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“Doughnut” nuclear shapes in head-on heavy ion collisions
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Based on the hydrodynamic approach, the formation of exotic structures in head-on heavy ion collisions at
60 MeV/nucleon is explained. The physical explanation of the different structures’ formation with dependence on
the incompressibility coefficient is suggested. Within the developed approach the Rayleigh-Plateau mechanism
is confirmed to be the origin of the fragments in the case of “stiff” equation of state of nuclear matter (with an
incompressibility of 380 MeV). The cold breakdown of the system is suggested to be caused by the presence of
the Coulomb force. The obtained results are compared with the existing Boltzmann-like theory calculations and
the experimental data for the “doughnut” -like geometries.
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I. INTRODUCTION

During recent decades in a number of works the possibility
of toroidal and bubble structure formation in head-on heavy

ion collisions (HIC) was studied extensively with the help of
microscopic transport models [1,2]. Such types of structures
are somewhat similar to those studied theoretically from
another approach [3]. For some time experimental results
were not able to confirm the occurrence of the predicted
geometries [4], but later on the signatures of “doughnut”-like
structures with production of similar size intermediate mass
fragments (IMF) were observed in central HIC [5] and again
confirmed by transport models [6]. Unfortunately the transport
theory calculations used for the phenomena in focus are not
able to give reliable information on multiparticle observables
at the late stages of the process, due to the fact that they
do not include multiparticle correlations and fluctuations [2].
Therefore, up to now the model of the phenomena describing
in detail the underlying physical mechanism of the possible
exotic structures formation in HIC has been somehow lacking.
At the same time the reliable physical model of the process
may be helpful in extending the progress in the studies of the
nuclear equation of state (EOS) that is one of the fundamental
goals in nuclear physics and nuclear astrophysics [7].

In this paper we report an attempt to study the problem from
the different sides and dwell on the hydrodynamic description
of head-on HIC. Among the reasons for such a decision
are the successful implementation of hydrodynamic and
thermodynamic methods for the description of nuclear systems
[8–12], good correspondence between hydrodynamics and
transport theories [13], and the similarity of the qualitative
pictures observed in head-on HIC and in the case of high speed
ordinary droplet collisions [14–16]. For the latter, in a certain
energy range the formation of the doughnut-like structures
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with the following fragmentation into several secondary drops
of approximately equal masses is observed [17], which has
much in common with the nuclear case [2].

To set the stage, we recall that hydrodynamic descrip-
tion of nuclear matter dates back to the 1980s [8]. Now,
the hydrodynamic description is widely used for high en-
ergy HIC. In some pioneer works [9] the possibility of
using a hydrodynamic description for the lower energy
limit was confirmed based on the analysis of the nu-
cleon mean free path, which was defined as λ = 1.4 ρ0

ρ
fm.

Later on quite a lot of works addressed the problem of the
nucleon mean free path and in-medium nucleon cross-section
evaluation, with Pauli blocking being considered [18]. Still,
the results found in some more recent publications [6] with pa-
rameterized in-medium nucleon-nucleon cross sections from
the Dirac-Brueckner approach based on the Bonn-A potential
give the values λ ∼ 1.4 fm and λ ∼ 1.3 fm for ρ/ρ0 = 1
and ρ/ρ0 = 1.5 respectively at E = 50 MeV/nucleon. Those
results confirm well the argumentation of Ref. [9]. Despite
that, the hydrodynamic description of HIC at intermediate and
low energies has been the subject of only few theoretical stud-
ies [19]. By contrast, the behavior of colliding ordinary liquid
droplets in a wide range of impact velocities and its dependence
on the compressibility, surface tension, and viscosity and
has been extensively studied in the literature [20–22]. Those
studies resulted in changes of the qualitative picture of the
process due to a better understanding of the underlying physics.

All this suggests using the achievements of the ordinary
liquid droplet collision theory to revive the hydrodynamic
approach for the description of head-on HIC at intermediate
energies E ∼ 60 MeV/nucleon. Therefore, our focus here is
on such a description with the shockwave mechanism [1,23]
taken into account.

II. THEORETICAL MODEL

We consider the system of two identical heavy nuclei (e.g.,
93Nb + 93Nb) involved in a head-on collision. The symmetry
of the system allows the simplification of the model by
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FIG. 1. Different stages of the system evolution: (a) symmetry
plane impacting the nucleus; (b) lateral jetting when the shockwave
velocity becomes equal to the contact edge velocity. The compressed
zone is shown in grey. (c) System geometry for the case of “stiff”
EOS (K = 380 MeV). (d) System geometry for the case of “soft”
EOS (K = 200 MeV).

changing to the collision of a spherical nucleus of radius R
and density ρ0 with a rigid wall that moves towards it with the
velocity υ0 [Fig. 1(a)]. The slip boundary condition is applied
on the wall surface to account for the difference in a viscous
behavior.

The first step towards a better understanding of the process
is an analysis of the possible sources of different system
geometries. In Ref. [1] it has been argued that the system
evolves from one geometry to the other as time passes. At
the same time from the figures presented in Ref. [2] one can see
that for the cases of “soft” and “stiff” EOS the topology of the
system is different already at t ∼ 40 fm/c and does not change
after that. As one expects intuitively, within the hydrodynamic
approach the main difference between the EOS comes from
the elastic properties of the matter. It is obvious that those
properties can make a notable difference in a system behavior
when the compression rate is high and some shockwaves are
formed in the system. Therefore, the topology is probably
defined during the first violent stage of the collision and
remains unchanged until system breakdown.

Recent theoretical and experimental results for liquid
droplet collisions [24–26] together with the Boltzmann-
Uehling-Uhlenbeck (BUU) [2] model and nuclear fluid dy-
namics (NFD) [23] results for HIC point towards four distinct
stages of the collision (Fig. 1). Among them are a violent stage
at the beginning of the process when the highly compressed
zone is formed, and a second stage that is characterized by
lateral jetting and lasts until the shockwave from the collision
plane reaches the boundary of the nucleus. During those two
stages the final topology of the system is fully defined. At the
later times the system goes through a third stage corresponding
to the expansion process, and finally comes to the last stage
when the fragmentation takes place. We try to develop a
self-consistent model that accounts for the different physics
at each stage of the processes and in which the quantitative
and qualitative characteristics of the system at the end of each
stage work as the initial conditions for the next one.

A. Initial violent stage

To describe the initial moments of the impact of compress-
ible nucleus with the wall it is possible to apply the high
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FIG. 2. Initial stage of the nucleus collision with the rigid wall.
(a) Huygens construction shows the shock envelope in the colliding
system. (b) Contact edge velocity υc dependence on the shockwave
velocity υs in the compressed part. (c) Geometrical construction of
the shock profile in the reference system moving together with the
contact point [30].

speed compressible droplet impact shockwave model from
Refs. [27,28]. Within this model, according to the Huygens
principle the expanding nucleus edge emits wavelets that
propagate with shockwave velocity υs in all the directions
and are the only source of the surface distortion [Fig. 2(a)].
This leads to the development of strong compression with
maximum density ρmax at the contact line. The shape of the
system is defined by the geometrical overlap of colliding
nucleons as the shockwave velocity υs is smaller than the
contact line velocity υc, and hence it is not possible for matter
to leave the geometrically defined region. Such a picture
has much in common with the one observed in the NFD
calculations that justifies us in using the above model.

The general analytical solution for the initial stage was
obtained in Ref. [30] for ordinary liquids. Within this approach
the relation between the contact line velocity υc, shockwave
velocity υs , and particle velocity jump on the discontinuity
υH is found from the geometrical relations [similarity of the
triangles ABE, CDE, and velocity triangle in Fig. 2(c)].
Starting from the simple geometrical relation:

υcdt + DE

υsdt
=

√
(υ0dt)2 + DE2

υ0dt
, (1)

with dt being the time needed for the contact point to move
from A to C, and employing the well known consequence of
the Euler equation that υH is normal to the shockwave together
with the similarity of triangle CED and the velocity triangle
yields

υH

υ0
= CE

DE
= CE dt

DE dt
. (2)
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From Eq. (2) and the equation coming from the similarity of
the triangle AEB and velocity triangle,

CE

dt
= υ0

υc + DE
dt

υs

, (3)

one may obtain the relation between the contact line velocity
υc, sound velocity υs , and particle velocity jump υH :

υH = υ0
2

υs

(
υc

dt

DE
+ 1

)
. (4)

Finally, after substitution of DE
dt

from Eq. (1), Eq. (4) becomes

υH (υs) = υ0

(
υs + υ0

√
1 − υs

2−υ0
2

υc
2

)
(
υ0 + υs

√
1 − υs

2−υ0
2

υc
2

) . (5)

Equation (5) contains three unknowns and, therefore, in order
to use it an additional piece of information for the relation
between υs and υH is needed. It should be noted that the
shockwave velocity is not constant during the process and is
EOS dependent. In Ref. [30] it was taken in the form of the
linear dependence of the shockwave velocity on the particle
velocity υs = υs0 + kυH based on the ordinary liquid EOS.
To adopt the approach of [30] for our case it is necessary to
analyze the relation between the υs and υH based on the EOS
of nuclear matter.

The linear dependence of υs on υH used by [30] is
the particular case of the general expansion of υs into the
McLaurin series [31]

υs = υs0 + kυH + k1υH
2 + k2υH

3 + · · · , (6)

were υs0 is the ambient sound velocity. To evaluate the
coefficients k, k1, . . . of the expansion for the case of nuclear
matter we start from the Rankine-Hugoniot equations in the
reference frame where the nucleons before the shock front
have zero velocity υ = 0 as in our model, the nucleus is
at rest, and the wall is moving towards them. In that case
the equations defining pressure PH = P ′ − P and velocity
υH = υ ′ − υ ≡ υ ′ jumps at the discontinuity have the form

ρ0υs = ρ(υs − υH ), PH = mpρ0υsυH , (7)

were primes denote the values after the shock front. In this
paper we limit ourselves to the case when the temperature
changes are not included in the analysis and we do not use the
third Rankine-Hugoniot equation for the energy conservation.
Therefore, to have a closed system we use the EOS of nuclear
matter in a form [7] where only compression energy per
particle is included but not the thermal one:

U (ρ) = α

(
ρ

ρ0

)
+ β

(
ρ

ρ0

)γ

, (8)

P = ρ2 ∂EB

∂ρ
, EB = 3

5
EF + 1

ρ

∫
U (ρ)dρ, (9)

where U is the single-particle potential, EB is the binding
energy per particle, and EF is the Fermi energy. Parameters
α, β, and γ are chosen to give the different values of
incompressibility K for the saturation density ρ0 (Table I).

TABLE I. Parameters of the EOS of nuclear matter [29].

Soft EOS Stiff EOS

α (MeV) −356 −124
β (MeV) 303 70.5
γ 7/6 2
K (MeV) 200 380

From Eqs. (7), (8), and (9) one can get the expression for the
shockwave velocity in the form

υ2
s = 1

m

υs

υH

⎛
⎝ h2

5m

( 3ρ0

4gπ

) 2
3

(
1 − υH

υs

) 5
3

+ α

2
(
1 − υH

υs

)2

+ βγ

(γ + 1)
(
1 − υH

υs

)γ+1 − P0

ρ0

⎞
⎠ , (10)

where P0 = 0 is the pressure of nuclear matter at equilibrium.
Eq. (10) can be expanded into series:

υ2
s = a0 + a1

(
υH

υs

)
+ a2

(
υH

υs

)2

+ · · · . (11)

Inserting (6) into (11) yields a system of equations to deduce
the coefficients in the expansion (6). The performed analysis
of the series has shown that the contribution of the cubic term
is negligible. Therefore, in this work we substantially followed
the geometrical approach from Ref. [30], but adopted for the
shockwave velocity

υs = υs0 + kυH + k1υH
2. (12)

Coefficients υs0, k, and k1 calculated for nuclear matter are
given in Table II. Finally, solving Eq. (5) for υc subject to (12)
leads to

υc(υs) = υs(
√

k2 − 4k1(υs0 − υs) − k) − 2k1υ
2
0√

(
√

k2 − 4k1(υs0 − υs) − k)2 − 4k2
1υ

2
0

. (13)

The compression stage lasts for τ1 until the moment when the
contact line velocity becomes equal to the shockwave velocity
υmax

s . After that lateral jetting in a direction perpendicular
to the beam axis occurs and the shape of the system is
changing [Fig. 1(b)]. That picture can be confirmed by the
anomalous behavior of the contact line velocity υc dependence
on the shockwave velocity shown in Fig. 2(b). The observed
unphysical growth of υc after the shockwave velocity reaches

TABLE II. Coefficients of the McLaurin series expansion for
the sound velocity in the cases of soft (K = 200 MeV) and stiff
(K = 380 MeV) EOS.

Soft EOS Stiff EOS

υs0 (c) 0.15 0.21
k 1.32 1.54
k1 (1/c) 0.16 0.21
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FIG. 3. Schematic picture of the jetting stage.

the value υmax
s suggests that the acquired physics with a single

shockwave attached to the contact point is not valid thereafter.

B. Jetting stage

The jetting stage is characterized by the lateral jetting that
emerges from the compressed zone and by changes of the
geometry of the system [Figs. 1(b), 1(c), and 1(d)]. To have
an approximate quantitative description we introduce a model
of the outflow through the hole [25,32,33] formed by the wall
and the shockwave that travels along the free surface of the
nucleus (AB in Fig. 3). The governing equation for this stage
is the Bernoulli equation

Pbd

mpρbd

+ υbd
2

2
= Pjet

mpρjet
+ υjet

2

2
+ ζ

υjet
2

2
+ 2σ

mpρjetRjet
,

(14)

where P , ρ, and υ are the pressure, density and particle
velocity respectively, and σ is the surface tension coefficient.
Subscripts “bd” and “jet” are for the values inside the nucleus

and in the jet respectively (Fig. 3). Function ζ
υjet

2

2 is the
loss function in a Darcy-Weisbach [32] form and the term

2σ
ρjetRjet

accounts for the non-negligible surface pressure that
is important for nuclear matter. In order to justify using
the Bernoulli equation for incompressible liquids (14) in the
studied case, we treat the system in the approximation of equal
densities before and after the hole ρbd = ρjet that works well
for compressible ordinary liquids [25,34]. Solving Eq. (14) for
the particle velocity in the jet gives

υjet =
√

1

1 + ζ

√
2(Pbd − Pjet)

mpρbd

+ υbd
2 − 2σ

mpρbdRjet
, (15)

were the coefficient φ =
√

1
1+ζ

is the velocity coefficient that

accounts for the head loss due to the compression of the jet.

The corresponding volumetric flow rate Q is [32]

Q = 2πRbddξυjet

= 2πRbddξφ

√
2(Pbd − Pjet)

mpρbd

+ υbd
2 − 2σ

mpρbdRjet
, (16)

where Rbd and d are the radius and the height of the hole
and ξ = djet

d
< 1 is the compression coefficient equal to the

relation of the jet cross section and the hole cross section. At
this point we account for the temporal evolution of the pressure
P = P (t), density ρ = ρ(t), the size of the hole d = d(t), and
particle velocity υbd = υbd (t). In this paper we assume that the
thickness of the jet behaves like hjet(r,t) = g(t)

r
, which with the

time-dependent boundary condition hjet(Rbd,t) = d(t) gives

hjet(r,t) = d(t)Rbd (t)

r
. (17)

Such an approximation corresponds well to the existing
studies of the impacts of compressible droplets of ordinary
liquids [25,34] and it can give the correct results by an
order of magnitude. The results for the different behaviors
of the thickness can be found elsewhere [35]. In the two-
dimensional model, representing a thin parallel slice taken
vertically through the impacting nucleus (which corresponds
to the picture in Fig. 3) it is possible to change from the
volumetric flow rate to its square. Thus, changing from
cylindrical geometry with z axis to the infinite layer geometry
from Eqs. (16) and (17), it is possible to define the system
geometry changes Rjet(t) [Figs. 1(c) and 1(d)] in the form∫ Rjet(τ )

Rbd (τ )

Rbd (τ )d(τ )

r
dr

=
∫ τ

τ1

d(t)ξφ

√
2Pbd (t)

mpρbd (t)
+ υbd (t)2 − 2σ

mpρbdRjet
dt,

(18)

where we account for the condition Pjet = 0. It is important
to mention here that the pressure Pbd (t) and particle velocity
υbd (t) are not constant along the hole cross section. The shock-
wave pressure PH and velocity are high at the intersection of
the shockwave with the free surface of the droplet (point B in
Fig. 3) and decrease when approaching the contact line in the
origin of the jet (point A in Fig. 3) [36]. Accounting for that
distribution can allow defining the exact shape and volume of
the jet. In our model the shape of the jet is assumed to have
the form (17). Therefore, to keep the governing equations
as simple as possible to allow for an analytical description,
we use in all the subsequent equations the averaged values
of Pbd (t) and υbd (t) over the jet cross section that give the
correct volumetric flow rate at each moment of time. The
above equation (18) must be solved with the initial conditions
that come from the initial violent stage:

Pbd (τ1) = P1(τ1), υbd (τ1) = υ1
rad(τ1), (19)

where υ1
rad(τ1) and P1(τ1) are the radial particle velocity

and pressure at the contact line at the beginning of the
jetting stage (at τ1 points A and B in Fig. 3 coincide).
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The velocity φ and compression ξ coefficients in (18) are
tabulated in the hydraulics reference books for the different
hole parameters [32]. During the studied process their product
varies from ξφ = 0.45 for the “conical nozzle” to ξφ ∼ 1
for the “big hole in a thin wall.” In this paper, to keep the
picture clear we adopt it to be constant with the average value
ξφ = 0.64 that gives the correct result for the overall volume
accumulated in the jet during the stage.

Evaluating the size of the jet from Eq. (18) leads to two
different shapes depending on the stiffness of the EOS, as can
be seen from Figs. 1(c) and 1(d). The description of the next
stages would be different for the soft (K = 200 MeV) and stiff
(K = 380 MeV) EOS as the qualitative physical pictures for
that cases are not the same [37]. Hereafter we will focus on the
toroidal structures as their occurrence have some experimental
confirmation [5].

C. Expansion stage

Next, from the analysis of the existing experimental [38]
and computer simulation [24,39] data for liquid droplet colli-
sions it is possible to assume that, within the hydrodynamic
approach, at τ2 when the shockwave reaches the top of the
nucleus the inertia-dominated transformation of a “pancake”-
like nucleus into an expanding lamella is observed. At this
stage the pressure in the flow decreases very quickly and
becomes insignificant as a driving force for the flow [24,40].
Due to the existence of the surface forces the expanding lamella
of radius Rl will be surrounded by a thicker rim with radius
Rrim that during the evolution will accumulate most of the
matter [Fig. 4(a)]. From hereafter we change back from the
model with the wall impacting the nucleus to the two colliding
nucleus. It is important to do this in the description of the
expansion stage because at that time the balance between the
inertia and capillary forces comes into play. Correct treatment
of this interplay requires realistic estimates for the balance
between the overall volume of the system and the volume
accumulated in the rim that is dependent on the rim geometry.

In order to obtain the qualitative picture of the phenomena,
in this work we assume an inviscid case and start from Euler
equations in a slender slope approximation ∂h

∂r
� 1:

ρ

(
∂υ

∂t
+ υ

∂υ

∂r

)
= −∂p

∂r
, r

∂h

dt
+ ∂(rυh)

∂r
= 0, (20)

Rl

Prefragments

Rim
Symmetry plane

Rrim

h(r,t)

Rl

(a) (b)

r

FIG. 4. (a) Rim formation at the edge of the expanding lamella.
(b) Schematic front view picture of the “varicose” deformation of
the rim.

where r is the radial coordinate and h is the thickness of
the lamella. Thus, we assume that compressibility of the
matter does not play an important role during this stage of
the collision.

In our studies we substantially follow the description
from [41] and search for the solution assuming the lamella
thickness to behave like

h(r,t) = f (t)

r
, (21)

where f (t) is some unknown function of time. Such a shape
of the lamella is confirmed by studies devoted to a continuous
liquid jet impacting a solid target [42] and is in agreement
with the shape of the jet adopted in this work [Eq. (17)] for
the jetting stage. Equation (21), owing to the second equation
of (20) with the lamella attached to the central point, that is
υ(0,t) = 0, implies

υ(r,t) = −
df (t)
dt

f (t)
r. (22)

The solution for f (t) is constrained by two additional
conditions which express that the radially expanding nucleons
are arrested at some distance from the impact point Rl(t) by
capillary confinement and that they feed the lamella rim at
which they progressively all collect. First is the volume balance
in the system given by∫ Rl

0
2πrh(r,τ )dr = 2� −

∫ τ

τ2

2πRl(t)

(
υ(Rl,t) − dRl

dt

)
×h(Rl,t)dt, (23)

where � = 4
3πR3 is the initial volume of the nucleus. The

left-hand side shows the volume of the lamella when the second
term on the right-hand side gives the volume of the rim at time
τ . The second comes from momentum conservation at the rim
of mass Mrim(t). One has a kind of a propulsion movement;
therefore, the starting point is Meschersky’s equation in the
form

Mrim(t)
d2Rl(t)

dt2
=

(
υ(t) − dRl(t)

dt

)
dMrim(t)

dt
+ F, (24)

where F = −4σπRl is the external force acting on
the rim. Introducing the mass of the rim per unit ar-
clength m(t) and accounting for the mass change dMrim(t)

dt
=

mpρh(Rl,t)2πRl(t)(υ(Rl,t) − dRl (t)
dt

), one obtains in axisym-
metric coordinates

d

dt

(
mRl

dRl

dt

)
= mpρυ(Rl,t)Rl(t)h(Rl,t)

×
(

υ(Rl,t) − dRl(t)

dt

)
− 2σRl. (25)

For the considered phenomena for a broad range of impact
velocities and surface tension coefficients d(mR)

dt
/(mR) �

d2R
dt2 /dR

dt
[41], which allows neglecting the term md2R

dt2 .
Thus, (25) reduces to

mpρh(Rl,t)

(
υ(Rl,t) − dRl(t)

dt

)2

= 2σ. (26)
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Equations (23) and (26) when solved using (21) and (22) for
h(r,t) and υ(r,t) give

f (t)Rl(t) = σ

2mpρ
((B − t)2 + A),

B = τ2 +
√

2mpρ

σ

√
�

π
(27)

A = 2mpρ

σ

(
2Rbd (τ2)d(τ2)Rjet − �

π

)
,

where the initial conditions f (τ2) = 2Rbd (τ2)d(τ2) and
Rl(τ2) = Rjet come from the jetting stage. The momentum
equation [the first of Eqs. (20)] when integrated from r = 0 to
r = Rl(t) gives

mpρRl
2

2

⎛
⎝−

d2f (t)
dt2

f (t)
+ 2

(
df (t)
dt

f (t)

)2
⎞
⎠ = 0, (28)

where we assume the absence of the pressure gradient along r
during the late stages of the collision. There are several reasons
for that. First, we disregard any interaction with the ambient
medium. Second, we use an inviscid approximation and don’t
include viscous stresses as well as we don’t add any correction
owing to Laplace pressure as the interface curvature is weak.
From (28), using (27), one gets

d2R

dt2
+ 4

dRl

dt

(B − t)

[(B − t)2 + A]
+ Rl

6(B − t)2 − 2A

[(B − t)2 + A]2 = 0.

(29)
Equation (29) describes the linearly damped oscillatory motion
of the lamella radius with time-dependent frequency and
damping factor originating from the continuous transfer of
momentum from the lamella to the rim. The solution for the
lamella radius Rl in the (x,y,0) plane is given by

Rl(t) = (C1t + C2)[(B − t)2 + A], (30)

with constants

C1 = υ(τ2)[(B − τ2)2 + A] + 2Rjet(τ2)(B − τ2)

[(B − τ2)2 + A]2 ,

C2 = Rjet(τ2)

[(B − τ2)2 + A]
− C1τ2

(31)

found from the initial conditions Rl(τ2) = Rjet(τ2) and
dRl

dt
(τ2) = υ(τ2) defined at the jetting stage. The maximal

amplitude of the motion Rmax
l is reached at

τ3 = 2BC1 − C2 −
√

B2C1
2 + C2

2 − 3AC1
2 + 2BC1C2

3C1
.

(32)
The rim, with time going on, becomes rapidly thick compared
with the lamella to which it is attached. During the expansion
it is gradually fed by incoming matter from the lamella and
stretched, since it borders a frontier expanding like Rl(t). This
leads to the semi-equilibrium value for its radius Rrim that can
be easily found from (23). The volume accumulated in the rim
is given by

π [Rrim(t)]22πRl(t) = 2� −
∫ Rl (t)

0
2πrh(r,t)dr, (33)

that with (21) and (27) gives for the rim radius

Rrim(t) =
√

�

π2Rl(t)
− σ

2mpρ

[(B − t)2 + A]

πRl(t)
. (34)

The above equations allow calculating the rim radius at the
moment of time τ3 when the maximal amplitude is reached
[Eq. (32)], corresponding to the beginning of the breakdown
stage.

D. Breakdown stage

The inertia-dominated expansion stage continuously trans-
forms into the final one that is characterized by the final
formation of the prefragments and the cold breakdown of the
system due to the presence of Coulomb forces. Because of the
existence of the rim in the system and the quite high surface
tension, the most probable physical reason for the prefragment
formation seems to be the capillary instability. In this work we
suggest that the instability observed is the Rayleigh-Plateau
instability that causes “varicose” deformation of the rim
[Fig. 4(b)]. The classical theory of the instability of and
inviscid cylinder [43] suggests the dispersion relation for the
perturbation amplitude coefficient A,

A2 = σ

R3
rimmpρ0

(kf Rrim)I1(kf Rrim)

I0(kf Rrim)
[1 − (kf Rrim)2], (35)

were I0, I1 are Bessel functions and kf are the wave numbers.
From (35) the wave number of the most unstable perturbation
kmax
f and the associated timescale of this capillary instability,

kmax
f � 0.7

Rrim
, τinst � 2.91

√
mpρR3

rim

σ
, (36)

can be found. The values for the studied case can be obtained
by inserting the rim radius from (34). That allows defining the
size ∼ 2π

kmax
f

and the number ∼0.7Rmax
l

Rrim
of the prefragments.

III. RESULTS AND DISCUSSION

To check the hydrodynamic approach we have chosen
93Nb + 93Nb system at E = 60 MeV/nucleon similar to
the existing BUU calculations [1,2]. The surface tension
coefficient is set to σ = 0.972 Mev/fm2 [44] and the radius
of the nucleus is calculated as R = 1.3A

1
3 fm. Evolution of

the system size in the (x,y,0) plane, radial particle velocity,
and maximal density during the initial violent stage are shown
in Figs. 5, 6, and 7. The time dependence of the jet size and
average density in the origin of the jet at Rbd during the jetting
stage is shown in Fig. 8.

The corresponding quantitative characteristics are pre-
sented in Tables III and IV. From the introduced model of the
phenomena a number of qualitative and quantitative results
are obtained. As mentioned earlier, within the hydrodynamic
approach the difference between the soft and stiff EOS should
play a major role in the first moments of the collision. From the
difference in the spreading size shown in Figs. 1(c) and 1(d)
and in Table IV one can see the qualitative difference between
the two cases at the moment of time when the shockwave
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FIG. 5. Evolution of the system radius in the (x,y,0) plane and
radial particle velocity at the contact line during the initial violent
stage. (a)–(c) Soft EOS. (b)–(d) Stiff EOS.

reaches the free boundary of the nucleus. This leads to different
mechanisms being involved in the system evolution. In the
case of “soft” EOS the shockwave produced on impact can
be reflected from the free boundary and focused on the
symmetry axis of the system [1,14,24]. This may result in
rarefaction with the cavity formation along the axis, followed
by bubble entrapment due to cavity collapse that will lead
to the bubble geometry. In the case of stif EOS the system
looks like an expanding pancake. The reflected shockwave
will not play that important role, but one will instead observe

1.70

1.75

1.85

0.2 0.8 1.4 2.0 t (fm/c)

Rapid growth

t (fm/c)

1.6

0.01 0.04

1.2

1.4
1.80

0

FIG. 6. Time dependence of the system density at thw contact
point for the case of soft EOS. The insert shows the rapid growth of
the density during the very early moments of the collision.

0
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1.60

0.2 0.4 0.6 0.8 t (fm/c)

t (fm/c)0.01 0.04

1.2

1.4

Rapid growth

1.0

FIG. 7. Time dependence of the system density at the contact
point for the case of stiff EOS. The inset shows the rapid growth of
the density during the very early moments of the collision.

the inertia-dominated expansion of a pancake that has much in
common with the problem of an expanding liquid sheet [45].
Therefore, one can see that the topological properties of the
system are defined during the first stages of the collision.

It is important to mention several effects that do not corre-
spond well to the picture observed in the BUU calculations [1]:
first, the rapid growth of the system density (Figs. 6 and 7),
and second, a very short timescale of the initial violent stage
(Table III). We suggest that these discrepancies come from
two approximations of the introduced model. First, the density
is assumed to be uniform in the nucleus, thus the realistic
density distribution [46] is not included in our calculations.
Accounting for that difference can change the results for the
reaction time and the slope of the density growth in the system.
Second is the nature of the hydrodynamic description. In the
first moments of the reaction only few particles participate
in the process. In the hydrodynamic approach we have a
continuous function from the very beginning that can lead
to problems capturing the exact picture when the number of

1 4 8 12 t (fm/c)

R (fm)jet

2

4

6

8

1 4 8 12 t (fm/c)
1.0

1.2

1.4

(a) (b)

FIG. 8. Time dependence of the (a) jet size at the origin of the jet
in the (x,y,0) plane and (b) average density in the jet cross section at
its origin during the jetting stage for the case of stif EOS.
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TABLE III. Quantitative characteristics of the initial violent
stage. The 93Nb + 93Nb system at 60 MeV/nucleon in the cases of
soft (K = 200 MeV) and stiff (K = 380 MeV) EOS.

Soft EOS Stiff EOS

Timescale τ1 (fm/c) 2.3 1.3
Particle radial velocity υ1

rad (c) 0.09 0.11
Spreading size Rc (fm) 1.8 1.4
Shape change, �D/D 0.024 0.014
Maximum density, ρ/ρ0 1.9 1.6
Maximum Pressure P1 (MeV/fm3) 8.5 11.6

the reaction participants in the real system is small. Still, we
think that the qualitative picture obtained within the introduced
model is correct and the obtained maximum values represent a
realistic picture of the process. At the same time a detailed
analysis of the density distribution in real nucleus and its
influence on the initial stage timescales is needed in order
to obtain completely reliable results that are to be presented
elsewhere [35].

The system evolution during the expansion and breakdown
stages is investigated for the case of stiff EOS (K = 380 MeV).
The lamella radius evolution with time during the expansion
stage is shown in Fig. 9. The main quantitative estimations and
their comparison with the BUU calculations and experimental
data are presented in Table V.

One can see that the suggested model slightly overestimates
the spreading size and underestimates the reaction time. We
suggest that it comes from the approximations used in the
model. For example, accounting for the viscous dissipation and
changes in the Navier-Stokes equations as well as accounting
for changes in the surface tension coefficient due to the
temperature increase can influence both of the above values.
Among the other possibilities to improve the agreement are
accounting for the density distribution within the nucleus,
which can influence the timescale of the initial stage, and
employing different models for the jet shapes in the first stages
of the process. Obtaining precise results requires detailed
analysis of the influence of the employed approximations on
system behavior and will be presented elsewhere [35]. We do
not claim our model, as it is, gives strict results. We rather
believe it to give as clear a picture as possible of the involved
physical processes. Therefore, we tried to build an approximate
model allowing for the analytical solutions at each stage
that can be helpful in understanding the underlying physical
mechanisms of the phenomena. For such a model with no
adjustable parameters the results for the maximum density and

TABLE IV. Quantitative characteristics of the jetting stage;
93Nb + 93Nb system at 60 MeV/nucleon in the cases of soft
(K = 200 MeV) and stiff (K = 380 MeV) EOS.

Soft EOS Stif EOS

Timescale τ2 (fm/c) 23 18
Spreading size, Rjet/R 1.2 1.6
Shape change, �D/D 0.25 0.19

50 150 200 t (fm/c)

R (fm)l

10

12

11

13

2 τ3τ 100

14

FIG. 9. Lamella radius dependence on time in the (x,y,0)
plane; 93Nb + 93Nb system at 60 MeV/nucleon with stif EOS
(K = 380 MeV).

overall timescale of the process are in a good correspondence
with the BUU calculations. It is also worth mentioning that
the result for the number of fragments of similar mass is
in a good correspondence both with the experiment and the
BUU calculations. However, this agreement is not fully clear
since the surface terms are not explicitly included in the BUU
calculations [1].

The question that may arise is the growth time of the
Rayleigh-Plateau instability, which is τbreak � 97 fm/c for our
case. That is smaller than the maximum expansion time τ3 ∼
118 fm/c and within the typical timescale of the fragment
formation in central HIC at about 50–100 MeV/nucleon;
that is, 100–200 fm/c [47]. At the same time, taking into
account the decrease of the surface tension coefficient with
temperature towards zero at the critical temperature [48]
will make the situation worse, even though the thermal
excitation energies are low enough at the concerned reactions,
Ethermal/nucleon ∼1–2 MeV [2]. Still, we suggest that the
above instability can lead to the system breakdown. The
main idea is that it is only one part of the mechanism that
causes the formation of the prefragments and defines their
sizes, when the final fragmentation occurs due to the presence

TABLE V. Quantitative characteristics of the process for
the 93Nb + 93Nb system at 60 MeV/nucleon with stif EOS
(K = 380 MeV).

This work [1,2] [5]

Reaction time τ3 (fm/c) 118 120–160
Maximum density, ρ/ρ0 1.6 ∼1.5

Spreading size,
Rmax

l

R
2.6 ∼2

Rim radius at τ3 (fm) 1.9
Number of similar mass IMFs 5.6 3–6 4–6
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of the Coulomb forces that make the fragments tear apart.
Therefore, to give the final answer about the possibility of
the realization of the suggested mechanism, precise quantita-
tive analysis of the role of Coulomb forces and estimates of
the viscosity influence are needed. At this point we would like
to recall the other possible rim instabilities that can cause the
fragments formation different from Rayleigh-Plateau. In some
works [1,49] the Rayleigh-Taylor mechanism was suggested
to be responsible for fragment formation. From our results it
seems to be questionable. We have calculated the minimum
wavelength of the unstable perturbations in the rim with the pa-
rameters obtained within our model. It resulted in λinst ≈ 70 fm
when the length of the rim is lrim ≈ 96 fm. The above values
show that the Rayleigh-Taylor instability cannot explain the
number of fragments.

In the suggested explanation an important part is formation
of the rim during the expansion stage. Even though such a
picture was not reported in the available numerical simulation
of the head-on HIC, the presence of the rim does not contradict
the presented density distributions (e.g., Figs. 13 and 14 from
Ref. [6]).

We would also like to mention another possible mechanisms
of the discussed phenomena. Spinodal decomposition seems
to be quite attractive as instability develops within quite
short period of time τ ∼ 50 fm/c and is quite sensitive to
the nuclear incompressibility [50]. The main concern is the
size of the system [11] as the prefragment formation occurs
already in hollow structures as can be seen from the BUU
calculations [2,6]. Hence, the system is about several fermis.
At the same time, it is unstable only to perturbations with
quite big wavelength [51]. Even though quite a lot was done to
study the influence of the finite-size effects on the spinodal
instability [52,53], it is difficult to give a straightforward
answer whether or not such a mechanism can come into
play in the studied systems. One of the ways to choose the
correct mechanism is to study the other geometries, such as
uniform systems for the different values of the impact energy or
intermediate values of the incompressibility coefficient. Their
occurrence as well as defining the energy range where the
exotic topologies can be observed require some further studies
of the possible splashing or system recoil.

To proceed with the suggested model some further studies
are needed to describe the system breakdown and the influence
of the Coulomb forces on this process, as in our work we
only introduce the possible mechanism for the fragment
formation. As for the exotic topologies it would also be very
important to study the bubble geometry in detail. All this will

require further investigations both from the hydrodynamic
and microscopic points of view.

IV. CONCLUSIONS

In this work we try to show the possibility to obtain some
new results in the studies of head-on heavy ion collisions at
intermediate energies from the hydrodynamic description. The
results are of more ideological value, and precise calculations
will require a lot of further work. In summary, our study shows
that the hydrodynamic description seems to explain the overall
behavior of the system in head-on HIC in focus, and allows
for a simple physical picture of the exotic structure formation.
The straightforward link between the EOS and the exotic
shapes of different topologies is explained. From comparison
with the experimental data the stiff EOS is more favorable.
The scenarios of the system evolution for the different EOS
are different qualitatively rather than being the same process
with different quantitative characteristics. The final shape of
the system is defined at early stages of the collision and the
topology is preserved up to system breakdown.

Even though our quantitative estimations are done with
many approximations, they show that the suggested model
with no adjusting of parameters gives the same results for
the maximum density and timescales as the BUU calculations
by an order of magnitude. Reasonable agreement is observed
with the experimental results for the number of fragments
of similar mass in the assumption of a Rayleigh-Plateau
instability. Such an agreement supports the introduced model,
even though it is necessary to pursue accurate considerations
of the different surface effects in the nuclear matter due
to the absence of a sharp surface, in order to use the
suggested approach for a precise description of the head-on
HIC. Obtained results allow concluding that combination
of the introduced hydrodynamic approach together with the
transport theory calculations can reveal the physical nature
of the multifragmentation phenomena in focus, and give the
possibility to proceed with extracting data on nuclear matter
properties from head-on HIC at intermediate energies.
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