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Incorporation of a tilting coordinate into the multidimensional Langevin dynamics of
heavy-ion-induced fission: Analysis of experimental data from fusion-fission reactions
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A four-dimensional dynamical model was developed and applied to study fission characteristics in a wide range
of a fissility parameter. Three collective shape coordinates and the K coordinate were considered dynamically from
the ground-state deformation to the scission into fission fragments. A modified one-body mechanism for nuclear
dissipation with a reduction coefficient ks of the contribution from a “wall” formula has been used in the study.
The inclusion of the K coordinate in the dynamical consideration and use of the “chaos-weighted wall formula”
with a deformation-dependent scaling factor ks(q1) lead to fairly good reproduction of the variances of the fission-
fragment mass distribution and the prescission neutron multiplicity for a number of fissioning compound nuclei
in a wide fissility range. The four-dimensional dynamical calculations describe better experimental prescission
neutron multiplicity and variances of fission-fragment mass distribution for heaviest nuclei with respect to a
three-dimensional dynamical model, where the K coordinate is assumed to be equal to zero. The estimate of a
dissipation coefficient for the orientation degree of freedom, γK � 0.077 (MeV zs)−1/2, is good for heavy nuclei
and a larger value of γK � 0.2 (MeV zs)−1/2 is needed for nuclei with mass ACN � 200.

DOI: 10.1103/PhysRevC.89.014616 PACS number(s): 25.85.−w, 05.10.Gg, 25.70.Jj

I. INTRODUCTION

During the past decades different methods of dynamical
consideration of the fission process have been extensively
and rather successfully applied to elucidate many problems
of collective nuclear dynamics [1–5]. In the high-excitation-
energy region numerous multidimensional Langevin calcula-
tions based on a phenomenological description of transport
coefficients [2,6–12] have proven capable of reproducing
fission experimental data in a wide range of the compound
nucleus fissility parameter. Recently, the significance of
the orientation degree of freedom (the tilting mode or K
coordinate), which is the projection of the total angular
momentum (I ) onto the symmetry axis of the fissioning
nucleus, was demonstrated with respect to both statistical and
dynamical considerations of the fission process [13–15]. At
present, many models do not consider the evolution of the K
coordinate, and it is assumed to be fixed to zero. However,
in order to calculate the angular distribution of fission
fragments the equilibrium distribution of the K coordinate
at the transition state (at the saddle or scission point)
is assumed. Therefore, recently, a three-dimensional (3D)
dynamical model was elaborated to take into account the
fourth collective coordinate (K coordinate) [15] that could
substantially influence the dynamical evolution of the fission-
ing system and predict the parameters of the mass-energy
distribution (MED) of fission fragments as well as the fission
time scale [14,15]. Inclusion of this coordinate into the 3D
dynamical model allowed the first unification of the dynamical
description of the MED and the angular distribution of fission
fragments.

Eremenko and co-authors [16,17] were the first to consider
the evolution of the orientation degree of freedom of the
fissioning nucleus as an independent collective coordinate,
using a Monte Carlo method implemented for simulation
of the Anderson-Kubo process. They were able to describe

successfully the angular distributions of fission fragments
and mean multiplicities of prescission neutrons for a num-
ber of fusion-fission reactions involving heavy ions. Kar-
pov and co-authors [18,19] combined their idea with the
3D Langevin dynamical calculations [20,21], employing a
Metropolis algorithm instead of the Andersen-Kubo process.
The dynamical aspects of the angular distribution formation
have been evaluated using the tilting mode relaxation time τK .
In Refs. [16,17] the dynamical treatment of the tilting mode
was joined with one-dimensional Langevin dynamics for the
shape degree of freedom, whereas the 3D Langevin equations
were employed, as was mentioned above, in Refs. [18,19].
The K equilibration time τK is deduced to be 20–30 zs in
Refs. [16,17] and 2–4 zs in Refs. [18,19] from the fits of
calculated values to experimental data on anisotropy of the
angular distribution for heavy fissioning compound systems
with mass ACN � 220–250.

An alternative method for considering the evolution of
the K coordinate was proposed by Lestone [13] and further
developed by Lestone and McCalla [14]. They described the
evolution of the K coordinate with the overdamped Langevin
equation. The Langevin equation for the K coordinate makes it
possible to simulate the relaxation of K states with allowance
for the instantaneous physical properties of the fissioning
system, such as its temperature and moment of inertia, instead
of treating the respective relaxation time as a free parameter
[16–19]; moreover, it describes the evolution of all collective
degrees of freedom of the nucleus within a unified conceptual
framework. Thus, the Langevin dynamics of fission induced by
heavy ions must include at least four collective coordinates—
three for the evolution of the nuclear shape [2,20,21] and one
for the evolution of the tilting mode [13–19,22,23].

The first results of the dynamical calculations based on
the 3D Langevin model plus the K coordinate (4D) [15]
demonstrated the advantage of such an approach, because
the 4D dynamical model allows consistent calculations of
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fission-fragment MED, the angular distribution of fission frag-
ments, and prescission particle multiplicities. The calculations
performed in Ref. [15] have shown that the 4D model could
describe the fission-fragment MED parameters and prescission
particles multiplicities for heavy nuclei using almost the same
dissipation strength, which is not possible within the 3D
calculations. It should be noted that the 4D calculations in
[15] have been performed only for two rather heavy compound
fissioning nuclei, namely, 224Th and 248Cf. Certainly, the 4D
calculations similar to those in Ref. [15] should be extended to
compound nuclei with lower value of the fissility parameter.
In the present study we investigate in detail the influence of
the K coordinate on the fission rate, time scale, and fission
observables in a wide range of fissility parameter. The results
of the present study could be valuable for the qualitative
estimations of the K-coordinate effects in the models that
do not consider this coordinate.

The paper is organized as follows. Section II describes
the 4D Langevin model, including its basic equations, input
parameters, and details of calculations. Section III presents the
results obtained from the application of the developed model.
Finally, Sec. IV contains closing remarks.

II. MODEL

In the present study we applied a stochastic approach
to treat the fission process at high excitation energy
[1,24–26]. For the dynamical description of the fissioning
nucleus shape evolution we used the recently developed 4D
Langevin dynamical model. The detailed description of the
model can be found in Ref. [15], and here we only give a short
description of its basic ingredients.

We employed a {c,h,α} parametrization [27] for the
generation of a nuclear shape. In this parametrization c is the
elongation parameter; h describes the variation in the thickness
of the neck for a given elongation of the nucleus; and the mass
asymmetry parameter α determines the ratio of the nascent
fission-fragment volumes.

In the stochastic approach, the evolution of the collective
coordinates is considered as the motion of Brownian particles,
which interact stochastically with a large number of internal
degrees of freedom constituting the surrounding “heat bath.”
The coupled Langevin equations for the description of the
dynamics of the collective coordinates have the form

dqi

dt
= μijpj ,

dpi

dt
= −1

2
pjpk

∂μjk

∂qi

−
(

∂F

∂qi

)
T

− γijμjkpk + θij ξj (t) ,

(1)

where q is the vector of collective coordinates, p is the
vector of conjugate momenta, F (q,K) = V (q,K) − a(q)T 2

is the Helmholtz free energy, V (q) is the potential energy,
mij (q) (‖μij‖ = ‖mij‖−1) is the tensor of inertia, and γij (q)
is the friction tensor. ξj (t) is a random variable satisfying
the relations 〈ξi〉 = 0 and 〈ξi(t1)ξj (t2)〉 = 2δij δ(t1 − t2). Thus,
the Markovian approximation is assumed to be valid. The
strength of the random force θij is given by the Einstein relation

∑
θikθkj = T γij . The temperature of the heat bath T was

determined by the Fermi-gas model formula T = (Eint/a)1/2,
where Eint is the internal excitation energy of the nucleus
and a(q) is the level-density parameter with the coefficients
taken from the work of Ignatyuk and co-authors [28]. The
repeated indices in the equations above imply summation over
the collective coordinates. The three collective coordinates
q = (q1,q2,q3) are related to the shape parameters c, h, and
α by q1 = f1(c), q2 = f2(c,h,α), and q3 = f3(c,h,α). The
explicit expressions for f1(c), f2(c,h,α), and f3(c,h,α) can be
found in Refs. [2,15]. The advantage of using the collective
coordinates q instead of the shape parameters (c,h,α) is
discussed in Refs. [2,29].

The potential energy of the nucleus was calculated within
the framework of a macroscopic model with a finite range
of nuclear forces [30] using the parameters from Ref. [31].
The potential energy was obtained as a sum of the Coulomb
energy, the generalized surface energy (the nuclear interaction
energy), and the rotational energy. The inertia tensor was
calculated by applying the Werner-Wheeler approximation for
incompressible irrotational flow [32]. A modified one-body
mechanism of nuclear dissipation [33–37] was employed
to determine the dissipative part of the driving forces with
a reduction coefficient from the “wall” formula ks . The
value ks = 1.0 corresponds to the standard “wall” and “wall-
plus-window” formulas [33,34,38], whereas the values 0.2 <
ks < 0.5 allow one to reproduce different features of the
MED and particle multiplicities in multidimensional Langevin
calculations [2,21,39–43] and agree with other theoretical
predictions [35,44–47].

The use of the reduction coefficient ks as a variable
parameter ruins the main advantage of the wall-and-window
formalism, namely, the absence of any free parameters.
However, in Refs. [45,48–50] it is argued that chaos-theory-
related ideas [50] can be used to calculate the value of the
reduction coefficient ks from the wall formula as a function
of deformation of the fissioning nucleus. The applications of
this approach to calculate the coefficient ks(q) for studying
different fission characteristics have been rather successful and
have shown that such calculations yield almost the same results
as those using the constant ks coefficient from the interval
0.25 < ks < 0.5 [7,10,11].

In Fig. 1, we show the potential energy in the coordinates
q1 and q2 for the case of q3 = 0. The dashed line in this
figure represents the mean trajectory [2,20] calculated under
the assumption of a one-body mechanism of nuclear viscosity
with ks = 0.25, and the crosses mark the saddle point and
nuclear ground state. In addition, this figure shows examples of
nuclear shapes in the {c,h,α} parametrization. The calculations
are performed using the 224Th nucleus as an example.

Applying the 4D model to study MED of fission fragments
and prescission particles multiplicities, we decided to use
the elongation-dependent reduction factor of the contribu-
tion from the wall formula ks = ks(q1) in addition to the
constant ks values. To calculate this dependence we follow
[45–51], relying on the idea that the reduction factor is related
to the chaosity measure of the nucleon motion inside the
nuclear shape during the compound nucleus shape evolution
from the ground state to the scission. The explicit form of
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FIG. 1. The potential energy surface in the collective coordinates
q1 and q2 at zero spin for the 224Th nucleus (q3 = 0) and the
corresponding set of nuclear shapes. The crosses denote the ground
state and the saddle point. The dashed line is the mean trajectory
calculated under the assumption of the one-body mechanism of
viscosity with ks = 0.25. The numbers at the isolines correspond
to the potential energy in MeV.

ks(q1) was taken from [51]. Figure 2 shows the reduced
friction coefficient βq2q2 = γq2q2/mq2q2 for several values of
the reduction coefficients ks used in this study.

The description of the evolution of the K collective
coordinate using the overdamped Langevin equation has been
recently proposed in Ref. [14] as

δK = −γ 2
KI 2

2

∂V

∂K
δt + γKIξ

√
T δt, (2)

where ξ is a random number from a normal distribution
with unit variance. γK is a friction parameter controlling the
coupling between the orientation degree of freedom K and the
heat bath.

The Langevin equations for the shape parameters (1) and
the Langevin equation for the K coordinate (2) are connected
through the potential energy. The Langevin dynamics of the

FIG. 2. (Color online) The reduced friction coefficient βq2q2 as
a function of elongation collective coordinate for the one-body
dissipation mechanism with values of the reduction coefficient from
the wall formula ks = 1 (thin solid curve), 0.25 (dotted curve), and
0.1 (thick solid curve) and found on the basis of the “chaos-weighted
wall formula” ks(q1) (dashed curve) [51].

K coordinate is influenced by the actual value of the potential
energy V (q,I,K). At the same time, the rotational part of the
potential energy depends on the actual K value at time t , and
in this way it influences the dynamical evolution of the shape
parameters.

The rotational part of the potential energy is determined by
the expression

Erot(q,I,K) = �
2K2

2J‖(q)
+ �

2[I (I + 1) − K2]

2J⊥(q)

= �
2I (I + 1)

2J⊥(q)
+ �

2K2

2Jeff(q)
. (3)

The functionals J‖ and J⊥ are the rigid-body moments
of inertia, about and perpendicular to, the symmetry axis.
Accounting for the diffuseness of the nuclear surface, one
can calculate the moments of inertia as [52]

J⊥(‖)(q) = J
(sharp)
⊥(‖) (q) + 4M0a

2
M, (4)

where aM = 0.704 fm is the diffuseness parameter of the
nuclear surface, M0 is the compound nucleus mass, and J

(sharp)
⊥

and J
(sharp)
‖ are the moments of inertia for a sharp-edged

nuclear density distribution. The effective moment of inertia is
J−1

eff = J−1
‖ − J−1

⊥ . The expressions for J
(sharp)
⊥(‖) in the {c,h,α}

parametrization can be found in [53].
Based on the works of Døssing and Randrup [54,55],

Lestone and McCalla [14,56] have shown that, in the case
of a dinucleus, γK can be expressed as

γK = 1

RNRcm

√
2π3n0

√
J‖|Jeff|JR

J 3
⊥

, (5)

where RN is the neck radius, Rcm is the distance between
the centers of mass of the nascent fragments, n0 is the bulk
flux in standard nuclear matter (0.0263 MeV zs fm−4) [55],
and JR = M0R

2
cm/4 for a reflection-symmetric shape. In a

limiting case γK → 0 and with an initial K value equal to
zero, the present 4D Langevin model is reduced to the 3D
model [2,20,21].

The deformation dependence of the dissipation coefficient
γK given by Eq. (5) should be used with caution, as stated
in Ref. [14], because Eq. (5) was obtained by assuming
the nuclear shapes featuring a well-defined neck. Therefore,
following Ref. [14], we choose γK to be a constant equal
to 0.077 (MeV zs)−1/2. Our previous calculations show that
γK � 0.077 (MeV zs)−1/2 is appropriate for the description of
the anisotropy of the angular distribution for the highly excited
fissioning compound nuclei with mass ACN � 225–250. This
estimation has been obtained by using Eq. (5) for elongated
nuclear shapes featuring a neck, which corresponds to the
deformations typical for the descent from saddle to scission
point. The above-mentioned value of the friction parameter
γK used in [13,14] was obtained by Lestone and co-authors in
their early study [57] from an analysis of the fission-fragment
angular distribution measured for a number of fusion-fission
reactions. This value was further used in Refs. [13,14] in the
calculations of the mean fission time of excited compound
nuclei.
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The evaporation of the prescission light particles (n,p,α,γ )
along the Langevin fission trajectories was taken into account
by using a Monte Carlo simulation technique [58]. The spin I
for each Langevin trajectory has been sampled from the spin
distribution function

σ (I ) = 2π

k2

2I + 1

1 + exp[(I − Ic)/δI ]
, (6)

where k, Ic, and δI are the wave number, critical spin for
fusion, and diffuseness, respectively. In the first approxima-
tion, Ic and δI values were defined according to the scaled
prescription [26], which reproduces to a certain extent the
dynamical results of the surface friction model [59] for the
fusion of two heavy ions. Finally, the quantities Ic and δI
were constrained from the experimental fusion cross section
and 〈I 2〉. In the present study, we neglected the spins of the
projectile and target nuclei and assumed that the spin of the
compound nucleus, I, is approximately equal to the orbital
angular momentum L. The initial K value was generated by
using the Monte Carlo method from a uniform distribution in
the interval [−I,I ] [14,17]. The initial conditions for the shape
coordinates were chosen as follows. We started modeling
fission dynamics from the ground state of the compound
nucleus, with thermalized internal degrees of freedom. It was
supposed that the scission occurred when the neck radius of the
fissioning nucleus was equal to 0.3R0 [27,60] (where R0 is the
radius of the initial spherical nucleus). This scission condition
determines the scission surface in the multidimensional space
of collective coordinates. The Langevin trajectory determines
the shape of the fissioning nucleus at the moment of scission
into fragments by crossing the scission surface. The dynamical
trajectory will either reach the scission surface, in which
case it is counted as a fission event, or if the excitation
energy for a trajectory which is still inside the saddle reaches
the value Eint + Ecoll (q,p) < min(Bj ,Bf ) (where Bj is the
binding energy of the particle j = n,p,α,γ ), the event is
counted as an evaporation residue. The angular momentum
lost by the compound nucleus in the evaporation process was
determined under the assumption that the angular momentum
carried away by the evaporated light particles is Ij = 1, 1,
2, and 1(�) [26]. After the evaporation of the prescission
particle we recalculated the excitation energy, spin, and all
the dimensional factors entering the expressions for potential
energy, mass, and friction tensors. The dynamical equations
(1) and (2) were integrated simultaneously with the same
time step until the scission or evaporation residue condition
occurred. Correspondingly, the ensemble of sampled Langevin
trajectories determines the ensemble of fission fragments and
evaporation residues nuclei, and one can obtain the observables
of interest, typical for full fission (FF) or evaporation residue
(ER) channels, such as masses and kinetic energies of fission
fragments, K values, temperatures, etc.

In the standard theoretical approach, fission fragments are
assumed to be emitted along the direction of the nuclear sym-
metry axis at the transition-state configuration. The angular
distribution in this case is given by [61,62]

W (θ,I,K) = (I + 1/2)
∣∣DI

M,K (θ )
∣∣2

, (7)

where quantum number M is the projection of the total spin I
on the space-fixed axis; θ is the angle with respect to the space-
fixed axis; and DI

M,K (θ ) is the symmetric-top wave function.
In case of zero spin target and projectile nuclei, M is zero, and
the angular distribution of fission fragments is determined by
averaging the expression (7) over the ensemble of Langevin
trajectories

W (θ ) = 1

Nf

Nf∑
j=1

(I j + 1/2)
∣∣DIj

0,Kj (θ )
∣∣2

, (8)

where the upper index j determines the value of the corre-
sponding quantity at the scission point for the j th Langevin
trajectory and Nf is the total number of simulated trajectories.
Applying Eq. (8) within the present 4D calculations we de-
termine the angular distribution at the scission surface. At the
same scission point we also determine the masses and kinetic
energy of fission fragments [43]. This procedure does not need
the standard transition-state model assumptions on equilibra-
tion of a tilting mode at any arbitrary transition point, because
the K coordinate is determined dynamically at every time step.

Additionally, the standard transition-state model has been
used to analyze fission-fragment angular distributions. These
calculations have been performed to compare the predictions
of widely used transition-state models with the present
dynamical model.

The angular distribution of fission fragments can be ob-
tained by averaging Eq. (7) over the quantum numbers I and K:

W (θ ) =
∞∑

I=0

σ (I )
I∑

K=−I

PI (K)W (θ,I,K). (9)

It is seen from Eq. (9) that for the calculation of the
angular distribution it is necessary to specify the type of
distributions σ (I ) and PI (K) of the compound nuclei over
I and K , respectively. If one assumes that the quantity σ (I )
is known, then the problem of angular distribution calculation
consists only in the determination of the distribution PI (K),
which could be found in the transition state. Two limiting
assumptions on the location of the transition state are usually
made; correspondingly, two versions of the transition-state
theory exist: the saddle-point transition-state (SPTS) [61] and
the scission-point transition-state (SCTS) [63] models. In the
case of a multidimensional model, a set of relevant conditional
saddle or scission points plays the role of transition states. In
the SPTS and SCTS models an equilibrium distribution of K
values is assumed; this is determined by the Boltzmann factor
exp(−Erot/T ) [64] at the saddle or scission point, respectively.
Using Eq. (3) for the Erot one can obtain the equilibrium K
distribution

P
eq
I (K) = exp

[− K2
/(

2K2
0

)]
∑I

K=−I exp
[− K2/

(
2K2

0

)] , (10)

where the variance of the equilibrium K distribution is
determined by the expression

K2
0 = JeffT/�

2. (11)

Here T and Jeff are taken at the transition state.
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One can also rewrite Eq. (9) for the case of the 4D dynamical
calculations as

W (θ ) =
∞∑

I=0

σ (I )
I∑

K=−I

PI (K,tsc)W (θ,I,K), (12)

where PI (K,tsc) is the dynamical K distribution calculated
from the 4D model at the scission surface for spin I . We will
discuss this distribution later in Sec. III C.

The anisotropy of the fission-fragment angular distribution
is then given by

A = W (00)

W (900)
, (13)

where the angular distribution W (θ ) could be found either
from 4D calculations using Eq. (8) or from the equilibrium K
distribution at the transition state using Eqs. (9)–(11).

Three quantities determine the angular distribution in the
transition-state model: the initial spin distribution of the
compound nuclei, the effective moment of inertia, and the
nuclear temperature at the transition state. Note that the K
distribution obtained from the 4D dynamical calculations will
be identical to the equilibrium K distribution at a saddle point
in case the relaxation time of the K degree of freedom, τK ,
is shorter than the time spent by the nucleus near the saddle
point and larger than the time of descent from saddle to scission
point. If, on the contrary, τK is much shorter than the descent
time from saddle to scission point, the dynamically calculated
K distribution will be similar to the equilibrium K distribution
at the scission point. In the present dynamical calculations, we
do not use any approximations for the K-coordinate relaxation
time. Instead, we directly treat the relaxation process of the K
coordinate using Eq. (2) and take into account the effect of the
actual evolution of the K value on the dynamics of the shape
parameters (q1,q2,q3).

The analysis of the ensemble-averaged Eq. (2) leads to the
expression for the K state relaxation time:

d〈K〉
dt

= −γ 2
KI 2

2

〈
∂V

∂K

〉
. (14)

From the expression for the rotational energy, it follows that

d〈K〉
dt

= −γ 2
KI 2

2

�
2

Jeff
〈K〉. (15)

By assuming a constant γK , as we do in the present study, the
solution of this equation has the form

〈K(t)〉K0 = K0 exp

[
−γ 2

KI 2
�

2

2Jeff
(t − t0)

]
, (16)

which gives the following expression for the relaxation time:

τK = 2Jeff

γ 2
KI 2�2

. (17)

Another estimate for τK can be found in [65]:

τK = CKJ 2
⊥

[I (I + 1) − K2]�2
. (18)

It is based on the ideas of Randrup and Døssing [66]. Here,
CK is a coefficient that was varied to describe experimental
data more precisely.

Concluding this section, we wish to stress that the dynami-
cal treatment of the K-coordinate evolution by both the master
equation for PI (K,t) [17–19] and the overdamped Langevin
equation [13,14] introduces parameters: γK in the latter case
and τK in the former case. As one can see from this section,
these parameters are related to each other by Eq. (17). The
values of γK and τK are deduced by fitting the observed
anisotropy of the fission-fragment angular distribution.

III. RESULTS AND DISCUSSION

In the present study we have investigated several fusion-
fission reactions, where the compound nuclei from 105Ag to
260Rf were formed:

93Nb +12C → 105Ag(Elab = 1060 MeV);
18O +144 Sm → 162Yb(Elab = 158.8 MeV);
18O +154 Sm → 172Yb(Elab = 158.8 MeV);

16O +184Pt → 200Pb(Elab = 91.6,97.7,102.5,

and 107.9 MeV);
18O +197Au → 215Fr(Elab = 158.4 MeV);
16O +208Pb → 224Th(Elab = 108 MeV);
16O +232 Th → 248Cf(Elab = 128 MeV);

16O +238U → 254Fm(Elab = 90,96,110,114,130,140,148,

215, and 250 MeV);
16O +248 Cm → 264Rf(Elab = 110,130, and 148 MeV);
20Ne +240Pu → 260Rf(Elab = 142 and 174 MeV);
18O +246 Cm → 264Rf(Elab = 102.5 MeV);

18O +238U → 256Fm(Elab = 159 MeV).

Some of these reactions have been considered in our
previous studies performed with the 3D Langevin model
[20,21], so the influence of the K coordinate on calculated
observables can be examined. We also present some recent
results of 4D calculations [15] in order to have more complete
data for comparison between the 3D and 4D Langevin
calculations. The 3D and 4D Langevin calculations provide
large amount of observables. Some of them are brought
together with the experimental data in Table I. The following
sections describe the comparison of calculated results and
available experimental data.

A. Fission rate, time, probability, and prescission neutron
multiplicity

Our previous investigation [74] has shown that the inclusion
of new collective shape coordinates in dynamical modeling
results in an increase of the stationary value of the fission
rate in multidimensional Langevin calculations. In the present
study we investigate in detail the influence of the K coordinate
on a fission rate and time characteristics and how the inclusion
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TABLE I. Calculated results for the fission of 105Ag, 172Yb, 162Yb, 215Fr, 224Th, 248Cf, 256Fm, 260Rf, and 264Rf together with the available
experimental data. The 4D calculations were performed with γK = 0.077 (MeV zs)−1/2. The columns list (from left to right) the compound
nucleus (CN), Z2/A, the excitation energy (E∗), the reduction coefficient ks , the variance of the fission fragment mass (σ 2

M ) and kinetic energy
(σ 2

EK
) distributions, the mean total kinetic energy (〈EK〉), the mean multiplicity of prescission neutrons (〈npre〉), the mean descent time from

saddle to scission point (〈τsd−sc〉), the mean time spent by the fissioning system near the saddle point (〈τsd〉), and the mean time to reach the
saddle point (〈τgs−sd〉).

CN Z2/A E∗ ks σ 2
M σ 2

EK
〈EK〉 〈npre〉 〈τsd−sc〉 〈τsd〉 〈τgs−sd〉

(MeV) (u2) (MeV2) (MeV) (zs) (zs) (zs)

105Ag 21.04 121 0.25 233 ± 22 41 ± 4 58.5 ± 0.2 1.36 0.08 8.1 36
ks(q1) 250 ± 17 42 ± 3 58.1 ± 0.2 1.37 0.09 7.8 44

1.0 229 ± 23 40 ± 3 58.2 ± 0.2 1.79 0.1 8.0 52
exp. [67] 219 69 ± 3 1.5
172Yb 28.49 128 0.25 271 ± 8 82 ± 3 114. ± 0.1 4.64 3.75 4.47 84

ks(q1) 254 ± 8 89 ± 3 113.5 ± 0.1 4.91 4.22 10.81 165
1.0 230 ± 11 73 ± 4 113.7 ± 0.1 5.33 4.35 10.64 183

exp. [68] 228 112 113 4.4 ± 0.15
162Yb 30.25 118 0.25 292 ± 7 123 ± 3 114.9 ± 0.1 2.84 2.46 4.41 66

ks(q1) 280 ± 7 116 ± 3 114.5 ± 0.1 3.03 3.38 7.16 111
1.0 245 ± 6 111 ± 3 115 ± 0.1 3.5 4.16 10.01 179

exp. [68] 231 112 2.45 ± 0.25
215Fr 35.20 113 0.25 385 ± 11 138 ± 4 160.4 ± 0.1 4.26 4.79 8.3 65

ks(q1) 346 ± 10 137 ± 4 160.4 ± 0.1 4.56 5.38 7.16 111
1.0 298 ± 10 135 ± 4 160.8 ± 0.1 5.35 8.91 22.28 133

exp. [68] 272 190 154 4.1 ± 0.15
224Th 36.16 54 0.25 308 ± 5 94 ± 2 169.5 ± 0.1 2.13 7.88 23.28 128

ks(q1) 271 ± 4 85 ± 2 168.5 ± 0.1 2.31 11.17 39.2 132
1.0 241 ± 5 79 ± 2 168.2 ± 0.1 2.86 12.24 41.33 241

exp. [69,70] 213 137 162.4 ± 1 2.5
248Cf 38.73 83 0.25 519 ± 7 184 ± 3 198.3 ± 0.1 2.65 2.81 7.56 28

ks(q1) 458 ± 6 165 ± 3 191.4 ± 0.1 2.81 4.18 11.88 23
1.0 355 ± 12 130 ± 4 191.3 ± 0.1 4.11 7.53 43.42 102

exp. [71] 456 ± 18 311 ± 22 184 4.1
256Fm 39.06 159 0.25 615 ± 17 233 ± 7 197.2 ± 0.2 3.85 2.13 3.51 24

ks(q1) 550 ± 15 204 ± 6 197.1 ± 0.2 4.08 3.0 5.17 20
1.0 415 ± 12 161 ± 5 197.8 ± 0.2 5.62 4.63 17.04 79

exp. [68] 543 420 181.0 5.1
260Rf 41.6 75 0.25 626 ± 9 266 ± 4 211.6 ± 0.1 1.47 1.7 3.08 18

ks(q1) 562 ± 8 236 ± 4 211.7 ± 0.1 1.63 2.44 4.17 15
1.0 458 ± 7 193 ± 3 211.9 ± 0.1 2.72 3.7 14.87 62

exp. [72] 506 ± 12 372 ± 13 195 ± 2 3.5
260Rf 41.6 105 0.25 685 ± 10 305 ± 4 211.5 ± 0.1 2.82 1.63 2.9 17

ks(q1) 623 ± 9 271 ± 4 211.7 ± 0.1 3.02 2.31 3.95 13
1.0 486 ± 7 206 ± 3 212.4 ± 0.1 4.57 3.48 14.56 57

exp. [72] 620 ± 17 424 ± 15 196 ± 2 5.7
264Rf 40.97 52 0.25 568 ± 8 218 ± 3 210.6 ± 0.1 0.90 2.1 4.64 21

ks(q1) 503 ± 7 194 ± 3 210.4 ± 0.1 1.02 3.03 6.3 16
1.0 421 ± 6 170 ± 3 210.7 ± 0.1 1.83 5.09 24.34 70

exp. [69,73] 435 198 2.0

of the K coordinate in the dynamical consideration will
influence the fission observables such as prescission neutron
multiplicity and fission probability. In a previous study [15]
we demonstrated that the values ks = 0.25 and γK � 0.077
(MeV zs)−1/2 provide a good description of the experimental
MED characteristics and the anisotropy of the fission-fragment
angular distribution for the 224Th and 248Cf compound nuclei
in a wide interval of excitation energy. It was also found
that the dissipation coefficient γK influences only the angular

distribution of fission fragments and practically has no effect
on the prescission particles multiplicity, fusion-fission and
evaporation residue cross sections, and fission-fragment MED
parameters.

In the present study we demonstrate the influence of the
K coordinate on the fission time distribution and fission
rate in Figs. 3 and 4. In Fig. 3 the fission rates calculated
in the 3D and 4D models are presented for different nuclei.
These calculations were performed to distinguish only the
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(a) (b)

(c) (d)

FIG. 3. (Color online) The fission rate for 224Th (a), 200Pb (b),
172Yb (c), and 105Ag (d) in calculations with the 3D (dashed his-
togram) and 4D (solid histogram) dynamical models. The calculations
were performed at fixed spin I = 40 and without taking into account
the evaporation of prescission particles.

influence of the K coordinate on Rf ; therefore, the evaporation
of the prescission particles were switched off and calculations
were performed with the fixed value of angular momentum
I = 40. The present calculations show that inclusion of the
K coordinate in the dynamical consideration results in a
decrease of fission rate. This decrease is around 50% for heavy
(224Th and 200Pb) and 30% for light (172Yb and 105Ag) nuclei.
In the dynamical calculations with lower dimensionality the
inclusion of the K coordinate will result in an approximately
the same decrease of the fission rate. These results support the
findings [13,14] that a proper account of nonzero K values is
needed in the expression for the calculations of stationary
fission width. This could be particularly important for the
elucidation of the energy dependence of nuclear viscosity on
excitation energy [13,14]. It should be noted also that the K
coordinate will change the potential energy surface near the
ground state and saddle points, which could be accounted for
in the Kramers-like expression for the stationary value of the
fission decay width [75] as well.

The fission rate Rf (t) has a direct correlation with the
fission time distribution, which is presented in Fig. 4 for
the 224Th and 248Cf compound nuclei. The delay time τd

determines the time interval 0 < t < τd where no fission
events occur, and τd = 3 zs is found for both 224Th and
248Cf nuclei in 3D and 4D calculations. The steep rise of
the fission time distribution corresponds to the increase of
Rf (t) to the stationary value at tmax. For time interval t >
tmax the exponential decrease of the fission time distribution
corresponds to a constant value of Rf (t) with a long-lasting
tail up to 10−18 s, which is influenced by the evaporation of
prescission light particles. The tmax value is affected very little
by the dimensionality of the dynamical model. On the other
hand, the incline of the tail is the characteristic mostly affected
by the dimensionality. As a result, the mean fission time 〈tf 〉
demonstrates the strongest sensitivity to the inclusion of the
K coordinate. The different incline of time distribution tails

(a)

(b)

FIG. 4. (Color online) The fission time distribution for the 224Th
(a) and 248Cf (b) fissioning nuclei in the 3D (dashed histogram) and 4D
(solid histogram) calculations obtained with ks = 0.25 and different
γK values.

in the 3D and 4D calculations in Fig. 4 is the reflection of
the fission rate decrease in the 4D calculations in comparison
with the 3D ones. In our previous study [15] we have found
that this decrease is caused by the appearance of an additional
conservative force slowing down the motion in the fission
direction and the increase of the fission barrier height after
the inclusion of the nonzero K values in the dynamical
consideration.

In spite of the fact that direct fission time measurements
are possible at the present time [76], such data are quite
rare and the experimental uncertainty is large. Therefore, the
fission probability and prescission neutron multiplicity, which
are directly connected with a fission rate and fission time
characteristics, are compared widely with the experimental
data. The number of prescission particles emitted during a
fission process could be associated with the fission time
scale [77] and easily available for the experimental and
theoretical studies. The prescission particles carry away the
excitation energy and spin. Therefore, they influence the other
observables determined by the compound nucleus temperature
such as variances of fission fragments mass and kinetic energy
distributions and the fission probability. In the present study
we mainly deal with the reactions where experimental data
on the prescission neutron multiplicity are available. Thus, we
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concentrate on the analysis of the mean prescission neutron
multiplicity 〈npre〉.

We performed calculations for several heavy fissioning
systems, where the 3D Langevin calculations [20,21] fail
to reproduce simultaneously the prescission neutron multi-
plicities and the width of fission-fragment mass and kinetic
energy distributions. Reproduction of MED parameters in the
3D calculations required small values of ks � 0.1, whereas
ks � 1 values are needed to reproduce prescission neutron
multiplicities [20]. In the 4D calculations the consistent
description of MED parameters and 〈npre〉 could be obtained
with much closer ks values. We obtain around a 10% increase
of 〈npre〉 and at the same time around an 80% increase of
σ 2

M as a result of the dynamical calculations with nonzero
K values, which increase fission barrier heights and decrease
the stiffness of the nucleus with respect to mass-asymmetry
deformations. Thus, for very heavy nuclei Z2/A > 38 the
experimental 〈npre〉 values could be reproduced with ks around
1.0, or with deformation-dependent ks(q1). At the same time
these large ks values also allow for a wider mass distribution.
For lighter nuclei 35 < Z2/A < 38 the experimental 〈npre〉
values could already be reproduced with ks(q1). Such ks values
allow one to obtain a variance of the mass distribution, σ 2

M , in
the calculations, which is close to the experimental one (with
the difference between experimental and calculated σ 2

M values
not exceeding 30%). Considering the deformation-dependent
ks(q1) obtained from the chaos-weighted wall formula one
can see that these calculations predict larger 〈npre〉 values
compared to that with ks = 0.25. This is due to the enhanced
emission during the descent from saddle to scission point,
where ks(q1) > 0.25.

For the lighter systems the mean prescission neutron
multiplicity could be reproduced with lower ks values. The
calculations with ks = 0.25 are already very close to the exper-
imental data. At the same time the calculated σ 2

M values exceed
the experimental data by about 20%, and the best reproduction
of σ 2

M could be obtained with ks = 1. Thus, the calculations
with ks(q1) provide a reasonable balance, ensuring satisfactory
reproduction of both σ 2

M and 〈npre〉 experimental values with
reasonable quality. More subtle tuning of the parameters of
the statistical model [78] that governs particle evaporation,
for example, the level-density parameter a, could also provide
better reproduction of prescission particle multiplicities.

The reactions with the compound nucleus 200Pb were
investigated in detail in the present study. The preliminary
results of our investigations were presented in Ref. [81], where
we tried to extract nuclear viscosity for the shape coordinates
(ks values) and γK from 〈npre〉 and the anisotropy of the
fission-fragment angular distribution. In the present study,
we add the fission probability (Pf ) to the analysis in order
to make more reliable conclusions. Therefore, we found a
combination of ks and γK that better describes 〈npre〉, Pf , and
the anisotropy of the fission-fragment angular distribution. The
comparison between the calculated results and experimental
data on 〈npre〉 and Pf is presented in Fig. 5. The results and
discussion on the anisotropy of the fission-fragment angular
distribution are presented in Sec. III C. The good reproduction
of the experimental values of 〈npre〉 and Pf for 200Pb could be
obtained with ks = 0.3 or ks(q1). The coefficient γK does not

(a)

(b)

FIG. 5. (Color online) The prescission neutron multiplicity (a)
and fission probability (b) for the compound nucleus 200Pb as a
function of center-of-mass energy. The open squares are experimental
data from Refs. [79,80]. The filled symbols are the calculated results
with ks = 0.25 and γK = 0.077 (MeV zs)−1/2 (circles), with the
chaos-weighted wall formula ks(q1) and γK = 0.077 (MeV zs)−1/2

(triangles), and with the chaos-weighted wall formula ks(q1) and
γK = 0.2 (MeV zs)−1/2 (squares).

influence these observables. At the same time the anisotropy
of the fission-fragment angular distribution is determined by
both ks and γK parameters [15]. Thus, as will be shown in
Sec. III C, γK � 0.2 (MeV zs)−1/2 is needed to reproduce the
anisotropy of the fission-fragment angular distribution with ks

around 0.3 or ks(q1).

B. Parameters of the MED of fission fragments

Mass-energy distributions of fission fragments are tradi-
tionally used as one of the main sources of information about
the dynamics of the fission process and about the mechanism
that governs the separation of a nucleus into fragments.
Systematic experimental and theoretical investigations of the
MED were pioneered in the classic studies of Plasil and
co-authors [82] and Nix and Swiatecki [83,84].

Extensive experimental investigations devoted to explor-
ing the MED and the fission-fragment angular distribution
yielded a vast body of important information. The majority
of those experimental studies were systematized and an-
alyzed in [68,69,72,80,85–90]. In the theory, considerable
advances in describing special features of the fission-fragment
MED and in obtaining deeper insight into the role of
nuclear dissipation were made within the diffusion model
based on the multidimensional Fokker-Planck equation for
the distribution of collectives variables [91–93]. Further
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development of the stochastic approach to fission dynamics
on the basis of the 3D Langevin equations [2,11,20,43] makes
it possible to perform a comprehensive study of the fission-
fragment MED and multiplicities of prescission particles.
The results of this systematic investigation were published
in [2,20,21,43].

The contour plots of isolines for the distribution Y (EK,M),
where EK is the total kinetic energy and M is the mass of
the fission fragment, is the clearest and most comprehensive
way to represent the fission-fragment MED. These plots are
of interest since they provide the possibility of studying
correlations between the parameters of the distribution and of
performing a comparison with experimental data. The method
that we employ to calculate the two-dimensional MED of
fission fragments relies on the concept of a scission surface. We
assume that, as soon as a stochastic Langevin trajectory crosses
the scission surface, there occurs an instantaneous rupture of
the neck without changes in the elongation of the nucleus
and in the mass asymmetry. In the case being considered,
the instantaneousness means that the rupture of the neck
occurs within a time much shorter than the time of descent
from a saddle to scission point. The MED calculation method
is described in detail in our previous publications [43,94].
The explicit formulas for the fragment mass and total kinetic
energy of fragments, EK , in terms of collective coordinates qsc,
conjugate momenta psc at the scission surface, and the profile
function ρs(z,qsc) can be found in Refs. [2,20,21,43,94].

Figure 6 shows the contour isolines of the fission-fragment
MED Y (EK,M) for three compound nuclei. From this figure,
one can see that the shapes of the contour plots are close to
ellipsoidal in the region of large values of Y (EK,M) and are
similar to triangles in the region of small values of Y (EK,M).
The similar shapes of the contour plots were observed in the
experimental study reported in [72].

In order to perform a quantitative comparison and estima-
tions, it is necessary to consider the one-dimensional mass
and energy distributions by integrating the two-dimensional
distribution Y (EK,M) with respect to a corresponding param-
eter (EK in the case of a mass distribution and M in the case
of an energy distribution). The mass and energy distributions
have a one-humped shape (similar to the shape of a Gaussian
distribution) for all nuclei considered here, with the exception
of 105Ag, for which we obtained a uniform distribution, as this
nucleus is close to the Businaro-Gallone point.

The calculated parameters of the fission-fragment kinetic
energy distribution, σ 2

EK
and 〈EK〉, are compared with the

experimental data in Table I. The qualitative dependence
of σ 2

EK
and 〈EK〉 on the dissipation coefficient ks in 4D

calculations is the same as in the previous 3D calcula-
tions [2,20,21]. The experimental σ 2

EK
are underestimated

in the dynamical calculations. We have already discussed
[2,15,95,96] that the main reason for this underestimation
is the insufficient flexibility of the (c,h,α) parametrization,
which cannot generate the elongated shapes with a thick and
long cylindrical neck. The calculated 〈EK〉 values in the 4D
calculations for the heaviest nuclei considered in the present
study are around 12–16 MeV larger than the experimental
values. The agreement becomes better for lighter nuclei with
Z2/A < 39.

(a)

(b)

FIG. 6. (Color online) The fission fragment MED of 215Fr (a) and
264Rf (b) obtained from 4D calculations with the chaos-weighted wall
formula ks(q1). The numbers at the contour lines in percent indicate
the yield, which is normalized to 200%.

The growth of the variance of the mass distribution with
the parameter Z2/A could be reproduced for heavy compound
nuclei Z2/A > 36 with deformation-dependent ks(q1). Agree-
ment with experimental data is not only qualitative but also
quantitative (the deviation from experimental data being less
than 30%). For lighter nuclei the ks(q1) found on the basis of the
chaos-weighted wall formula also provides values of σ 2

M and
〈npre〉 close to those of the experimental data. For the reaction
leading to the production of the compound nucleus 105Ag,
the fission-fragment mass distribution is close to uniform. In
Fig. 7 the comparison between theoretical calculations and
experimental data on the fission-fragment charge distribution
is presented. The theoretical fission-fragment charge distri-
bution for 105Ag was obtained from the mass distribution
under the assumption of a uniform charge distribution between
fission fragments proportional to their masses. As one can see
from Fig. 7, the 4D theoretical calculations could reproduce
sufficiently well the shape and yield of the experimental charge
distribution in the range of fission-fragment charge (mass)
10 < Z < 35 (20 < M < 80), where the contribution from
the fusion-fission mechanism is most prominent. In Table I
we present the σ 2

M estimation for 105Ag for the same limits of
fission-fragment masses.

In [2,21], the calculations of σ 2
M were performed on the

basis of the 3D model (K = 0). Those calculations revealed
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FIG. 7. The charge distribution for the reaction 93Nb + 12C →
105Ag (Elab = 1060 MeV). The open squares are experimental data
[67] and filled squares are results of 4D calculations with the chaos-
weighted wall formula ks(q1).

that the 3D model describes well the mass distributions of
heavy nuclei at ks = 0.1–0.25. From our present calculations,
it follows that the inclusion of the K coordinate allows us to
keep the good description of σ 2

M values at larger ks , which
will allow us to reproduce 〈npre〉 for heavy nuclei. The effect
of an increase of σ 2

M for heavy nuclei upon going over from
the 3D to the 4D model is due to a decrease in the stiffness
of the fissile nucleus with respect to the mass-asymmetric
deformation. Figure 8 demonstrates the dependence of the
stiffness ∂2F/∂η2, over the descent from the saddle to the
scission point, where η = 2(ML − MR)/ACN is the mass-
asymmetry coordinate, which is frequently used in analyzing
relevant experimental data [72,89,90], and ML and MR are the
masses of the fission fragments.

As an important test of the present 4D model we per-
formed calculations of 〈npre(M)〉 and 〈npre(EK )〉 depen-
dencies. These dependencies were studied experimentally

FIG. 8. The stiffness for 260Rf with respect to the mass-
asymmetry coordinate η along the bottom of the fission valley as
a function of the elongation parameter q1. Different combinations of
I and K are considered as indicated.

FIG. 9. The mass distribution of fission fragments (solid his-
togram) measured in coincidence with the prescission neutron
multiplicities 〈npre(M)〉 (open squares) compared with the theoretical
4D calculations for the reaction 18O + 197Au → 215Fr at Elab =
158.4 MeV. Theoretical calculations were performed with the chaos-
weighted wall formula ks(q1).

[68] and theoretically [21] using the 3D Langevin model.
It was shown [68] that for many fusion-fission reactions the
number of evaporated neutrons is larger for symmetric than for
asymmetric mass splitting. It was found that the dependence
〈npre(M)〉 can be approximated by a parabolic function

〈npre(M)〉 = 〈ns〉 − cpre (Ms − M)2 , (19)

where 〈ns〉 is the mean value of the prescission neutron
multiplicity for symmetric fission, Ms is the fragment mass
for symmetric fission, and cpre is a variable parameter. From
the experimental data, it was found in [68] that cpre =
14± 1 and 6.5 ± 0.5 for the reaction 18O + 154Sm → 172Yb
at Elab = 158.3 MeV and the reaction 18O + 197Au → 215Fr at
Elab = 158.4 MeV, respectively. Our theoretical calculations
performed at ks = 0.25 yielded cpre = 13.9 ± 0.2 and
6.1 ± 0.2 for these reactions. In case of ks(q1) cpre = 8.1
± 0.9 and 6.8 ± 0.1 were found from the 4D calculations.
These results are in good agreement with experimental data
and close to the previous results of the 3D calculations
[21]. An example of the dependence 〈npre(M)〉 is given in
Fig. 9 together with the fission-fragment mass distribution.
In Fig. 10 we present the fission-fragment kinetic energy
distribution with the dependence 〈npre(EK )〉 obtained in the 4D
calculations with ks(q1). A detailed discussion of the reasons
for the parabolic dependence of 〈npre(M)〉 and approximate
independence 〈npre〉 of EK can be found in Ref. [21]. The
inclusion of the K coordinate in the dynamical consideration
and introduction of the deformation-dependent ks(q1) does not
change qualitatively the mechanisms that govern the formation
of correlation dependencies 〈npre(M)〉 and 〈npre(EK )〉.

C. Angular distribution of fission fragments

Early stages of the investigation of fission fragment angular
distributions involved an analysis of the reactions induced by
neutrons, 3He ions, and α-particle projectiles. The compound
nuclei produced in such reactions have a temperature of about
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FIG. 10. The kinetic energy distribution of fission fragments
(solid histogram) measured in coincidence with the prescission
neutron multiplicities 〈npre(EK )〉 (open squares) compared with the
theoretical 4D calculations for the reaction 18O + 197Au → 215Fr at
Elab = 158.4 MeV. Theoretical calculations were performed with the
chaos-weighted wall formula ks(q1).

1 MeV and low values of angular momentum. For these
reactions, usually the fission barrier height is much greater than
the nuclear temperature and the SPTS model provides fairly
good reproduction of the experimental data on the anisotropy
of the fission-fragment angular distribution.

A further investigation of the fission-fragment angular
distribution was performed with heavier projectiles, such as
massive ions of carbon and oxygen and ions with larger
masses. It became possible to study angular distributions of
fission fragments in the fission of heavy compound nuclei
that have much higher temperatures and angular momenta.
In the early 1980s it was found experimentally [97–99] that
in these reactions the angular anisotropy in a heavy-ion-
induced fission could differ a lot from the predictions of the
SPTS model. In order to overcome the above difficulties the
SCTS model was proposed in [97,98,100,101]. Instead of the
saddle point, the more deformed scission point was taken as
an effective transition state. A physical explanation of this
displacement can be found in the transformation [85,102,103]
of the landscape of the potential energy surface of a compound
nucleus with increasing angular momentum. The increasing
angular momentum I leads to a shift of the saddle point
[85,102,103] to smaller deformation, while the fission barrier
decreases. This means that the fission process at high values
of I leads to a long descent from saddle to scission point. If
the time of descent from the saddle to the scission point is
sufficiently long the tilting mode may become unfrozen, so
that the formation of angular distributions of fragments occurs
at the scission point in the limiting case. This assumption
forms a basis for the theoretical SCTS models developed in
[97,98,100,101].

At the same time, it was shown [104] that sometimes
the experimentally observed angular distribution anisotropy
cannot be described by either the SPTS or SCTS models.
Therefore, it could be assumed, in the general case, that the
transition state is located somewhere between the saddle and
scission points. The existing uncertainty with the position

(a)

(b)

FIG. 11. (Color online) The non equilibrium K distribution of
the fissioning nuclei 224Th (a) and 248Cf (b) at the scission surface
PI (K,tsc). The distributions PI (K,tsc) obtained from the 4D calcu-
lations are shown by the thin solid histograms. The 4D Langevin
calculations for the 224Th and 248Cf nuclei were performed with ks =
0.25 and γK = 0.077 (MeV zs)−1/2, and with ks = 0.25 and γK =
0.12 (MeV zs)−1/2, respectively. The equilibrium K distributions
P

eq
I (K) obtained from SCTS and SPTS models are shown by the solid

and dashed curve, respectively. The calculations were performed with
the value of angular momentum I = 40.

of the transition state indicates that it is necessary to take
into account [16–19] the dynamical features of the angular
distribution formation. In this case the tilting mode could
be considered as an independent collective coordinate in
the multidimensional Langevin dynamics. Such a completely
dynamical approach makes it possible to determine in the
most general form the nonequilibrium K-mode distribution
PI (K,t). Figure 11 shows the K distributions PI (K,tsc) at
the scission surface that were calculated dynamically within
the 4D Langevin approach for the 224Th and 248Cf compound
nuclei. The K distributions obtained within the SPTS and
SCTS models are also presented in this figure. One can see
from this figure the influence of the γK parameter on the
equilibration of the K coordinate.

The observable that is directly determined by the dynamical
evolution of the K coordinate is the angular distribution of
fission fragments. The present and our recent 4D calculations
[15] demonstrate that both parameters ks and γK influence the
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fission-fragment angular distribution. In our previous study
[15] we examined the angular distribution formation for the
compound nuclei 224Th and 248Cf. In the present paper the 4D
calculations were performed for the reactions 16O + 184Pt →
200Pb, 16O + 238U → 254Fm, and 18O + 246Cm → 264Rf. The
anisotropies of the fission fragment angular distributions are
presented in Fig. 12. We have chosen the last two reactions
because neither the SPTS nor the SCTS model can describe
the full set of experimental data [18,19].

It is seen from the results of the 4D calculations that
the deformation-dependent ks(q1) and the value γK � 0.077
(MeV zs)−1/2 for ACN > 220 and γK � 0.2(MeV zs)−1/2 for
ACN around 200 describes fairly well the experimental data on
the anisotropy of the angular distribution of fission fragments.
It is clearly seen from the figures that the dynamical calcula-
tions for heavy nuclei give results closer to the predictions of
the SPTS model than to the predictions of the SCTS model.
This can be interpreted as a consequence of the relations
of the characteristic times τgs−sd, τsd, and τsd−sc. Typical
values of these times for different nuclei could be found in
Table I. In our previous study [15] the relaxation time of the
tilting mode, τK ∼ 10 zs, was estimated and shown to have a
strong dependence on the spin, the deformation, and γK . For
the heavy fissioning nuclei the relaxation time of the tilting
mode, τK , is larger than 〈τsd−sc〉. Therefore, one could not
expect that the equilibrium distribution of the tilting mode
is reached at scission configuration. On the other hand, τK

is comparable with 〈τgs−sd〉 and 〈τsd〉. Therefore, memory
of the former distribution of the tilting mode at the saddle
point and even at deformations before the saddle point can
determine the resulting fission-fragment angular distribution
at scission. For the light nuclei, the saddle and scission points
are close to each other. Moreover, the inclusion of the K
coordinate in the calculation of potential energy shifts the
saddle point toward scission deformation [15]. Thus, the
SPTS and SCTS models predict quite close results for light
nuclei. Therefore, we present in Fig. 12 only the results of the
anisotropy calculations performed with the SPTS model and
4D dynamical calculations for the 200Pb nucleus. The mean
descent time 〈τsd−sc〉 for light nuclei is less than 10 zs, and
the mean time to reach saddle point deformations 〈τgs−sd〉
is usually comparable or larger than 100 zs. Therefore, the
pre-saddle history of dynamical evolution of the fissioning
systems can substantially influence the fission observables.

It should be noted that the earlier obtained estimates of
τK lie in a rather wide interval from 5–8 zs [105–108] to
60 zs [109]. We stress that the relaxation time τK = 5–6 zs
was determined in [105] within a one-dimensional Langevin
model, while, in other studies, calculations were performed
within statistical models. At the same time, it follows from
[54,66] that there is a dependence of τK on the velocity of
nuclear rotation; i.e., considering the tilting mode relaxation
time as a constant is only an approximation. Only recently
[65,110,111] have the first dynamical calculations been carried
out using the dependence of τK (or γK ) on the velocity of the
nuclear rotation. However, in the framework of a statistical
model these results of Døssing and Randrup [54,55] have been
applied earlier to the analysis of the angular distribution of
fission fragments [112]. The authors of this study achieved

(a)

(b)

(c)

FIG. 12. (Color online) The anisotropy of fission fragment angu-
lar distribution for 200Pb (a), 254Fm (b), and 264Rf (c). The exper-
imental data are taken from Refs. [85] (filled squares), [86] (filled
diamonds), [87] (filled triangle), [88] (filled inverted triangle), and
[80] (filled circles). The 4D Langevin calculations were performed
with ks = 0.25 and γK = 0.154 (MeV zs)−1/2 (open squares), ks =
0.35 and γK = 0.077 (MeV zs)−1/2 (open diamonds), deformation-
dependent ks(q1) and γK = 0.2 (MeV zs)−1/2 (open triangles), and
ks(q1) and γK = 0.077 (MeV zs)−1/2 (open circles). The dotted and
dashed curves present the results predicted by the SCTS and SPTS
models, respectively.

reasonably good agreement with the experimental data in the
region of near-barrier and sub-barrier energies in the entrance
channel of the reaction of heavy-ion collisions. Therefore,

014616-12



INCORPORATION OF A TILTING COORDINATE INTO . . . PHYSICAL REVIEW C 89, 014616 (2014)

development of a dynamical model for the evolution of the
tilting mode with deformation-dependent and spin-dependent
coefficient γK is desirable in the future. We also note that the
theory of the transition state at the saddle point is inapplicable
to some very heavy nuclei such as 254Fm and 264Rf that
have fission barrier height comparable with the temperature of
the compound nucleus.

IV. SUMMARY AND CONCLUSIONS

The 4D dynamical model [15], which has been proposed
and developed on the basis of the 3D model [2,20,21] by
incorporating the tilting degree of freedom (K coordinate)
into Langevin dynamics, was systematically applied to the
analysis of a wide set of observables from fusion-fission
reactions induced by heavy ions. This 4D Langevin dynamical
model makes it possible to calculate angular distribution of
fission fragments together with the fission-fragment MED, the
mean prescission particles multiplicity, the fission rate, and the
fission time characteristics.

The proposed 4D dynamical model reproduces reasonably
well the experimental parameters of the fission-fragment MED
and the mean multiplicities of prescission neutrons over a
wide range of the fissility parameter Z2/A. In particular,
the calculated variances of the mass distribution of fission
fragments deviate from their experimental values by not more
than 25% using the chaos-weighted wall formula with a
deformation-dependent scaling factor from the wall formula
ks(q1) [51] for all considered nuclei in the present study. The
use of the deformation-dependent factor ks(q1) in dynamical
calculations also leads to fairly good reproduction of the
prescission neutron multiplicity for nuclei with Z2/A < 37.
For the heavier nuclei the larger values of ks are needed for
reproduction of the experimental 〈npre〉 values. However, the
inclusion of the K coordinate in the dynamical consideration

and the consistent accounting of the influence of the K
coordinate on the dynamical evolution of the shape degrees
of freedom lead to the increase of 〈npre〉 and σ 2

M for heavy
nuclei in the 4D Langevin calculations [15] with respect to
the 3D ones. As a result, in the 4D calculations simultaneous
reproduction of 〈npre〉 and σ 2

M is possible with almost similar ks

values, whereas in the 3D calculations for the heaviest nuclei
ks � 0.1 was needed for the reproduction of σ 2

M and ks > 1
for the reproduction of 〈npre〉. The present 4D calculations
with deformation-dependent ks(q1) could also reproduce the
correlation dependencies 〈npre(M)〉 and 〈npre(EK )〉 with the
same quality as in 3D calculations [21].

The present 4D calculations demonstrate that the dissipa-
tion coefficient with respect to the K coordinate, γK = 0.077
(MeV zs)−1/2, found in Ref. [15] is reliable and allows repro-
duction of the parameters of angular distribution for heavy
fissioning nuclei. The larger value γK � 0.2 (MeV zs)−1/2 is
needed for the lighter nucleus 200Pb. In the present analysis
we have found that the constant dissipation coefficient γK

sometimes could not reproduce the anisotropy of the fission-
fragment angular distribution; therefore, it is desirable to
investigate the influence of a coordinate-dependent and spin-
dependent coefficient γK on the calculated observables.
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