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Relativistic impulse approximation analysis of elastic proton scattering from He isotopes
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Recent relativistic mean field (RMF) calculations have provided nuclear distributions of some isotopes whose
mass numbers are much larger than atomic numbers. For helium isotopes, the RMF calculation seems to be
inappropriate because of the small mass numbers; however, applicable results are obtained for 6,8He nuclei. The
author calculates observables of proton elastic scattering from the helium isotopes and discusses relations between
observables and nuclear distributions of the isotopes by comparison of the calculated results with experimental
data. The calculations are based on relativistic impulse approximation (RIA) at incident proton energy: 71 MeV
for 4,6,8He, 300 and 500 MeV for 4He, and 0.7 GeV for 6He. Scattering observables are predicted for 6,8He at
200 MeV.
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I. INTRODUCTION

Unstable nuclei are fruitful objects for nuclear physics
because they provide new information about halo structure,
magic numbers, nuclear matter properties, and many other
things which are very different from stable nuclei. Helium
isotopes, 6He and 8He, have extremely large values of neutron
to proton ratios, and recent development of experimental
technique has enabled us to take the proton elastic scattering
data, especially analyzing power data at 71 MeV/nucleon
[1–3].

Theoretical studies have been done on the optical potential
and observables for proton elastic scattering from 6He and 8He.
The differential cross section for 8He target was calculated
and compared with the data of Ref. [4] on the bases of
the single-scattering approximation to the multiple-scattering
expansion [5]. The angular distribution of the scattering ob-
servables was analyzed in terms of an eikonal approach in order
to examine the matter distribution of the 8He nucleolus [6]. For
6He and 8He nuclei the scattering observables were calculated
in a full-folding optical model [7]. Dynamic polarization
potentials were presented, which arise from neutron pickup
coupled reaction channels, and were applied to proton elastic
scattering from 6He [8]. The p + 4,6,8He elastic scattering
observables were analyzed with the optical potentials derived
using the Glauber theory [9]. Brueckner-Hartree-Fock-based
optical potential was calculated for helium isotopes as well
as for lithium isotopes [10]. Predicted analyzing powers for
6He and/or 8He at 71 MeV in Refs. [5,7,8] are different
from the experimental data [1–3], while Refs. [9,10] show
good agreement with the data. The former has one adjustable
parameter, the strength of the spin-orbit potential, and the latter
reproduces the data with a specific choice of NN interactions
and density distributions.

Calculations based on the relativistic impulse approxima-
tion (RIA) have succeeded in reproducing experimental data
of proton elastic scattering from many nuclei at energies
larger than 200 MeV, especially for observables with respect
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to spin. The purpose of this paper is to analyze the proton
elastic scattering from helium isotopes on the basis of RIA. In
order to calculate the optical potential the density distribution
of the target nucleus is needed, which is provided by the
relativistic mean field (RMF) calculation [11,12] since RMF
calculation recently has provided nuclear distributions for
many unstable and stable nuclei. However, helium isotopes
seem to be too small for calculation with the RMF code,
and only one adjustable parameter is introduced to make
distributions realistic, of which detailed explanation is given
in the following section.

In Sec. II, formulas on which the analysis is based
are presented, and numerical results are given in Sec. III.
Calculated results are compared to experimental data and
predictions for proton elastic scattering at 200 MeV are also
given in Sec. III. The summary of this study appears in Sec. IV.

II. FORMULATION

The Dirac equation containing the optical potential is
described in momentum space as follows:

{γ 0E − γ · p′ − m} �( p′) −
∫

d3p

(2π )3
Û ( p′, p) �( p) = 0,

(1)

where �( p) is given by the Fourier transformation of the wave
function in coordinate space:

�( p) =
∫

d3re−i p·r�(r), (2)

where natural unit(� = c = 1) is taken.
In accordance with the prescription of the RIA [13,14], the

Dirac optical potential is given in momentum space by

Û ( p′, p)

= −1

4
Tr2

{∫
d3k

(2π )2
M̂pp

(
p,k − q

2
→ p′,k + q

2

)
ρ̂p(k,q)

}

− 1

4
Tr2

{∫
d3k

(2π )2
M̂pn

(
p,k − q

2
→ p′,k + q

2

)
ρ̂n(k,q)

}
,

(3)
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where ρ̂p and ρ̂n are density matrices for protons and neutrons,
respectively. The trace is over the γ matrices with respect to
the target nucleons and the subscript 2 in the trace corresponds
to the target nucleons.

As discussed in Ref. [14] it is known that the nuclear
density generally varies more rapidly with k than the NN
amplitude and is largest at k = 0. Therefore, taking the optimal
factorization into account, the optical potentials are written in
the well-known tρ forms:

Û ( p′, p) = −1

4
Tr2

{
M̂pp

(
p, − q

2
→ p′,

q
2

)
ρ̂p(q)

}

− 1

4
Tr2

{
M̂pn

(
p, − q

2
→ p′,

q
2

)
ρ̂n(q)

}
. (4)

The relativistic density matrix ρ̂ depends only on the momen-
tum transfer q, as follows:

ρ̂(q) = ρS(q) + γ 0
2 ρV (q) − iα2 · q

2m
ρT (q), (5)

where each term is a Fourier transformation of a coordinate-
space density;

ρS(q) = 4π

∫ ∞

0
j0(qr)ρS(r)r2dr, (6)

ρV (q) = 4π

∫ ∞

0
j0(qr)ρV (r)r2dr, (7)

ρT (q) = −4πm

∫ ∞

0

j1(qr)

q
ρT (r)r2dr. (8)

Nuclear densities, provided by the relativistic mean-field
theory [12], are described in terms of upper and lower
components as follows:

ρS(r) =
∑

α

2j + 1

4π

[
G2

α(r) − F 2
α (r)

]
, (9)

ρV (r) =
∑

α

2j + 1

4π

[
G2

α(r) + F 2
α (r)

]
, (10)

ρT (r) =
∑

α

2j + 1

4π
[4Gα(r) × Fα(r)], (11)

where α represents the quantum numbers of the target nucleus.
In the generalized RIA [13,14] the Feynman amplitude for

NN scattering is expanded in terms of covariant projection
operators �ρ(p) to separate positive (ρ = +1) and negative
(ρ = −1) energy sectors of the Dirac space. The invariant

amplitudes, M
ρ1ρ2ρ

′
1ρ

′
2

n , and kinetic covariants, κn, are given by

M̂(p1,p2 → p′
1,p

′
2)

=
∑

ρ1,ρ2,ρ
′
1,ρ

′
2

�ρ ′
1 (p′

1)�ρ ′
2 (p′

2)

×
13∑

n=1

M
ρ1ρ2ρ

′
1ρ

′
2

n κn�
ρ1 (p1)�ρ2 (p2), (12)

where subscripts 1 and 2 correspond to the projectile and
target nucleons, respectively. The covariant projection operator
�ρ(p) is defined by �ρ(p) = 1

2m
(ρ γ μpμ + m), and kinetic

covariants κn are constructed from the Dirac matrices. The
scalar Feynman amplitude, M

ρ1ρ2ρ
′
1ρ

′
2

n , consists of the direct and
exchange parts, each of which represents a sum of four Yukawa
terms characterized by coupling constants, masses, and cutoff
masses. In the present calculation, the IA2 parametrization of
Refs. [13,14] is used.

By substituting Eq. (2) into Eq. (1) and replacing the
momenta with appropriate operators, the coordinate-space
Dirac equation is obtained as follows:

{γ 0E + iγ · ∇ − m − Ũ (r)}�̃(r) = 0, (13)

where Ũ (r) has five potential terms as in Ref. [14] and is
described as

Ũ (r) = S̃(r) + γ 0Ṽ (r) − iα · r̂T̃ (r)

−{S̃LS(r) + γ 0ṼLS(r)} σ · L. (14)

The local form of the optical potential is obtained by the
prescriptions given in Ref. [14], namely the asymptotic
value of the momentum operator and the angular averaged
expression for nucleon exchange amplitudes, which have been
expected to be rather good at high energy scattering.

Equation (13) is written as two coupled equations for the
upper (ψ̃U ) and lower (ψ̃L) components, and solving for ψ̃U

and using the form ψ̃(r)U = K(r)φ(r) in order to remove the
first derivative terms yields the following Schrödinger equation
for φ(r):

{−∇2 + 2E(Uce+Uls σ · L)}φ(r)={(E − VC)2−m2}φ(r),

(15)

where Coulomb potential VC is explicitly written. Although the
IA2 potentials are used, it may be useful to display the form
of the potentials for the simpler IA1 case. The Schrödinger
equivalent potentials for IA1 parametrization are given as
follows:

Uce = 1

2E

{
2EV + 2mS − V 2 + S2 − 2V VC

+
(

T 2 − T

A

∂A

∂r
+ 2

T

r
+ ∂T

∂r

)

+
(

− 1

2r2A

∂

∂r

(
r2 ∂A

∂r

)
+ 3

4A2

(
∂A

∂r

)2)}
, (16)

Uls = 1

2E

{
− 1

rA

(
∂A

∂r

)
+ 2

T

r

}
, (17)

A = 1

E + m
t(E − V + m + S − VC). (18)

This IA1 parametrization corresponds to well-known five-term
expansion and is obtained by setting ρi = ρ ′

i = +1 (i = 1,2)
and nmax = 5 in Eq. (12), instead of nmax = 13. In this case
K(r) = √

A and comes to 1 as r → ∞.

III. RESULTS

Table I shows root-mean-square radius of 4He nucleus. On
the table, “tma” in the first column corresponds to the result
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TABLE I. Root-mean-square radius of proton and neutron distri-
butions for 4He.

Model Proton Neutron

tma 2.150 2.137
tmav1 1.452 1.443
tmav2 1.720 1.068
Charge 1.457(4)

for relativistic mean field calculation and provides rather large
radii for both protons and neutrons. Modified distributions
are tmav1 and tmav2, which are obtained by compressing the
profiles given by relativistic mean field calculation according
to following prescription [15]:

Z = 4π

∫
ρp(r)r2dr = 4πa−3

∫
ρ̃p(x)x2dx, (19)

A − Z = 4π

∫
ρn(r)r2dr = 4πa−3

∫
ρ̃n(x)x2dx, (20)

where r = x/a and A, Z are the nuclear mass number and
the atomic number, respectively. The distributions ρp(r) and
ρn(r) denote the proton and neutron densities given by the
relativistic mean field calculation. The parameter a is such a
scaling parameter that the profile ρ̃N (r) (N = p,n) describes
an expanded distribution for a > 1 and a compressed one for
a < 1 with respect to relativistic mean field densities ρN (r). As
expected for a = 1, the profile ρ̃N (x) is the same as the density
of the relativistic mean field. Since the contributions of tensor
density are known to be small, scalar and vector densities
are considered in the present calculations, and the same scale
parameter is taken for both scalar and vector densities. For
reference, “charge” in the table means proton nuclear radius
calculated with charge radius, which is provided in terms of
electron scattering [16].

Figure 1 provides proton and neutron distributions for 4He
with linear scale in upper panels and logarithmic scale in
lower ones. Solid, dotted, and dot-dashed lines correspond
to results for tma, tmav1, and tmav2, respectively. It is seen
that tmav1 has compressed distributions of both protons and
neutrons, in which the parameter a is chosen so as to give
similar root-mean-square radius of proton to that determined
by the charge radius. On the other hand, tmav2 has a more
compressed neutron distribution and more expanded proton
one in comparison with tmav1. This tmav2 is just a fictitious
model to contrast with tmav1, which is expected to be a realistic
distribution for 4He. The parameters of tmav2 are chosen so
as to reproduce the differential cross section at 71 MeV in the
angles up to 80 deg.

In Fig. 2 observables of proton-elastic scattering from 4He
are shown at 71, 300, and 500 MeV, respectively. Since IA2
parameters of NN amplitude are given from 100 MeV to
1 GeV at intervals of 50 MeV [17], the proton incident energy
is fixed at 71 MeV and parameters of 100 MeV are used for
the calculation of 71 MeV. Results only for tmav1 (solid) and
tmav2 (dot-dashed) are given. Both distributions reproduce
similar profiles of differential cross section at all energies
considered here, while precisely tmav2 always gives larger
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FIG. 1. (Color online) Density distributions of protons and neu-
trons for 4He. The upper panels show the linear-scale distributions,
and lower ones show the logarithmic-scale distributions. Solid, dotted,
and dash-dotted lines denote the model distributions for tmav1,
tmav2, and tma, respectively.

values of the cross section in the large-angle region. On the
other hand, analyzing power data at 300 and 500 MeV favor the
result for tmav1, although both distributions fail in reproducing
Ay data at 71 MeV. In such low energies the impulse
approximation may not be suitable for the calculations.

Schrödinger equivalent optical potentials for 4He at 71, 300,
and 500 MeV are shown in Fig. 3. Both real and imaginary
parts of the central optical potential are given on the upper
panels, and a characteristic structure of RIA appears in the
real part of the potential, i.e., the wine-bottle shape. Since
tmav2 has large neutron density in the central region, the
behavior of both parts of the potentials given by tmav2 is
different from those by tmav1 around the center of the nucleus,
especially in the low energy. As for the spin-orbit potentials
given on the lower panels, shapes of the potentials are similar
for tmav1 and tmav2 in all energies while absolute values of
the central region are significantly different because of the
neutron distribution. Such difference of the potentials in the
central region makes small contribution to the observables at
angles shown in Fig. 2, especially in low energies, almost
similar values of the potentials in surface region provide
similar values of the differential cross section and the analyzing
power. In higher energies the inner part of the potentials
contributes to the observables much more, and this appears in
the observables in the large-angle region at 300 and 500 MeV.
Another characteristic feature of RIA is positive imaginary
part of the spin-orbit potential, which is clearly seen in Fig. 3.

Table II shows root-mean-square radius of 6He nucleus. In
the table, tma and charge in the first column are the same in
Table I. Modified distributions are tmav1, tmav2, and tmav3,
which are obtained by compressing the proton and expanding
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FIG. 2. (Color online) Observables of proton elastic scattering from 4He at 71, 300, and 500 MeV. Each column is composed of differential
cross section (upper panel) and analyzing power (lower panel). Dots are experimental data for 71 MeV [18], 300 MeV [19], and 500 MeV [20].
Solid lines are results for tmav1 and dot-dashed lines are the results for tmav2.

neutron profiles in different way. As easily seen tmav1 has the
same neutron distribution as tma, i.e., the result of RMF, and
has a compressed proton one with the same root-mean-square
radius as that determined by the charge radius. The model of
tmav2 is a fictitious one as well, as in the case of 4He, but has a
compressed proton distribution and an expanded neutron one.
The parameters are also chosen to give good agreement with
experimental data of the differential cross section at 71 MeV.
The third modified distribution is composed of 4He, which is
compressed so as to have the same proton radius as that given
by the charge radius, and a neutron density with larger radius.
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FIG. 3. (Color online) Schrödinger equvalent optical potentials
for 4He at 71, 300, and 500 MeV, respectively. Real and imaginary
parts of the central potential are given in upper panels, and those of
the spin-orbit potential are given in lower panels. The expression of
lines is the same as that in Fig. 2.

Figure 4 provides proton and neutron distributions for
6He with linear scale in upper panels and with logarithmic
scale in lower panels. Solid, dashed, dot-dashed, and dotted
lines correspond to results for tmav1, tmav2, tma3, and tma,
respectively. As mentioned above tmav3 (dot-dashed line) is
given by 4He core + two neutrons, and large neutron density
around the center of 6He appears in Fig. 4 as well as the
spreading neutron density in the outer region r � 3 fm.

In Fig. 5 observables of proton-elastic scattering from 6He
are shown for 71 MeV on the left side and for 0.7 GeV on
the right side. All distributions give good agreement with the
differential cross-sectional data at 71 MeV, while as in the case
of the 4He nucleus they fail to reproduce analyzing power. In
the region larger than 40 deg, distributions give different values
of Ay ; in particular, the distribution which has large value of
the nuclear density in the vicinity of nuclear center provides
larger values of the analyzing power around 50 deg and smaller
values in the angle region larger than 70 deg. Such large values
of the analyzing power in the region between 40 and 50 deg
have also appeared in the calculations of Refs. [7,8] and some
cases of Ref. [10].

For 0.7 GeV, observables are shown with respect to
square of transfer momentum in accordance with experimental
data. All distributions slightly underestimate the differential
cross section in the region larger than 0.04 (GeV/c)2. The
same underestimation also appears in Ref. [21]. Significant
difference among results for different density distributions is

TABLE II. Root-mean-square radius of proton and neutron
distributions for 6He.

Model Proton Neutron

tma 2.044 3.050
tmav1 1.937 3.050
tmav2 1.635 3.352
tmav3 1.936 3.214
Charge 1.938(23)
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FIG. 4. (Color online) Proton and neutron distributions for 6He
with linear scale in upper panels and distributions with logarithmic
scale in lower panels. Solid, dashed, dot-dashed, and dotted lines
correspond to results for tmav1, tmav2, tma3, and tma, respectively.

seen in the region larger than 0.1 (GeV/c)2 in both the cross
section and the analyzing power. The similar relation between
the central nuclear density and the analyzing power appears as
well as in the case of 71 MeV.

Schrödinger equivalent optical potentials for 6He at 71 and
0.7 GeV are shown in Fig. 6. Results for 71 MeV are given
on the left side and for 0.7 GeV on the right side. In this case
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FIG. 5. (Color online) Observables of proton-elastic scattering
from 6He at 71 MeV and 0.7 GeV. Experimental data are taken
from Refs. [1,22] for 71 MeV and Ref. [23] for 0.7 GeV. The line
indication is the same in Fig. 4.
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FIG. 6. (Color online) Schrödinger equvalent optical potentials
for 6He at 71and 0.7 GeV. Real and imaginary parts of the central
potential are given in upper panels and those of the spin-orbit potential
in lower panels. The expression of lines is the same as that in Fig. 4.

the scales of the potentials are different between 71 MeV and
0.7 GeV, and results for tma are omitted as well as in the case
of 4He. The range of the imaginary parts of the potentials is
smaller than that of the real parts except the central potential
at 0.7 GeV, and this is also seen in RIA calculations for many
other target nuclei, known as the wine-bottle shape of the
real central potential. Although the real spin-orbit potential
at 71 MeV seems similar to the result shown in Ref. [9] and
the imaginary part is very small, calculated analyzing powers
are significantly different. As clearly seen, the depths of the
central potential are smaller for both real and imaginary parts.
Side-by-side comparison between the real spin-orbit potentials
shows that the range and depth of the potential are slightly
larger than those of Ref. [9]. Such results give rise to the similar
structures of the differential cross sections and significantly
different values of the analyzing power at 71 MeV.

Table III shows root-mean-square radius of 8He nucleus.
In the table, tma and charge in the first column are the
same in Tables I and II. In order to show how much the
distributions contribute to the observables, model distributions
are considered as well as in the cases of 4He and 6He. In the
models, tmav0 is the density distribution in which both proton

TABLE III. Root-mean-square radius of proton and neutron
distributions for 8He.

Model Proton Neutron

tma 1.975 3.193
tmav0 1.885 3.048
tmav1 2.634 2.873
tmav2 1.882 3.315
tmav3 1.874 3.184
Charge 1.885(48)
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FIG. 7. (Color online) Proton and neutron distributions for 8He
with linear scale in upper panels and distributions with logarithmic
scale in lower panels. Dot-dashed, dashed, solid, and dotted lines
correspond to results for tmav1, tmav2, tma3, and tma0, respectively.

and neutron profiles are compressed with the same value of
parameter “a” so that the root-mean-square radius of proton
comes to the value deduced from the charge distribution.
In the model tma1, the proton distribution is expanded and
the neutron one is compressed with different values of the
parameter. They are chosen to provide a prediction as good as
possible for the data of differential cross section. This fictitious
model is similar to that of 4He. The models of tmav2 and
tmav3 have the similar proton root-mean-square radius as that
of charge distribution. The distributions of tmav2 are based on
the profile for 4He core + four neutrons, while tmav3 is based
on the profile for 6He core + two neutrons.

Figure 7 shows the density distributions according to
Table III, in the same manner as Figs. 1 and 4, i.e., the left side
for proton and the right side for neutron, and the upper panel is
in linear scale and the lower panel is in logarithmic scale. Dot-
dashed, dashed, solid, and dotted lines correspond to results
for tmav1, tmav2, tma3, and tma0, respectively. Every model
distribution except tmav1 shows similar profiles, although the
root-mean-square radii of neutron are rather different.

Observables of proton elastic scattering from 8He nucleus
are shown in Fig. 8. Results given in panels (a), (b), and
(c) are the differential cross section, analyzing power, and
spin-rotation function, respectively. All distributions for 8He
provide good agreement at least with the differential cross
section at 71 MeV while they fail in reproducing analyzing
power data in the same as 4He and 6He. Such behavior of
the analyzing power is also seen in Refs. [5,7]. The fictitious
model tmav1, however, shows rather good agreement with Ay

in the region larger than 50 deg and provides smaller values of
the spin-rotation function than those of other models.

Figure 9 shows the Schrödinger equivalent optical poten-
tials for 8He nucleus at 71 MeV. Real and imaginary parts of the
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FIG. 8. (Color online) Observables of proton elastic scattering
from 8He at 71 MeV. Solid and open circles are experimental data
taken from Refs. [3,4]. The expression of lines is the same as that in
Fig. 7.

central potential are given in the upper panel and those of the
spin-orbit potential in the lower panel. Significantly different
values of the potentials are seen in radii smaller than 1.5 fm for
the real part of the central potential and in radii smaller than
2.0 fm for the other ones. Such differences appear in the scat-
tering observables in the large-angle region, which are shown
in Fig. 8. As for the spin-orbit potential, tmav1 provides almost
zero for the imaginary part and small absolute value for the real
part accidentally. Such potential causes small values of spin
observables, and in consequence calculated results with the
potential seem to give good agreement with Ay data. However,
this model distribution has an unrealistic value of the proton
root-mean-square radius, and the actual reason for small spin-
orbit potential that explains the analyzing power data should
be attributed to things other than the density distribution.

As seen in the case of the 4He nucleus, scattering observ-
ables, especially the analyzing powers at 300 and 500 MeV,
show significant difference in the density distributions because
the inner part of the nuclear distributions contributes at higher
energies than 71 MeV. There are no data of spin observables for
6He and 8He at such higher energies and for future comparison
between experimental data and calculation results scattering
observables are predicted for 6He and 8He at 200 MeV.

Figure 10 shows observables of proton elastic scattering
from 6He (left side) and 8He (right side), respectively, and
corresponding optical potentials are given in Fig. 11. In
Fig. 10, as in Fig. 8, panels (a), (b), and (c) show the
differential cross section, analyzing power, and spin-rotation
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FIG. 9. (Color online) Schrödinger equvalent optical potentials
for 8He at 71 MeV. Real and imaginary parts of the central potential
are given in the upper panel and those of the spin-orbit potential in
the lower panel. The expression of lines is the same as that in Fig. 7.

function, respectively. As seen in the case of 4He, a significant
difference of Ay in the density distributions appears in the
region larger than 50 deg for 6He and larger than 30 deg for
8He. Experimental data with appropriate accuracy are expected
in the angle regions at 200 and 71 MeV in order to obtain
information on the density distributions of helium isotopes.

Figure 11 shows Schrödinger equivalent optical potentials
corresponding to Fig. 10. In the real part of the central potential
the wine-bottle shape appears, except the case of tmav1 of the
8He nucleus. In comparison with calculations in other higher
energies, it is found that real central potential of this distribu-
tion increases with increasing proton incident energy at around
nuclear center more slowly than those of other distributions.
This model distribution, however, is expected to be excluded
by experimental data as seen in proton-4He scattering.

IV. SUMMARY AND CONCLUSION

This work has presented RIA analyses of proton elastic
scattering from 4He at 71, 300, and 500 MeV and from
6,8He at 71 MeV, respectively. Several models of density
distributions are considered, which are calculated based on
RMF and with compressed and/or expanded proton and
neutron density distributions.

As for the 4He target, two density distributions are found,
which provide good agreement with experimental data of
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FIG. 10. (Color online) Observables of proton elastic scattering
from 6He and 8He at 200 MeV. Results given in panels (a), (b), and (c)
are the differential cross section, analyzing power, and spin-rotation
function, respectively. The expression of lines for 6He is the same as
that in Fig. 4 and for 8He in Fig. 7.

differential cross sections at all energies considered here;
however, there are different profiles of analyzing power
at large angles for higher energies: 300 and 500 MeV.
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FIG. 11. (Color online) Schrödinger equivalent optical potentials
for 6He and 8He at 200 MeV. The expression of lines for 6He is the
same as that in Fig. 4, and for 8He in Fig. 7.
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The experimental data favor the density distribution which
has the same proton root-mean-square radius as that de-
duced from the charge radius determined by electron
scattering.

The situation of differential cross section for 6He nucleus
is similar as 4He; namely, all different density distributions
provide good agreement with experimental data at 71 MeV
(also at 0.7 GeV). For analyzing power, however, each distri-
bution fails in reproducing the data at 71 MeV. The predictions
of the scattering observables (the differential cross section,
analyzing power, and spin-rotation function at 200 MeV)
are given in the present work. The distribution which has the
similar proton root-mean-square radius determined from the
charge radius is expected to be favored by the experimental
data at 200 MeV as well as in the case of 4He.

For 8He nucleus results are almost similar to other two
isotopes. Model distributions provide good agreement with
the data of differential cross section at 71 MeV; however, there
is no distribution which provides good agreement with the
data of analyzing power at this energy. Also, 6He scattering
observables at 200 MeV are calculated, and data of analyzing
power may distinguish distributions.

The result that differential cross sections are reproduced
well while analyzing powers are not at 71 MeV may show that
a scattering mechanism other than the impulse approximation
would contribute toward the analyzing power. Since the local
form of the optical potential is obtained by the prescriptions
known to be good at high energy in the RIA analysis, there
would be a possibility that such treatment including the optimal
factorization would affect the calculation of the analyzing
power at such low energies as 71 MeV. Therefore, in order to
determine the density distributions based on RIA calculations,
data of both cross section and analyzing power are needed in
the region of several hundred MeV.
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