis is identically
zero.) Assuming that the interaction does not change the
internal spin and angular momentum of the cc̄ pair, we can
approximate the rescattering amplitude as

〈Jν|Ŝ|J1ν〉 =
∑
Lz,Sz

〈Jν|1Lz; 1Sz〉〈1Lz; 1Sz|Ŝ|1Lz; 1Sz〉

× 〈1Lz; 1Sz|J1ν〉, (49)

where the symbols of the initial and final nucleons are
dropped for brevity. Assuming that the ratios between diagonal
and nondiagonal transitions do not change with increasing
transverse momentum transfer, Eq. (49) can be rewritten for
the invariant matrix elements:

MJν;J1ν(qt )

= e−BχN q2
t /2

∑
Lz,Sz

〈Jν|1Lz; 1Sz〉MLzSz
(0)〈1Lz; 1Sz|J1ν〉.

(50)

In the two-gluon exchange mechanism BχN � 3 GeV−2 for
the discussed energy range [22]. For the forward scattering
amplitudes at fixed Lz and Sz we have

MLzSz
(0) = 2iplabmσ tot

LzSz
(1 − iρχN ). (51)

Here ρχN = Re MLzSz
(0)/ Im MLzSz

(0). From the soft
Pomeron exchange one has ρχN � 0.15, while pQCD gives
ρχN � 0.3. In numerical calculations we have chosen ρχN =
0.22, i.e., the average of these two values, since the sensitivity
to ρχN in the interval 0.15–0.3 turns out to be quite modest
(see the right panel of Fig. 11 below).

The most important inputs of our calculations are the
cross sections σ tot

LzSZ
≡ σLz

which have been calculated in
Ref. [1] on the basis of the nonrelativistic quark model and
the QCD factorization theorem. The following values have
been obtained in [1]: σ0 = 6.8 mb and σ±1 = 15.9 mb. The
cross sections differ by approximately a factor of 2, since the
transverse size squared of the cc̄ configuration with Lz = ±1
is two times larger compared to the one of the configuration
with Lz = 0. The exact ratio σ1/σ0 deviates from 2 because

TABLE I. Transition amplitude for different initial (J1) and final
(J ) total angular momenta and helicities (ν) of the χc. For ν < 0
one should use the relation MJ−ν;J1−ν(0) = (−1)J+J1MJν;J1ν(0). The
quantities MLz ≡ MLzSz (0),Lz = 0,1 denote the amplitudes with
fixed value of the z component of the orbital angular momentum
neglecting their spin dependence.

J ν J1 MJν;J1ν(0)

0 0 0 (2M1 + M0)/3
0 0 1 0
0 0 2

√
2(M1 − M0)/3

1 0 1 M1

1 0 2 0
1 1 1 (M1 + M0)/2
1 1 2 (M1 − M0)/2
2 0 2 (M1 + 2M0)/3
2 1 2 (M1 + M0)/2
2 2 2 M1

the cross sections are obtained in Ref. [1] by weighting the
probability density distribution of the relative quark coordinate
with the transverse-size-dependent interaction cross section of
a cc̄ pair with a nucleon. The latter cross section was evaluated
in [1] based on nonperturbative QCD.

In Table I we list the transition amplitudes MJν;J1ν(0) for
the different values of J , ν, and J1. The nondiagonal transition
amplitudes between physical χc states are proportional to the
difference between the amplitudes with Lz = 1 and Lz =
0. Hence, the nondiagonal transitions are governed by the
difference σ1 − σ0, which turns out to be nonzero according
to the quark model predictions on the structure of the χc states
and QCD factorization theorem.

F. Occupation numbers

The squares of χJ production amplitudes on a nucleus
[c.f. Eq. (20) etc.] are proportional to the coordinate- and
momentum-dependent occupation number f1(X,p) of the
struck proton which is formally defined as the Wigner function
(21). The cross section on the nucleus (8) includes the sum
over all possible struck protons (N1). Thus, the cross section
depends on the total proton occupation number n(X,p) defined
as

2n(X,p) =
∑
N1

f1(X,p). (52)

By introducing the factor of 2 we assumed the spin saturation
of the proton system in the nucleus. In the present work we
will use a simple expression for n(X,p), which is based on the
local Fermi distribution but takes into account the corrections
due to the short-range NNcorrelations (SRCs):

n(X,p) = (1 − P2)�(pF − p)

+ (2π )3

2
ρpa2|ψD(p)|2�(p − pF ). (53)

Here ρp(X) is the proton density, pF (X) = (3π2ρp)1/3 is the
proton Fermi momentum, and P2 � 0.25 is the proton fraction
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above Fermi surface [23,24]. The deuteron wave function
ψD(p) in the momentum representation is normalized as

4π

∫ +∞

0
dp p2|ψD(p)|2 = 1. (54)

The coefficient a2(X) is chosen from from the condition

P2 = 4πa2

∫ +∞

pF

dp p2|ψD(p)|2. (55)

For the deuteron wave function we take the result of calcula-
tions with the Paris potential [25].

Overall, the in-medium effects should grow with the
mass number of a target nucleus. Hence we selected the
208Pb nucleus for the numerical studies below. The density
distributions of protons and neutrons have been taken in the
two-parameter Fermi parametrization as described in [26].

III. NUMERICAL RESULTS

We calculate the transverse momentum differential cross
sections of the χJν-charmonium production,

dσp̄A→χJν (A−1)∗

d2kt

= |M|2
16π2p2

lab

, (56)

which can be obtained by integrating Eq. (8) over the longi-
tudinal momentum kz and replacing

√
(Ep̄ + E1)2 − k2

t − m2
J

by plab at the final step. |M|2 stands for the full matrix element
squared for the charmonium production on the nucleus. It
is important to note that in deriving Eq. (56) we implicitly
assumed that the contribution of negative kz is strongly
suppressed by the rescattering matrix elements which enter
in |M|2. This allowed us to limit the integration to the positive
values of kz only. The cross section (56) is invariant with
respect to the change ν → −ν, as can be seen from explicit
expressions for the different contributions to |M|2 in the
previous section.

Figures 3–8 show the transverse momentum differential
χc-charmonia production cross sections with the different
total angular momenta J and helicities ν. The calculations
were performed at an antiproton beam momentum of plab =
5.553 GeV/c corresponding to on-shell χc1 formation in p̄p
collisions. The kinks in the kt dependence at kt � 0.25 GeV/c
are caused by the sharp change in the momentum dependence
of the occupation numbers at the Fermi momentum as
discussed in the previous section.

For the states χ00, χ11, χ20, and χ21, whose formation
is allowed in p̄p collisions, the cross sections at
low kt are dominated by the direct term (29) and at
kt > 0.25 GeV/c by the term with antiproton rescattering
(32). The latter makes the large excess above the SRC tail of
the direct term.

The “exotic” states χ10 and χ22 cannot be formed in
p̄p collisions and are, therefore, strongly suppressed in
antiproton-nucleus collisions. Their production at small kt

is mainly caused by the antiproton rescattering term and at
kt > 0.25 GeV/c by the SRC tail of the direct term. In the
latter case the transverse momentum is provided by the target
proton. Hence the charmonium spin quantization axis does not

10-5

10-4

10-3

10-2

10-1

100

101

 0  0.05  0.1  0.15  0.2  0.25  0.3  0.35

dσ
/d

2 k t
 (

μb
 c

2 /G
eV

2 )
kt (GeV/c)

p-208Pb, plab=5.553 GeV/c

χc0

full

dir.

int.

p- -resc.
dia.-resc.

nondia.-resc.

(-)int.-resc.

FIG. 3. (Color online) Transverse momentum dependence of the
differential χc0 production cross section (56) in 5.553 GeV/c beam
momentum antiproton interactions with the nucleus 208Pb. Full
calculation including all contributions to the matrix element is shown
by the solid line. Other lines show the partial contributions of
the different terms. Direct term (29): blue dotted line. Interference
term (31): brown dashed line. Antiproton rescattering term (32):
red squares. Diagonal rescattering term (33): magenta circles.
Nondiagonal rescattering term (34): purple triangles. Interference
rescattering term (35): brown diamonds (contributes with “−” sign).
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FIG. 4. (Color online) Same as Fig. 3, but for χc1 production with
helicity ν = 0.
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FIG. 5. (Color online) Same as Fig. 3, but for χc1 production with
helicity ν = 1. The interference term (31) contributes with “−” sign.
The contributions of the diagonal and interference rescattering terms
(33) and (35) almost coincide with each other.

coincide with the beam direction anymore [� > 0 in Eq. (47)].
As the consequence, the charmonium helicity may deviate
from the difference of the antiproton and proton helicities. The
production cross sections of the “exotic” χ10 and χ22 states on
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FIG. 6. (Color online) Same as Fig. 3, but for χc2 production with
helicity ν = 0. The interference rescattering term (35) contributes
with “−” sign.
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FIG. 7. (Color online) Same as Fig. 3, but for χc2 production with
helicity ν = 1. The interference term (31) contributes with “−” sign.

the nucleus are, however, several orders of magnitude lower
than for the other “nonexotic” states χ00, χ11, χ20, and χ21.

We will discuss now the nondiagonal transitions. Note,
first, that such transitions do not contribute to the χ10 and χ22

production as one can see from Table I. On the other hand, the
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FIG. 8. (Color online) Same as Fig. 3, but for χc2 production with
helicity ν = 2.
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FIG. 9. (Color online) The relative contribution R [see Eq. (57)]
of the χc2 production with helicity ν = 0 to the total χc2 production in
antiproton collisions at 5.553 GeV/c with 208Pb nucleus vs transverse
momentum. The normalization is performed on the same contribution
|B0|2 = 0.13 in the nonpolarized p̄p collisions.

nondiagonal transitions 11 ↔ 21 and 00 ↔ 20 do contribute
the production of the respective χJν states. In particular,
the transition 00 → 20 influences the χ20 production at low
transverse momenta significantly. This is caused by the large
partial partial width �χc0→p̄p � 2.3 keV as compared to
�χc1→p̄p � 0.06 keV and �χc2→p̄p � 0.14 keV. As a result,
the cross section of χ20 production is enhanced by ∼20% at
small kt due to the interference term (31).

This is better seen in Fig. 9 which shows the normalized
ratio

R = χ20

(χ20 + 2χ21)|B0|2 (57)

as a function of kt . In the abscence of any in-medium effects
[impulse approximation, Eq. (20)] we have R = 1 at kt = 0.
Including absorption [direct term, Eq. (29)] increases R by
about 5%, which reflects the genuine color filtering effect.
Indeed, one can see from Table I that the absorption cross
section of the χ21 state is slightly larger than the absorption
cross section of the χ20 state (since Im M1 > Im M0). The
interference term (31) leads to an additional and quite
significant enhancement of R, so that it reaches ∼20%. The
enhancement is not affected by the rescattering terms, which
do not influence the ratio R at small kt , practically.

In Fig. 10 we display the beam momentum dependence of
the transverse momentum differential cross sections for the
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FIG. 10. (Color online) Transverse momentum differential cross
section of χc0, χc1, and χc2 production with different helicities
plotted vs beam momentum at the fixed kt = 0.010 GeV/c. For
orientation, vertical arrows show the beam momenta of the on-shell
χc0, χc1, and χc2 formation in p̄p collisions (plab = 5.194, 5.553, and
5.727 GeV/c, respectively). Note that the cross sections are peaked
at slightly higher beam momenta due the finite value of the nucleon
binding energy (7.9 MeV for the 208Pb nucleus).

“nonexotic” χc states at low transverse momentum.1 Due to
Fermi motion and SRCs there is a strong overlap of the χc0, χc1,
and χc2 production in the considered region of beam momenta.
This makes possible the interference between these states,
since the phase multiplication factor 0

J1
− 0

J in Eq. (31) is
small.

Figure 11 shows the beam momentum dependence of
the ratio R at kt = 0.010 GeV/c. The ratio reaches a
flat maximum at a beam momentum of about 5.5 GeV/c
corresponding to 0

0 + 0
2 = 0, where the occupation number

in the interference term (31) is maximal. We also see that
R drops quickly with increasing beam momentum between

1We have chosen a small but finite value of kt in order to avoid
the singularities in the space integral of the occupation numbers
for the on-shell charmonia production at kt = 0. The singularities
appear from the volume integration in the direct term (29) when
kt = 0 and 0

J = 0 and in the interference term (31) when kt = 0
and 0

J + 0
J1

= 0. This is because of the two-parameter Fermi
distribution density tail which is infinite in radius. It follows from
Eqs. (52) and (53) that f1(X,0) = (2/Z)n(X,0) = (2/Z)(1 − P2) =
const independent of position X. The singularities are integrable, i.e.,
the integration of the cross section (56) over d2kt gives the finite
result. In the rescattering terms (32)–(35) singularities do not appear
due to the integration over d2t2.
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FIG. 11. (Color online) The normalized fraction of the χc2 production with helicity ν = 0 [see Eq. (57)] at kt = 0.010 GeV/c on the 208Pb
nucleus as a function of the antiproton beam momentum. Vertical arrows show the beam momenta of the on-shell χc0, χc1, and χc2 formation
in p̄p collisions (plab = 5.194, 5.553, and 5.727 GeV/c, respectively). The left panel shows the calculations with fixed value of ρχN = 0.22
including combinations of the different terms as indicated. The right panel shows the sensitivity of the full calculation to the choice of parameter
ρχN [see Eq. (51)].

�5.50 GeV/c and �5.56 GeV/c. Our results reveal a modest
sensitivity to the choice of the ratio of the real and imaginary
parts of the χN -scattering amplitude (right panel of Fig. 11).
However, this sensitivity reaches at most ∼10% and is visible
only for far-off-shell χc2 production.

It is important to note that all previous results were obtained
with the zero phases for the B0 and B1 helicity amplitudes for
J = 2. Figure 12 shows the sensitivity of the ratio R to the
choice of phases for the B0 and B1 amplitudes of χ2 formation
in p̄p collisions. The B0 phase turns out to be very important:
it governs the shape of the beam momentum dependence of
R. The B1 phase somewhat shifts R vertically but does not
influence much the shape of plab dependence. This is expected
since the direct (leading order) contribution to χ21 production
is much larger compared to the direct contribution to χ20

production (compare Figs. 7 and 6). Hence the interference
is relatively less important for χ21.

Finally, we would like to make few comments on the
possibility of experimental measurements of the polarization
effects in the χc production at the PANDA@FAIR experiment.
The PANDA experimental program [27] already includes the
studies of the p̄p → χc → J/ψγ → e+e−γ reaction. The
separation of the different χc flavors is possible via the different
energies of the photon.2 This can also be done in the case of
nuclear target.

2In the laboratory frame this obviously corresponds to a rather broad
distribution over the photon energies. Thus, the photon energy should
be determined in the e+e−γ c.m. frame, which gives Eγ = 303, 389,
and 430 MeV for χc0, χc1, and χc2, respectively. Together with the

For the p̄A reactions, the change in the population of the
low kt χJν-states with respect to the one for p̄p reactions will
manifest itself in the change of the polar angle distribution of
the J/ψ-emission for the χJ → J/ψγ decay in the χJ rest
frame. Neglecting the χ2,±2 contribution, this distribution can
be expressed as

WJ (�) =
∑

ν=±1,0

PJνWJν(�), (58)

where

PJν = χJν

χJ0 + 2χJ1
(59)

is the relative fraction of χJν states. In particular, for J =
2, P20 = R|B0|2, P2,±1 = (1 − R|B0|2)/2. The polar angle
distribution of J/ψ’s in the χJν radiative decay is

WJν(�) ∝
J∑

ν ′=0

∣∣AJ
ν ′
∣∣2([

dJ
νν ′ (�)

]2 + [
dJ

ν,−ν ′ (�)
]2)

. (60)

This equation includes the helicity amplitudes AJ
ν ′ of

the radiative decay which can be further expressed via the
amplitudes a1, . . . ,aJ+1 of electric or magnetic multipole
transitions such that a1, a2, and a3 correspond to E1, M2,
and E3 transitions [17]. The helicity amplitudes |B0|2 and a2

for χc2 are experimentally known only with an accuracy of
about 30%–60% from E835 measurements [20]. Hence it is

requirement that the e+e−γ invariant mass be equal to the respective
χc mass, this gives a clean trigger condition of the χc → J/ψγ decay.
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FIG. 12. (Color online) Same as in Fig. 11, but for the different values of the phases of B0 and B1 amplitudes for J = 2 as indicated.

very important to perform the polarization studies within the
same experimental setup not only for p̄A, but also for the
p̄p reaction. Only such parallel measurements could really
address the nuclear effects discussed in the present work.

ψA
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pp̄
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p2

pA

k

p2

p3 p3

pn1+1pn1+1

pn1+2 pn1+2

pn1+n2+1 pn1+n2+1
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v2 v3 vn1+1 v1 vn1+2

FIG. 13. The diagonal transition diagram for the production of
the charmonium state χJ [cf. Fig. 1(a)] including multiple elastic
rescatterings for the incoming p̄ and outgoing χJ .

IV. SUMMARY

We have calculated the transverse momentum differential
cross sections of the polarized χc production in the antiproton-
induced reactions on nuclei close to the production threshold.
The incoming antiproton was assumed to be unpolarized. We
have used the multiple scattering Feynman diagram formalism
in the GEA approach of Refs. [7,8]. For the elementary ampli-
tudes we used expressions motivated by the phenomenology
of p̄p interactions and QCD. The modifications of the proton
occupation numbers due to the short-range NN correlations
in the nuclear ground state have been taken into account.
The calculated differential cross sections have a characteristic
two-slope structure. The slope is changed at kt � 0.25 GeV/c
due to the SRC tail of the proton momentum distribution at
high transverse momenta.

As the polarization observable we have chosen the relative
fraction R of the χc2 states with helicity 0 at small transverse
momenta normalized such that R = 1 in the p̄p → χc2

reaction. The color filtering mechanism alone leads at most
to a 10% increase of R in p̄A reactions with respect to the
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FIG. 14. The diagram with one nondiagonal transition χJ1Nn1+n2+2 → χJ N ′
n1+n2+2 [cf. Fig. 1(d)] including multiple elastic rescatterings

for the incoming p̄, intermediate χJ1 and outgoing χJ .

p̄p case. The interference of the direct p̄p → χ20 formation
amplitude with the two-step p̄p → χ00,χ00N → χ20N ampli-
tude strongly influences R. As a consequence, within a beam
momentum range of 5–7 GeV/c, R varies by 30%–50%. The
specific shape of the plab dependence of R is determined by
the unknown phase difference of the B0 helicity amplitudes for
J = 2 and J = 0. However, the amplitude of the deviations of
R from the p̄p value is proportional to the difference between
the total interaction cross sections of the 1P charmonium states
with Lz = 1 and Lz = 0.

To conclude, we suggest that the experimental measure-
ments of the plab dependence of the relative fraction of χc2

states with helicity 0 at small transverse momenta in p̄A

reactions would provide a sensitive test of the constituent
quark model description of the χc states. Such studies
can be performed in the future PANDA experiment at
FAIR.
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APPENDIX: MULTIPLE SCATTERING DIAGRAMS

The diagonal transition term with with n1 elastic rescatterings of the antiproton before its annihilation and n2 elastic
rescatterings of the outgoing charmonium χJ is shown in Fig. 13. The full transition amplitude (i.e., S-matrix element) between
the initial state antiproton + nucleus A and final state charmonium + nucleus (A − 1) is

SJψA−1;p̄ψA
=

(
1√
V

)2A−1 ∫
d3x ′

2 · · · d3x ′
A

∫
d3x1 · · · d3xAψ∗

A−1(x′
2, . . . ,x

′
A)ψA(x1,x2, . . . ,xA)

∫
V d3p′

2

(2π )3
· · · V d3p′

n

(2π )3

×
∫

V d3p1

(2π )3
· · · V d3pA

(2π )3
eip′

2x′
2+···+ip′

nx′
n+ipn+1x′

n+1+···+ipAx′
ASJN ′

2···N ′
n;p̄N1···Nn

e−ip1x1−···−ipAxA, (A1)

where n = n1 + n2 + 1 is the number of involved nucleons, SJN ′
2···N ′

n;p̄N1···Nn
is the amplitude of the transition between plane-wave

states, and V is a normalization volume. Integrating out the momenta and coordinates of the spectator nucleons in the final state
gives the following expression:

SJψA−1;p̄ψA
=

(
1√
V

)2n−1 ∫
d3x ′

2 · · · d3x ′
n

∫
d3x1 · · · d3xAψ∗

A−1(x′
2, . . . ,x

′
n,xn+1, . . . ,xA)ψA(x1, . . . ,xA)

×
∫

V d3p′
2

(2π )3
· · · V d3p′

n

(2π )3

∫
V d3p1

(2π )3
· · · V d3pn

(2π )3
eip′

2x′
2+···+ip′

nx′
nSJN ′

2···N ′
n;p̄N1···Nn

e−ip1x1−···−ipnxn . (A2)

The S-matrix element between plane-wave states is expressed as follows

SJN ′
2···N ′

n;p̄N1···Nn
= i(2π )4δ(4)(pp̄ + p1 + p2 + · · · + pn − k − p′

2 − · · · − p′
n)

MJN ′
2···N ′

n;p̄N1···Nn

[2Ep̄V 2E1V (2mV )2(n−1)2ωV ]1/2
, (A3)
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where we assumed that the initial and final nucleons are nonrelativistic. For the following it is convenient to introduce the
four-momentum transfer by the ith nucleon as

qi = pi − p′
i , i = 2, . . . ,n. (A4)

The corresponding transverse and longitudinal momentum transfers are then ti ≡ qit = pit − p′
it and qz

i = pz
i − p′z

i .
The invariant amplitude is calculated with a help of Feynman rules which gives

MJN ′
2···N ′

n;p̄N1···Nn
= MJN (tn)MJN (tn−1) · · · MJN

(
tn1+2

)
MJ ;p̄p(p1t )

DJ (vn−1) · · · DJ

(
vn1+2

)
DJ (v1)

Mp̄N

(
tn1+1

) · · · Mp̄N (t2)

Dp̄

(
vn1+1

) · · · Dp̄(v2)
. (A5)

We assumed here that the elementary amplitudes depend on the transverse momentum transfers only. The antiproton inverse
propagators are

−Dp̄(vi) =
(

pp̄ +
i∑

j=2

qj

)2

− m2 + iε = 2plab(−li + iε), i = 2, . . . ,n1 + 1. (A6)

The charmonium inverse propagators are

−DJ (v1) =
⎛
⎝pp̄ + p1 +

n1+1∑
j=2

qj

⎞
⎠

2

− m2
J + iε = 2plab

(
0

J − l1 + iε
)
,

(A7)

−DJ (vi) =
⎛
⎝pp̄ + p1 +

i∑
j=2

qj

⎞
⎠

2

− m2
J + iε = 2plab

(
0

J − li + iε
)
,

where i = n1 + 2, . . . ,n − 1. In Eqs. (A6) and (A7) we used the accumulated longitudinal momentum transfers defined as

li =

⎧⎪⎨
⎪⎩

∑i
j=2 qz

j for i = 2, . . . ,n1 + 1,

pz
1 + ∑n1+1

j=2 qz
j for i = 1,

pz
1 + ∑i

j=2 qz
j for i = n1 + 2, . . . ,n − 1.

(A8)

By using the coordinate representation of the propagators (15) we can now perform the longitudinal momentum integrations
in (A2). After some algebra we come to the following expression:∫

dp′z
2 · · · dp′z

n

∫
dpz

1 · · · dpz
nδ

(
plab + pz

1 + qz
2 + · · · + qz

n − kz
)

exp
{
ip′z

2 z′
2 + · · · + ip′z

n z′
n − il2z

0
2 − · · · − iln1+1z

0
n1+1

+ i
(
0

J − l1
)
z0

1 + i
(
0

J − ln1+2
)
z0
n1+2 + · · · + i

(
0

J − ln1+n2

)
z0
n1+n2

− ipz
1z1 − · · · − ipz

nzn

}
= (2π )n−1δ(z′

2 − z2) · · · δ(z′
n − zn) exp

{
i0

J

(
z0

1 + z0
n1+2 + · · · + z0

n1+n2

)}
×

∫
dqz

2 · · · dqz
n exp

{−iqz
2z2 − · · · − iqz

nzn − il1z
0
1 − il2z

0
2 − · · · − iln1+n2z

0
n1+n2

+ i
(
plab − kz + qz

2 + · · · + qz
n

)
z1

}
= (2π )2(n−1)δ

(
z′

2 − z2
) · · · δ(z′

n − zn

)
δ
(
z2 − z3 + z0

2

) · · · δ(zn1 − zn1+1 + z0
n1

)
δ
(
zn1+1 − z1 + z0

n1+1

)
δ
(
zn1+2 − z1 − z0

1

)
× δ

(
zn1+3 − zn1+2 − z0

n1+2

) · · · δ(zn − zn−1 − z0
n−1

)
exp

{
i
(
plab − kz + 0

J

)
zn − i0

J z1
}
. (A9)

In order to obtain the last expression in (A9) we substituted the expression pz
1 = kz − plab − qz

2 − · · · − qz
n in the formulas (A8)

for the accumulated longitudinal momentum transfers and, after performing the integrations over dqz
2 · · · dqz

n, simplified the
arguments of δ functions by using recursive relations

zi + z0
i + · · · + z0

n1+1 − z1 = zi − zi+1 + z0
i , i = n1, . . . ,2,

(A10)
zi − z0

1 − z0
n1+2 − · · · − z0

i−1 − z1 = zi − zi−1 − z0
i−1, i = n1 + 3, . . . ,n.

Transverse momentum integrations in (A2) are performed as follows:∫
d2p′

2t · · · d2p′
nt

∫
d2p1t · · · d2pntδ

(2)(p1t + t2 + · · · + tn − kt )Mp̄N (t2) · · · Mp̄N

(
tn1+1

)
MJ ;p̄p(p1t )MJN

(
tn1+2

) · · · MJN (tn)

× exp{ip′
2tb

′
2 + · · · + ip′

ntb
′
n − ip1tb1 − · · · − ipntbn}
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= (2π )2(n−1)δ(2)(b′
2 − b2) · · · δ(2)(b′

n − bn) exp(−iktb1)
∫

d2t2 · · · d2tn exp{−it2(b2 − b1) − · · · − itn(bn − b1)}

×Mp̄N (t2) · · · Mp̄N

(
tn1+1

)
MJ ;p̄p(kt − t2 − · · · − tn)MJN

(
tn1+2

) · · ·MJN (tn).

(A11)

We see that due to the δ functions in Eqs. (A9) and (A11) the primed and nonprimed coordinates coincide and the integration over
d3x ′

2 · · · d3x ′
n in Eq. (A2) leads to the appearance of the product ψ∗

A−1(x2, . . . ,xA)ψA(x1, . . . ,xA) in the transition amplitude.
Using Eqs. (A9) and (A11) and assuming again the nonrelativistic nucleons (i.e., neglecting the energy transfer in rescattering

processes) we can rewrite the amplitude (A2) as

SJψA−1;p̄ψA
= i(2π )δ(Ep̄ + E1 − ω)

(2Ep̄V 2ωV )1/2
MJψA−1;p̄ψA

, (A12)

where the matrix element MJψA−1;p̄ψA
should be replaced by the following one:

MJ (1,2, . . . ,n)

= in−1

(2E1)1/2(2π )2(n−1)(4mplab)n−1

∫
d3x1 · · · d3xAψ∗

A−1(x2, . . . ,xA)ψA(x1, . . . ,xA)�(z3 − z2) · · · �(
zn1+1 − zn1

)
×�

(
z1 − zn1+1

)
�

(
zn1+2 − z1

)
�

(
zn1+3 − zn1+2

) · · ·�(zn − zn−1) exp
{
i
(
plab − kz + 0

J

)
zn − i0

J z1 − iktb1
}

×
∫

d2t2 · · · d2tn exp{−it2(b2 − b1) − · · · − itn(bn − b1)}Mp̄N (t2) · · · Mp̄N

(
tn1+1

)
MJ ;p̄p(kt − t2 − · · · − tn)

×MJN

(
tn1+2

) · · · MJN (tn). (A13)

The product of � functions in this equation is governed by the order of scatterings of the incoming antiproton and outgoing
charmonium. Hence, summing all possible diagrams with the different order of scatterings on the fixed sets of nucleons-scatterers
(n1 scatterers for the p̄ and n2 scatterers for the charmonium) is equivalent to the replacement of the product of the � functions
in (A13) by the following one:

�(z1 − z2) · · · �(
z1 − zn1+1

)
�

(
zn1+2 − z1

) · · · �(zn − z1). (A14)

Let us now constrain the kinematics of the produced charmonium such that |plab − kz| � plab, i.e., to the quasifree region. Due
to the presence of δ(Ep̄ + E1 − ω) in the expressions for the S matrix (A12) and in the differential cross section (8), such a
constraint leads to the condition

plab − kz + 0
J � (

0
J

)2
/2plab � 0

J . (A15)

And thus we can neglect the term i(plab − kz + 0
J )zn in the exponent of Eq. (A13) which depends on the longitudinal coordinate

zn of the last scatterer. This leads us to the following expression for the matrix element of the diagonal transition with multiple
elastic rescatterings:

MJ (1,2, . . . ,n)

= in−1

(2E1)1/2(2π )2(n−1)(4mplab)n−1

∫
d3x1 · · · d3xAψ∗

A−1(x2, . . . ,xA)ψA(x1, . . . ,xA)�(z1 − z2) · · · �(
z1 − zn1+1

)
×�

(
zn1+2 − z1

) · · · �(zn − z1) exp
{ − i0

J z1 − iktb1
} ∫

d2t2 · · · d2tn exp{−it2(b2 − b1) − · · · − itn(bn − b1)}

×Mp̄N (t2) · · · Mp̄N

(
tn1+1

)
MJ ;p̄p(kt − t2 − · · · − tn)MJN

(
tn1+2

) · · · MJN (tn). (A16)

The diagram with one nondiagonal transition, n1 elastic rescatterings of the incoming antiproton, n2 elastic rescatterings
of intermediate charmonium χJ1 , and n3 elastic rescatterings of the outgoing charmonium χJ is shown in Fig. 14. In total,
n = n1 + n2 + n3 + 2 nucleons are involved in the reaction. It is clear then, that the formulas (A1)-(A4) are valid also in this
case, but with the newly defined value of n. For the invariant amplitude we have now instead of Eq. (A5):

MJN ′
2···N ′

n;p̄N1···Nn
= MJN (tn)MJN (tn−1) · · · MJN

(
tn1+n2+3

)
MJN ;J1N

(
tn1+n2+2

)
DJ (vn−1) · · · DJ

(
vn1+n2+2

) MJ1N

(
tn1+n2+1

) · · ·MJ1N

(
tn1+2

)
MJ1;p̄p(p1t )

DJ1

(
vn1+n2+1

) · · · DJ1

(
vn1+2

)
DJ1 (v1)

× Mp̄N

(
tn1+1

) · · · Mp̄N (t2)

Dp̄

(
vn1+1

) · · · Dp̄(v2)
. (A17)
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The antiproton inverse propagators are given by Eq.(A6). The χJ1 -charmonium inverse propagators are

−DJ1 (v1) =
⎛
⎝pp̄ + p1 +

n1+1∑
j=2

qj

⎞
⎠

2

− m2
J1

+ iε = 2plab
(
0

J1
− l1 + iε

)
,

(A18)

−DJ1 (vi) =
⎛
⎝pp̄ + p1 +

i∑
j=2

qj

⎞
⎠

2

− m2
J1

+ iε = 2plab
(
0

J1
− li + iε

)
,

where i = n1 + 2, . . . ,n1 + n2 + 1. The χJ -charmonium inverse propagators are

−DJ (vi) =
⎛
⎝pp̄ + p1 +

i∑
j=2

qj

⎞
⎠

2

− m2
J + iε = 2plab

(
0

J − li + iε
)
, (A19)

where i = n1 + n2 + 2, . . . ,n − 1. The accumulated longitudinal momentum transfers li are given by Eqs. (A8) with the new
value of n.

The longitudinal momentum integration in (A2) becomes now∫
dp′z

2 · · · dp′z
n

∫
dpz

1 · · · dpz
nδ

(
plab + pz

1 + qz
2 + · · · + qz

n − kz
)

exp
{
ip′z

2 z′
2 + · · · + ip′z

n z′
n − il2z

0
2 − · · · − iln1+1z

0
n1+1

+ i
(
0

J1
− l1

)
z0

1 + i
(
0

J1
− ln1+2

)
z0
n1+2 + · · · + i

(
0

J1
− ln1+n2+1

)
z0
n1+n2+1

+ i
(
0

J − ln1+n2+2
)
z0
n1+n2+2 + · · · + i

(
0

J − ln−1
)
z0
n−1 − ipz

1z1 − · · · − ipz
nzn

}
= (2π )n−1δ(z′

2 − z2) · · · δ(z′
n − zn) exp

{
i0

J1

(
z0

1 + z0
n1+2 + · · · + z0

n1+n2+1

) + i0
J

(
z0
n1+n2+2 + · · · + z0

n−1

)}
×

∫
dqz

2 · · · dqz
n exp{−iqz

2z2 − · · · − iqz
nzn − il1z

0
1 − · · · − iln−1z

0
n−1 + i

(
plab − kz + qz

2 + · · · + qz
n

)
z1

}
= (2π )2(n−1)δ(z′

2 − z2) · · · δ(z′
n − zn)δ

(
z2 − z3 + z0

2

) · · · δ(zn1 − zn1+1 + z0
n1

)
δ
(
zn1+1 − z1 + z0

n1+1

)
δ
(
zn1+2 − z1 − z0

1

)
× δ

(
zn1+3 − zn1+2 − z0

n1+2

) · · · δ(zn − zn−1 − z0
n−1

)
exp

{
i
(
plab − kz + 0

J

)
zn − i0

J1
z1 + i

(
0

J1
− 0

J

)
zn1+n2+2

}
.

(A20)

The derivation of the last expression in (A20) was performed in full analogy with the case of the longitudinal integral (A9)
for the diagonal amplitude. We again used the formulas (A8) for the accumulated longitudinal momentum transfers with
pz

1 = kz − plab − qz
2 − · · · − qz

n and applied the recursive relations (A10) in the arguments of the δ-functions (with newly defined
n = n1 + n2 + n3 + 2).

Transverse momentum integral in (A2) for the nondiagonal amplitude has the following form:∫
d2p′

2t · · · d2p′
nt

∫
d2p1t · · · d2pntδ

(2)(p1t + t2 + · · · + tn − kt )Mp̄N (t2) · · · Mp̄N

(
tn1+1

)
MJ1;p̄p(p1t )MJ1N

(
tn1+2

) · · ·

×MJ1N

(
tn1+n2+1

)
MJN ;J1N

(
tn1+n2+2

)
MJN

(
tn1+n2+3

) · · ·MJN (tn) exp{ip′
2tb

′
2 + · · · + ip′

ntb
′
n − ip1tb1 − · · · − ipntbn}

= (2π )2(n−1)δ(2)(b′
2 − b2) · · · δ(2)(b′

n − bn) exp(−iktb1)
∫

d2t2 · · · d2tn exp{−it2(b2 − b1) − · · · − itn(bn − b1)}Mp̄N (t2) · · ·

×Mp̄N

(
tn1+1

)
MJ1;p̄p(kt − t2 − · · · − tn)MJ1N

(
tn1+2

) · · · MJ1N

(
tn1+n2+1

)
MJN ′;J1N

(
tn1+n2+2

)
MJN

(
tn1+n2+3

) · · · MJN (tn).

(A21)

Using (A20) and (A21) we can express the amplitude of the nondiagonal transition including multiple elastic rescatterings in the
form (A12) with the matrix element MJψA−1;p̄ψA

replaced by

MJ1J (1,2, . . . ,n)

= in−1

(2E1)1/2(2π )2(n−1)(4mplab)n−1

∫
d3x1 · · · d3xAψ∗

A−1(x2, . . . ,xA)ψA(x1, . . . ,xA)�(z1 − z2) · · · �(
z1 − zn1+1

)
×�

(
zn1+2 − z1

)
�

(
zn1+n2+2 − zn1+2

) · · ·�(
zn1+n2+1 − z1

)
�

(
zn1+n2+2 − zn1+n2+1

)
�

(
zn1+n2+3 − zn1+n2+2

) · · ·
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×�
(
zn − zn1+n2+2

)
exp

{−i0
J1

z1 − iktb1 + i
(
0

J1
− 0

J

)
zn1+n2+2

} ∫
d2t2 · · · d2tn exp{−it2(b2 − b1) − · · ·

− itn(bn − b1)}Mp̄N (t2) · · · Mp̄N

(
tn1+1

)
MJ1;p̄p(kt − t2 − · · · − tn)MJ1N

(
tn1+2

) · · · MJ1N

(
tn1+n2+1

)
×MJN ′;J1N

(
tn1+n2+2

)
MJN

(
tn1+n2+3

) · · ·MJN (tn), (A22)

where we summed the diagrams with the different order of rescatterings (with the fixed struck nucleon N1 and nucleon Nn1+n2+2

on which the nondiagonal transition takes place) and made the assumption of the quasifree kinematics |plab − kz| � plab of the
final χJ . Equations (A16) and (A22) are the generalizations of the corresponding Eqs. (1) and (18) for the case of multiple elastic
rescatterings of the antiproton and charmonia.
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