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Nonisotropic and nonsingle explosion in central 129Xe + 120Sn collisions at 50–125 MeV/nucleon
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The expanding dynamics in central 129 Xe + 120Sn collisions at 50 MeV/nucleon is investigated within the
framework of the isospin-dependent quantum molecular dynamics model in combination with the statistical decay
code GEMINI. The nonisotropic distributions in the fragment size and average kinetic energy are reproduced. The
collective expansion energy and the Coulomb explosion energy of different fragments are extracted. We focus
on the nonisotropic explosion of the colliding system and the difference of explosion energies of H, He, Li, and
Be fragments. The radial flow energies are extracted at the polar angle θc.m. = 90◦. From studying the beam
energy dependence at 50–125 MeV/nucleon, the threshold energies of the radial flow are investigated. The time
evolutions of the density and the collective velocity are investigated. It is found that the radial flow causes the
system to expand in the isotropic direction, whereas the residual incident energy causes the system to extend
along the longitudinal direction. The Pauli blocking is responsible for the nonisotropic nature of the collective
velocity.
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I. INTRODUCTION

The studies of heavy-ion collisions (HICs) are motivated
by purpose of extracting information on the nuclear equation
of state far away from the saturation region [1]. Indeed, for
this purpose one has to analyze the entire reaction dynamics in
which the collective motion is supposed to play an important
role [2–5]. The collective motion has been observed in HICs
over a wide range of incident energies [6,7]. Particularly,
the radial flow characterizes particles that are emitted from
a source with a common velocity field independent of the
direction. Experimental extraction of radial flow is based on
the phenomena that the kinetic energy spectra of particles
from identified single source, such as in central collisions,
do not show the characteristic Boltzmann-like shape expected
for thermal emission [8]. Assuming a form characterized by
radial velocity parameters, the radial flow was extracted by
fitting the measured energy spectra [9–11]. The radial flow
was also deduced from the quasilinear dependence of the
average kinetic energy on the mass of the emitted fragment
[11–15]. The systematic data in central collisions show that
the radial flow energies increase with the incident energy.
An interest in measurement of radial flow at low incident
energies centers on the interpretation of the threshold value for
collective expansion [16,17]. For instance, the extra radial flow
on 36Ar + 27Al collisions between 55 and 95 MeV/nucleon
was found to gradually decrease to zero as the excitation energy
reaches values between 5 and 6 MeV/nucleon [18]. Despite
the difference in the methods of the determination, it can be
concluded that radial flow beyond the Coulomb flow starts to
be seen around 5 MeV/nucleon of the available energy [7,19].

In the simple thermodynamic fireball model, breakup
of the hot equilibrated nuclear system results in a purely
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thermal energy spectra that is Maxwell-Boltzmann type in
the classical limit [20,21]. In order to gain a quantitative
understanding of the spectra, Siemens and Rasmussen develop
this model by introducing the blast-wave picture, in which
the isotropic hydrodynamical expansion is considered to
be responsible for the deviation from the purely thermal
distribution of the energy spectra [9]. A qualitative analysis
of the spherical expansion was given within the framework of
relativistic hydrodynamics, in which linear relation between
the flow velocity and the position vector was found [22].
Actually, the linear relation βf = Hr was used in the earlier
work by Bondorf et al. studying the isotropic self-similar
expansion of an ideal gas into vacuum [23]. The basic concept
of the self-similar expansion was applied to analyze the
experimental data both by the ALADIN Collaboration and
FOPI Collaboration [13,24,25]. However, it was found that
isotropic self-similar flow parametrizations were not sufficient
for the adequate description of the kinetic energies within
the metropolis multifragmentation Monte Carlo model for
nonspherical sources (MMMC-NS) [26].

Transport models are used to investigate the origin of
the radial flow. Based on the framework of the quantum
molecular dynamics (QMD) model, Hartnack and Aichelin
found that there are three dynamical contributions to the
collective effect, including initial- and final-state correla-
tions, potential interactions, and collisions [27]. However,
the compression phase followed by a larger collective flow
was observed in central collisions at 50 MeV/nucleon within
the framework of the stochastic mean-field approach [28].
The isospin dependence of radial flow was investigated based
on the transport model [29,30,32]. Within the framework of
the isospin-dependent quantum molecular dynamics (IQMD)
model, the strong isospin dependence of the radial flow from
the symmetric central collisions at incident energies of a few
hundred MeV/nucleon is shown [29–31]. However, it is found
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that the effect of symmetry energy on radial flow is weak within
the isospin-dependent Boltzmann-Uehling-Uhlenbeck (BUU)
model [32]. The linear relation between the radial flow velocity
and the position vector is found both in isospin-dependent
BUU model [32] and the framework of the stochastic transport
theory [33]. The microcanonical lattice gas model was applied
to test the effect of radial flow on fragment formation. It
is found that the disordered thermal motion is always more
efficient than the collective motion to break up the system
[34,35].

Based on the amount of available data of radial flow, some
complications emerge, especially at low energy. First, the
spherical symmetry of velocity space topology even for very
central events has to be inspected [36]. It has been found
that the Pauli blocking is responsible for the nonequilibrium
in central HICs around Fermi energy [37]. Thus, in order to
extract information of the fermionic feature in HICs, studies of
the deviations from sphericity of radial flow are of increasing
importance as the energy and the system size are lowered
[7,38]. Second, the concept of a single flow velocity provides
a useful way to parametrize the data, but it is quite simplistic.
The experimental data suggested that all fragments do not
participate equally in the collective expansion. Hsi et al. found
that the values for collective expansion energies, extracted
independently for each charge fragment in central Au + Au
collisions at 100 MeV/nucleon, decrease with the fragment
charge [10]. Another evidence is that the kinetic energy rises
with fragment size only for relatively light fragments, but then
tends to decrease again for heavier fragments [39]. Third,
the Coulomb expansion dynamics and the radial flow have
a similar influence on the kinetic energy. The Coulomb energy
becomes an important background to the radial flow at low
incident energy [10,14]. The systematic data for radial flow
energy show values similar to the estimate of radial energy for
a pure Coulomb explosion when the incident energy is about
50 MeV/nucleon [7,19]. Fourth, some scalings of the radial
flow, which indicates that the radial expansion plays an
important role on the fragment formation, was found. The
amount of radial collective energy fixes the mean fragment
multiplicity for a given total excitation energy [4,5]. The radial
flow was also found to be correlated to the global stopping in
central collisions [37,40,41].

In order to understand those complications and the puzzling
aspects, the collective expansion in central HICs at 50–
125 MeV/nucleon is investigated within the framework of
the IQMD model in combination with the statistical decay
code GEMINI. The experimental data for central reaction
129Xe + 120Sn are relatively abundant. Comparison between
the calculation and the experimental data can improve the
credibility of the model. Thus, the reactions 129Xe + 120Sn
are chosen in this work. This paper is organized as follows. In
Sec. II, the theoretical model is introduced briefly. In Sec. III,
the results are presented. The collective expansion energies
and the Coulomb explosion energies of different fragments
are extracted and compared in the assumption of spherical
expansion in Sec. III A. Based on the reproduction of angular
anisotropy in the distributions of fragment yield and kinetic
energy, the angular distributions of the collective expansion
energies and the Coulomb explosion energies are investigated

in Sec. III B. Then in Sec. III C, the topology of collective
velocity field and nucleonic density is studied. The collective
velocities as a function of the radial distances both at forward
angles and sideward angles are shown. Finally, the conclusion
is given in Sec. IV.

II. THEORETICAL FRAMEWORK

In this work, the IQMD model [42,43] is applied to describe
the formation of the pre-fragments. In order to compare the
calculations with the experimental data, the GEMINI model [44]
is applied to simulate the decays of the prefragments.

A. Isospin-dependent quantum molecular dynamics model

The wave function for each nucleon in the IQMD model is
represented by a Gaussian wave packet

φi(r,t) = 1

(2πL)3/4
e− [r−ri (t)]2

4L · e
ir·pi (t)

� , (1)

where ri and pi are the average values of the position and
momentum of the ith nucleon, and L is related to the extension
of the wave packet. The total N -body wave function is assumed
to be the direct product of these coherent states. Through
a Wigner transformation of the wave function, the N -body
phase-space distribution function is given by

f (r,p,t) =
N∑

i=1

1

(π�)3
e− [r−ri (t)]2

2L e
− [p−pi (t)]2 ·2L

�2 . (2)

The time evolutions of the nucleons in the system under
the self-consistently generated mean-field are governed by
Hamiltonian equations of motion

ṙi = ∇pi
H, ṗi = −∇ri

H, (3)

where the Hamiltonian H is expressed as

H = T + UCoul +
∫

Vnucl[ρ(r)]dr. (4)

Here, the first term T is the kinetic energy, the second term
UCoul is the Coulomb potential energy, and the third term is
the nuclear potential energy. Each term of the nuclear potential
energy-density functional Vnucl reads

Vnucl = VSky + Vsur + Vsym, VSky = α

2

ρ2

ρ0
+ β

γ + 1

ργ+1

ρ
γ
0

,

Vsur = gsur

2

(∇ρ)2

ρ0
, Vsym = C

2

(ρn − ρp)2

ρ0
. (5)

Here, ρ is the density, and ρ0 is the saturation density. VSky

describes the saturation properties and compressibility of nu-
clear matter. The soft equations of state with a compressibility
of 200 MeV at saturation density is applied in the present
work. Vsur is the surface term to describe the surface property
of finite nuclei. Vsym is the symmetry term, which is crucial
for reproducing the isospin-dependent effect in the dynamics.
The parameters of the nuclear potential energy adopted in the
present work are shown in Table I.

The binary nucleon-nucleon (NN) collisions are included
in the IQMD model. The NN collisions mimic the effect of
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TABLE I. The parameters of the nuclear potential energy adopted in the present work.

α β γ gsur C ρ0 K E0/A
(MeV) (MeV) (MeV ·fm5) (MeV) (fm−3) (MeV) (MeV)

−356 303 7/6 130 39.4 0.16 200 −16.1

the short-range repulsive residual interaction together with
the stochastic change of the phase space distribution. The
differential cross sections of NN collisions can be written as(

dσ

d


)
el(inel)

= σ free
el(inel)f

angl
el(inel)f

med
el(inel), (6)

where σ free is the cross section of NN collisions in free space
and f angl gives the angular distribution. The isospin-dependent
parametrization of σ free and f angl adopted in this work are
taken from Ref. [45]. f med gives the in-medium corrections
to the NN cross section. The in-medium factor of f med =
1 − 0.2ρ/ρ0 [46] is adopted.

To compensate for the fermionic feature the method of
the phase space density constraint in the CoMD model [47]
is applied. The phase space occupation probability f i is
calculated by performing the integration on an hypercube of
volume h3 in the phase space centered around the ith nucleon
at each time step.

f i =
∑

n

δτn,τi
δsn,si

∫
h3

1

π3�3
e
− (rn−ri )2

2L
− (pn−pi )2L

�2 d3rd3p. (7)

Here, τi represents isospin degree of freedom. si is the spin
projection quantum number of the ith nucleon. At each time
step and for each nucleon, the phase space occupation f i is
checked. If phase space occupation f i has a value greater than
1, the momenta of the ith nucleon is changed randomly by
many-body elastic scattering.

In addition, Pauli blocking, which is related to the phase
space density constraint, is taken into account. Whenever a
collision occurs, the phase space occupation f i is calculated.
Only if such functions at the final states are both less than 1 is
the scattering accepted.

In the present work, the simulation time by IQMD is
up to 500 fm/c. At the end of the IQMD evolutions, a
phase-space coalescence method [42,48] is applied to formate
the prefragments. In this coalescence method, nucleons with
relative distance of coordinate and momentum of |ri − rj | ≤
R0 and |pi − pj | ≤ P0 belong to a cluster. Here, R0 and P0 are
phenomenological parameters determined by fitting the global
experimental data, such as the multiplicities. Values of R0 and
P0 used in this work are 3.2 fm and 250 MeV/c. In order to
get rid of the nonphysical clusters, two conditions need to be
satisfied. First, it is checked whether the cluster is an isotope
existing in the nuclear data sheets, and if it is, then the cluster
can be accepted. Second, the condition of Rrms < 1.14A1/3 is
used to get rid of the nonphysical line-type clusters. Here, the
Rrms and A are the root-mean-square radius and mass number
of the cluster, respectively. Finally the mass numbers, charge
numbers, and excitation energies of the accepted clusters
(prefragments) are calculated and used as the inputs in GEMINI

model.

B. GEMINI

The statistical model GEMINI is widely used in performing
sequential decays of hot fragments. It allows not just light-
particle evaporation and symmetric fission but all possible
binary-decay modes. A Monte Carlo technique is employed
to follow all decay chains until the resulting products
are unable to undergo further decay. The partial decay
widths are taken from the Hauser-Feshbach formalism for
light-particle evaporation, and from Moretto’s generalized
transition-state formalism for more symmetry divisions. Nu-
clear masses with shell and pairing corrections are adopted.
Nuclear level densities were taken as a Fermi-gas form. The
details of GEMINI are given in Ref. [44].

III. RESULTS AND DISCUSSION

Via the IQMD model accompanied by the GEMINI model,
the study of multifragmentation in central HICs at intermediate
energies have been presented in the previous work [49].
The multiplicities and the kinetic energy spectra have been
calculated and compared with the experimental data. A good
agreement has been observed. This work focuses on the kinetic
characteristics and collective expansion.

A. Average kinetic energy and expansion

One of the experimental evidences for the existence of radial
expansion is the quasilinear dependence of the average kinetic
energy on the mass or charge of the emitted fragment. The
average kinetic energy in central 129Xe + 120Sn collisions
has been measured by the INDRA Collaboration [26,50,51].
Figure 1 shows the comparison between the experimental data

FIG. 1. (Color online) Average kinetic energy in the center of
mass as a function charge in central 129Xe + 120Sn collisions at
50 MeV/nucleon. The experimental data for central events are
selected using transverse energy of light charged particles E⊥12

[26,50] and flow angle θflow [51].
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and calculations of the average kinetic energies in the center of
mass as a function of fragment charge in central 129Xe + 120Sn
collisions at 50 MeV/nucleon. Experimentally, the transverse
energy of light charged particles E⊥12 and flow angle θflow are
used to select the central events. In the region of Zf < 10,
the experimental kinetic energy rises quasilinearly with the
fragment charge and is independent on experimental event
selections. When the fragment charge is larger than 10, the
differences between the event selections emerge. For the θflow

selection, the average kinetic energies for each Zf is almost
the same in the region of Zf > 10. For the E⊥12 selection, the
average kinetic energy increases with the Z. It is shown that
from experimental data for the same selection (triangles and
squares), the kinetic energy of the fragment with Zf > 15 is
rather dependent on the impact parameter.

Theoretically, the central 129Xe + 120Sn collisions at
50 MeV/nucleon with impact parameters of b = 0 fm, b <
1.6 fm, and b < 4.0 fm are simulated respectively by the
IQMD + GEMINI model. The calculated average kinetic energy
is shown in Fig. 1. The calculations reproduce the quasilinear
increase of the experimental data in the region of Zf < 10.
The differences of the overall trends between the calculations
and experimental data are shown for the large fragments. The
calculated average kinetic energy increases, then saturates and
decreases for Zf > 20. The average kinetic energies of the
large fragments are sensitive to the methods to select the central
events. Thus, differences of the methods to select the central
events are responsible for the differences of the overall trends
in the region of Zf > 10. By comparing calculations with
different impact parameters, it is found that the calculated
average kinetic energy is almost independent of the impact
parameters in the region of Zf < 10. However, the calculated
average kinetic energy of fragments with Zf > 10 increases
with the impact parameter.

For the central HICs, the average kinetic energy 〈Ek〉 of
fragments can be written as

〈Ek〉 = Eran + Erad. (8)

Here, Eran reflects the kinetic energy of random motions, which
includes the thermal motion and Fermi motion. Erad is the
radial expansion energy. In the assumption of Fermi-Dirac
distribution and the case of finite temperature, the random
kinetic energy can be written as [8]

Eran =
∫

dε ε3/2

1+exp( ε−μ
T

)∫
dε ε1/2

1+exp( ε−μ
T

)

, (9)

where μ is the chemical potential and T is thermal tem-
perature. The radial expansion of the fragments in central
collisions is a combination of the collective expansion and the
Coulomb expansion. The radial expansion energy Erad can be
nonrelativistically approximated by [10]

Erad = Ecoll + ECoul

= 3

5

[
1

2
Af m0c

2β2
coll + Zf (Zs − Zf )e2

Rs

]
, (10)

FIG. 2. (Color online) Average kinetic energy in the center-of-
mass as a function mass in central 129Xe + 120Sn collisions at
50 MeV/nucleon by IQMD + GEMINI model. The linear fits of
average kinetic energy for isotopes respectively are also shown.

where Af and Zf are the mass number and charge number of
the fragment and Zs and Rs are the charge number and radius
of the fragmenting source.

As the random kinetic energy Eran and the Coulomb
expansion energy ECoul is independent of mass number Af , the
collective expansion energy Ecoll can be extracted by the linear
fit of the relationships between the average kinetic energy and
mass number Af for the isotopes. Figure 2 shows the average
kinetic energies of H, He, Li, and Be isotopes as functions of
mass number. The linear fits of average kinetic energy for H,
He, Li, and Be isotopes respectively are also shown. Except
for proton and α particles, the average kinetic energy increases
with the mass number of the fragments. Since the protons and α
particles are exclusively produced by the secondary decays of
the prefragments, the kinetic energies of them not only reflect
the kinetic properties of fragmenting source but also carry the
kinetic information of the decay steps of the prefragments.
Due to this possible complexity, the kinetic energies of proton
and α particles are not considered for linear fits. One can also
see that the points for proton and α particles in Fig. 2 keep
away from the fitted lines.

It can be seen from Eqs. (9) and (10) that the random
kinetic energy Eran and the collective expansion energy Ecoll

is independent of charge number Zf . In central 129Xe + 120Sn
collisions at 50 MeV/nucleon, and the charge number of the
fragmenting source Zs is much larger than the charge numbers
of He, Li, and Be. For this reason, the Coulomb expansion
energy per charge can be extracted by the difference of average
kinetic energy between isobars. In Fig. 2, there are three isobar
pairs (3H-3He, 6He-6Li, and 7Li-7Be). The vertical dotted lines
are for guiding those isobar pairs. One can see that the average
kinetic energies for isobars are different. The average kinetic
energies for isobars with large Zf are larger than those in the
small charge cases. Those differences are the consequence of
the Coulomb expansion.

The above method to extract the collective expansion
energy and the Coulomb expansion energy is applied to
the central 129Xe + 120Sn collisions at 50 MeV/nucleon
with impact parameters of b = 0 fm, b < 1.6 fm, and
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FIG. 3. (Color online) Collective expansion energy per nucleon
and Coulomb expansion energy per charge as a function of impact
parameter. The error bars come from the fits of the kinetic energies.

b < 4.0 fm. The results are shown in Fig. 3. In fact, the
average kinetic energies of fragments emitting from any angle
are all included. In other words, the assumption of isotropic
expansion is implied. It can be seen from Fig. 3(a) that the
collective expansion energy per nucleon is almost independent
of the impact parameter in the region of b < 4.0 fm. The
collective expansion energies per nucleon for H, He, Li, and
Be are different. It means that all fragments do not participate
equally in the collective expansion. The collective expansion
energy per nucleon decreases with the increasing charge
number of fragments. For the collisions with b < 1.6 fm, the
collective expansion energies per nucleon for H, He, Li, and
Be fragments are 3.8, 3.2, 1.9, and 0.91 MeV/nucleon. The
gradually decreasing trend of the collective expansion energy
with the fragment charge strongly supports the result proposed
by Hsi et al. [10].

As shown in Fig. 3(b), the Coulomb expansion energy
ECoul in MeV/proton is also independent of the impact
parameter for each isobars. From the approximated formula
[Eq. (10)], it can be seen that the Coulomb expansion
energy in MeV/proton is (Zs − Zf )e2/Rs . For fragments
with Zf � Zs , the values of Coulomb expansion energy
in MeV/proton should be similar. The values of ECoul

extracted from the isobar pairs of 6He-6Li and 7Li-7Be
are both around 5 MeV/proton. However, the value of
ECoul extracted from the isobar-pairs of 3H-3He is about
8 MeV/proton, which is larger than the values extracted from
the isobar pairs of 6He-6Li and 7Li-7Be. By comparing the
Coulomb expansion energy with the the collective expansion
energy, it can be found that the former is larger than the latter.
This supports the inference that the Coulomb energy becomes
an important background to the collective flow at low incident
energy [10,14].

B. Angular distributions of the expansion energies

In the above investigation, the assumption of isotropic
expansion is implied. In fact, the expansion of the fragmenting
source is angular dependent. The angular isotropy in the

FIG. 4. (Color online) Average multiplicity of fragments as a
function of charge in central 129Xe + 120Sn collisions at 50
MeV/nucleon. Squares and solid line represent the results for forward
angles (θc.m. < 60◦), and circles and dashed lines represent results for
sideward angles (60◦ < θc.m. < 120◦). Experimental data are taken
from Refs. [26].

distributions of fragment yield and fragment kinetic energy
have been found from the INDRA experimental data [26].

Figure 4 shows the average multiplicity of fragments
as a function of charge emitting from the forward region
(θc.m. < 60◦) and sideward region (60◦ < θc.m. < 120◦) in
central 129Xe + 120Sn collisions at 50 MeV/nucleon. For
the experimental data, it can be seen that the fragments with
same charge are produced more abundantly in the forward
region than in the sideward region. The difference between
forward multiplicity and sideward multiplicity increases with
increasing charge. The multiplicities in forward and side-
ward for Z ≤ 2 are similar. This has been regarded as the
autocorrelation produced by the E⊥12 selection method. The
calculations by IQMD + GEMINI model show the enhancement
in the forward region for all fragments. The agreement between
the calculations and the experimental data is quite encouraging.

Figure 5 shows the average kinetic energy in the center-
of-mass of fragments as a function of charge emitting from
the forward and sideward angular regions in central 129Xe +
120Sn collisions at 50 MeV/nucleon. The anisotropy of the
kinetic energy is shown obviously. For the same fragment,
the average kinetic energy of the forward case is larger than
that of the sideward case. The anisotropy of the kinetic energy
becomes more apparent when the fragment charge increase.
The calculations generally agree with the experimental data.
An acceptable divergence appears for the sideward case
for Z > 10. As mentioned above, the differences of the
methods to select the central events are responsible for this
differences. In addition, due to the phenomenological method
to compensate for the fermionic feature used in the model,
there are some differences of the incomplete stopping between
the experimental data and model calculations [37]. This is
another physical reason responsible for the divergence appears
for the sideward case for Z > 10. The good agreement of
the nonisotropic multiplicity and kinetic energy between the
calculations and the data suggests that the IQMD + GEMINI

model is robust and reasonable to investigate the anisotropy
of the expansion in central HICs. Actually, the incomplete
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FIG. 5. (Color online) Average kinetic energy in the center of
mass as a function charge in central 129Xe + 120Sn collisions at 50
MeV/nucleon. Squares and solid line represent the results for forward
angles (θc.m. < 60◦), and circles and dashed lines represent results for
sideward angles (60◦ < θc.m. < 120◦). Experimental data are taken
from Ref. [26].

stopping, which indicates the nonequilibrium and residual
memory, has been reproduced by the IQMD + GEMINI model
in our previous work [37].

The anisotropy of the expansion is demonstrated by the
polar-angle-dependent collective expansion energy Ecoll and
Coulomb expansion energy ECoul. The collective expansion
energies per nucleon as a function of polar angle in central
129Xe + 120Sn collisions at 50 MeV/nucleon with b = 0 fm
are shown in Fig. 6. The collective expansion energies Ecoll

are extracted by the linear fits of the relationships between the
average kinetic energy and mass number Af . The error bars

FIG. 6. Collective expansion energy per nucleon as a function of
polar angle in central 129Xe + 120Sn collisions at 50 MeV/nucleon
with b = 0 fm. The error bars come from the fits of the kinetic
energies.

of the collective expansion energy come from linear fits of
the kinetic energies. For central 129Xe + 120Sn collision, the
masses of the projectile and target are almost the same. The
plane symmetry of the dynamical evolution in the center of
mass will hold. Thus, the values of the collective expansion
energy Ecoll and Coulomb expansion energy ECoul at the
polar angle θ and π − θ are extracted simultaneously. One
can see that the longitudinal value of Ecoll is larger than the
transversal one for all considered fragments. From θc.m. = 0◦
to 90◦, the values of Ecoll decrease monotonously. Expressly
for Be fragment [Fig. 6(d)], the value of Ecoll at θc.m. = 0◦ is
5 MeV/nucleon, which is much larger than the values at other
emitting angle.

The collective expansion energy at θc.m. = 90◦ is the
radial flow energy. From this perspective the radial flow
energies of H, He, Li, and Be fragments are 2.0, 0.8, 0.9, and
0.4 MeV/nucleon respectively. Only the radial flow energy of
H fragment is close to the value of 2.2 MeV/nucleon extracted
by Statistical Multifragmentation Model [3], in which the
concept of a single flow velocity is adopted. The radial flow
energy of Be fragment is close to zero within a margin
of error.

The radial flow energies of H, He, Li, and Be fragments are
extracted in central 129Xe + 120Sn collisions at incident energy
between 50 to 125 MeV/nucleon. The results are shown in
Fig. 7. It can be seen from the figure that the calculated results
show the mass dependence of radial flow. The increasing trend
of the radial flow energy with fragment charge is found at each
incident energy except 50 MeV/nucleon. From studying the
beam energy dependence, it could be found that the radial flow
energy in the reaction disappears at an incident energy, which
is called the threshold energy of radial flow. The lines in Fig. 7
are the linear fits of the calculated results. It is shown that the
radial flow energies increase as the incident energies increase,
and the linear relations between the radial flow energy and
incident energy are quite satisfied. From the fitting lines, the
values of threshold energies for H, He, Li, and Be fragments
are 24.9, 34.7, 34.8, and 42.0 MeV/nucleon respectively. The
threshold energies of radial flow increase with the increasing

FIG. 7. (Color online) Radial flow energies of H, He, Li, and
Be fragments in central 129Xe + 120Sn collisions at incident energy
between 50 to 125 MeV/nucleon.
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FIG. 8. (Color online) Coulomb expansion energy in
MeV/proton as a function of polar angle in central 129Xe +
120Sn collisions at 50 MeV/nucleon with b = 0 fm.

fragment charge. Only the threshold energy of the radial flow
extracted by Be fragment is close to the value in Ref. [31], in
which the concept of a single flow velocity is adopted.

Figure 8 shows the Coulomb expansion energy in
MeV/proton as a function of polar angle. It can be seen
from the figure that the values of ECoul extracted from the
isobar-pairs of 6He-6Li and 7Li-7Be are 5 MeV/proton in any
angle. The polar angle dependence is indefinable. However,
the Coulomb expansion energy extracted from isobar-pair of
3H-3He shows the obvious polar angle dependence. From
θc.m. = 0◦ to 90◦, the value of ECoul decreases from 11
to 8 MeV/proton. Comparing the value of ECoul with the
radial flow energy, it can be seen that the Coulomb expansion
dominates in the fragmenting source.

C. Topology of collective velocity field

In order to reveal the dynamic processes which are
responsible for the nonisotropic distribution of the fragment
size, kinetic energy, and expansion energy, the topology of

collective velocity field is investigated. Figures 9 and 10
display the time evolutions of the density and the collective
velocity in the x-z plane and x-y plane respectively. Here, x
is the direction of the impact parameter, and z is the beam
direction. The density is shown as colors. The collective
velocity in each specific spatial position is calculated within
10 000 events and shown as arrows.

As shown in Fig. 9, the dynamic process in x-z plane
is characterized as flowing. At t = 0 fm/c, the projectile
and target move close to each other. The collective velocity
of the nucleons is the same as the incident velocity. At
t = 10 fm/c, the projectile and target contact with each
other. Due to the exchange of the nucleons, the density of
the contact area increases to about 0.4 ρ0. The collective
velocity of the peripheral nucleons is not directed along the
z axis strictly. At t = 30 fm/c, part of two nuclei overlap.
The density of central region reach to 1.2 ρ0. The nucleons
outside the overlap region are slowing down but still move
to the center. The collective velocity in the overlap region
deviates obviously from the incident direction and has a large
part of transverse component. In the overlap region, a large
number of nucleon-nucleon collisions occur. Consequently the
incident energy transfers both to the thermal kinetic energy
and the collective energy along the transverse direction. The
Pauli principle is responsible for the transverse energy transfer.
Some nucleons are squeezed out at the sideward angles.

At t = 50 fm/c, the projectile and target overlap com-
pletely. The transverse momentum causes the overlap region
to expand radially and thus the density of central region
decreases to ρ0. The distribution of the density is isotropic.
The nucleons are squeezed out along the sideward direction.
The collective velocity in the peripheral region is directed
along the x axis approximatively, while that in the central
region shows as zero. Nevertheless, this does not mean that
the incident energy dissipate completely. It has been found
that a part of the incident energy remains in central HICs at
Fermi energy [37]. The residual incident momentums of the
projectile and the target have a opposite direction, thus the

FIG. 9. (Color online) Time evolutions of the density (colors) and the collective velocity (arrows) in the x-z plane in central 129Xe + 120Sn
collisions at 50 MeV/nucleon with b = 0 fm.
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FIG. 10. (Color online) Same as Fig. 9 but in the x-y plane.

collective velocity in the overlap region gets close to zero. At
t = 70 fm/c, the density of central region decreases to about
0.7 ρ0. The distribution of the density is also isotropic. The
collective velocities at forward angles are larger than those
at sideward angles. That is to say, the residual incident
momentums emerge at t = 70 fm/c, while they are covered
up in distribution of the collective velocity at t = 50 fm/c.
It is supposed that the Pauli blocking is responsible for the
residual incident energy and the nonisotropic nature of the
collective velocity. In central HICs near Fermi energy, most
of the binary collisions are blocked. Therefore, most of the
particles maintain their incident energy and consequently the
colliding system becomes more transparent.

At t = 90 fm/c, the density of central region decrease to
about 0.5 ρ0. The distribution of the density has an elliptic
form. The system extend faster along the longitudinal direc-
tion. The collective velocity is nonisotropic and dependent
on the distance. The collective velocity in the peripheral
region is larger obviously than that in the cental region. At
t = 110 fm/c, the system continue to expand nonisotropi-
cally. The density of central region decreases to 0.3 ρ0. At
t = 130 fm/c, the density of central region reaches 0.2 ρ0,
which is lower limit of the freeze-out density [19]. Therefore,
the Coulomb expansion dominates after this time.

As shown in Fig. 10, the dynamic process in the x-y plane
is characterized as flowing. At t = 10 fm/c, the projectile
and target start to contact with each other. The region where
the nucleons can be observed is very small. The density of
central region is about 0.4 ρ0. At t = 30 fm/c, many nucleons
can be observed in the x-y plane. The nucleons in the central
region are compressed. The density of central region reaches to
1.2 ρ0. The collective velocity displays an outgoing radiational
type. At t = 50 fm/c, the expansion process has started. The
density of central region decreases to ρ0. The distributions
of the density and collective velocity are both isotropic. At
t = 70 fm/c, the density of central region decreases to about
0.7 ρ0. The collective velocity increases compared with that at
t = 50 fm/c. At t = 90, 110, and 130 fm/c, the density

of central region decreases with the increasing time. The
distributions of the density and collective velocity are all
isotropic.

As can be seen from the above description, some features
of the dynamic evolution in central 129Xe + 120Sn collisions
at 50 MeV/nucleon can be seen. First, the compression phase
occurs in about 20 fm/c after the projectile and target start
to contact with each other. The density of central region
reaches about 1.2 ρ0. Second, the longitudinal expansion is
faster than the transversal expansion. The configuration of the
system in coordinate space becomes prolate type at 90 fm/c
after the collision. The residual incident energy is considered
to be responsible for the nonisotropic expansion. Third, the
collective velocity is associated with the position vector in
the expansion phase. The collective velocity in the peripheral
region is larger obviously than that in the cental region.

Figure 11 shows the longitudinal and transverse collec-
tive velocity as a function of radius at t = 90, 110, and
130 fm/c. At those three moments, the central densities of
the system are 0.54, 0.31, and 0.23 ρ0 respectively, which

FIG. 11. (Color online) Longitudinal and transverse collective
velocity as a function of radius at t = 90, 110, and 130 fm/c in
central 129Xe + 120Sn collisions at 50 MeV/nucleon with b = 0 fm.
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TABLE II. Fitting parameters of the relation βr = β0r
α at 90, 110,

and 130 fm/c in central 129Xe + 120Sn collisions at 50 MeV/nucleon
with b = 0 fm.

t (fm/c) ρc/ρ0 α

θc.m. < 10◦ 80◦ < θc.m. < 100◦

90 0.54 0.92 1.84
110 0.31 1.11 1.94
130 0.23 1.00 1.65

are in the recognized region of the freeze-out density [19].
It can be seen from the figure that the collective velocity in
the center is almost zero. The collective velocity increases
with the increasing radius. Longitudinally, the increasing
trend of the collective velocity is linear [Fig. 11(a)]. How-
ever, along the transverse direction the increasing trend
is nonlinear [Fig. 11(b)]. Overall, the collective velocity
along the longitudinal direction is larger then that along the
transverse direction. The longitudinal collective velocity is
almost twice as large as the transverse collective velocity
for r = 10 fm.

The picture of self-similar expansion, in which the propor-
tional relation βr = β0r holds, is widely adopted to analyze
the experimental data by both the ALADIN Collaboration
and FOPI Collaboration [13,24,25]. However, the relation
βr = β0r

α with α > 1 is required when fitting the experimental
data in the MMMC-NS model [26]. The collective velocity as a
function of radius calculated by the IQMD + GEMINI model is
fitted by the relation βr = β0r

α , as shown in Fig. 11. The
fitting parameters is displayed in Table II. It can be seen
that the time dependence of α is very weak for both the
longitudinal direction and transverse direction. In the range
of 90 to 130 fm/c, the expansion profile does not change, and
the freeze-out configuration is accepted. For the longitudinal
direction, the values of α are almost 1. The values of α for
transverse direction are larger than 1. This is the reason why
we draw a conclusion that the expansion profile is nonisotropic.
The longitudinal expansion profile can be considered as
self-similar expansion. However, the transverse expansion
profile is a non-self-similar expansion with α > 1. As shown
in Figs. 9 and 10, the radial flow causes the system to expand

isotropically, whereas the residual incident energy cause the
system to extend along the longitudinal direction. Thus the
residual incident energy is considered to be responsible for the
nonisotropic expansion.

IV. CONCLUSION

In conclusion, the expanding dynamics in central 129Xe +
120Sn collisions at 50–125 MeV/nucleon is investigated within
the framework of IQMD + GEMINI model. The nonisotropic
distributions in the fragment size and average kinetic energy
are reproduced. Based on the good agreements between
the calculated kinetic energy and the experimental data, the
collective expansion energy Ecoll and the Coulomb explosion
energy ECoul of different fragments are extracted. It is found
that the nonsingle flow is shown in the fragmenting source. The
value of Ecoll increases with the increasing fragment charge.
The collective expansion and the Coulomb explosion coexist.

The anisotropy of the expansion is demonstrated by the
polar angle θc.m. dependent collective expansion energy Ecoll

and Coulomb expansion energy ECoul. The value of Ecoll

reduces rapidly from θc.m. = 0◦ to 90◦. The radial flow energies,
which are the collective expansion energies per nucleon at
θc.m. = 90◦, of H, He, Li, and Be fragments, in this work
are 2.0, 0.8, 0.9, and 0.4 MeV/nucleon respectively. The
time evolutions of the density and the collective velocity
are investigated. It is shown that the radial flow causes the
system to expand in the isotropic direction, whereas the
residual incident energy causes the system to extend along
the longitudinal direction. Superposition of those two effects
makes the system expand nonisotropically. It is supposed that
the Pauli blocking is responsible for the residual incident
energy and the nonisotropic nature of the collective velocity.
The picture of self-similar expansion is shown along the
longitudinal direction. However, the transverse expansion
profile is non-self-similar but fits the relation between the
collective velocity and radius of βr = β0r

α with α > 1.
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