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Tunneling times and bremsstrahlung in α decay
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A semiclassical model based on quantum time concepts is presented for the evaluation of bremsstrahlung
emission probabilities in α decay of nuclei. The contribution to the bremsstrahlung emission from the different
regions in tunneling is investigated using realistic double-folded nuclear and Coulomb potentials. Within this
model, the contribution from the radiation emitted in front of the barrier before tunneling is much larger than
that while leaving the barrier. A comparison with the data on 210Po shows that the results are sensitive to the
nuclear potential, and the rectangular well used in many of the quantum mechanical approaches can even give
qualitatively different results.
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I. INTRODUCTION

The emission of photons accompanying the Coulomb
interaction of charged particles is well explained by classical
electrodynamics. The strength of the electromagnetic radiation
is proportional to the acceleration which the charged particle
experiences in an external field. To study bremsstrahlung
emission accompanying α decay in nuclei, however, one needs
to go beyond the classical picture where an α particle is
accelerated in the Coulomb field of the daughter nucleus.
In contrast to the photon emission accompanying nuclear β
decay, the photons in α decay can also be emitted during
the quantum tunneling process. The natural question that
arises is therefore, Do the α particles emit radiation during
tunneling or do they emit only in their acceleration outside
the barrier? This curiosity gave rise to experiments measuring
the emission probabilities of photons in the α decay of 214Po
[1,2], 210Po [3–5], 226Ra [1,6], and 244Cu [7]. However, with
the emission probabilities being small and the experiments
difficult to perform, there remained discrepancies in the data.
The theoretical calculations trying to explain these data also
saw a similar fate. For example, the authors in [3] used an
existing theoretical approach [8] based on a semiclassical
calculation of the tunneling motion through the barrier and
found very good agreement with their data. A repetition
of the same calculation in a different manner [9], however,
generated qualitatively different results. In [10], within a fully
quantum mechanical approach, the authors found that the
main contribution to photon emission arose from Coulomb
acceleration and the under barrier tunneling contribution was
tiny. The authors in [11], however, concluded that the total
contribution results from a subtle interference of the tunneling,
mixed, and classical regions. Different aspects of this process,
such as a time-dependent description [12], the “interference
of space regions” [13], analysis of angular bremsstrahlung
spectra [14], the dynamic characteristics such as the position,
velocity, and acceleration of the α particle [15], contribution
of quadrupole radiation [16], etc. have also been studied.
However, with the lack of data, the discrepancies in the
understanding of the bremsstrahlung emission in α decay
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remain. The present work attempts to analyze some of the
issues with a new semiclassical approach based on tunneling
times.

In the next section, after a brief introduction to the time con-
cepts used in the present work, we shall present a semiclassical
model to evaluate the photon emission probabilities in α decay.
In particular we consider the case of α decay in 210Po. Though
some of the theoretical approaches in the literature perform a
fully quantum mechanical treatment of the problem, not much
attention has been paid to the details of the nuclear potential.
We present results displaying the sensitivity of the calculations
to the nuclear potential used, the necessity of including an α
cluster preformation factor, and the role of the under barrier
and outside the barrier acceleration of the α particle. Finally,
before summarizing our results, we present a section with a
critical view of the various theoretical approaches available.

II. TUNNELING TIMES

Tunneling is one of the most remarkable phenomena of
quantum physics. Interesting is also the question of how long
a particle takes to traverse the barrier. The latter indeed gave
rise to several quantum time concepts such as the phase, dwell,
traversal, and Larmor time [17]. With the availability of so
many definitions (which some times even include complex
times [18,19]), it is of interest to inspect which of these
times could correspond to physically measured quantities. The
stationary concepts of dwell time and traversal time do find a
connection with measurable quantities, with the former giving
the half-life of radioactive nuclei and the latter the inverse
of the assault frequency in α particle tunneling [20]. It is
these two concepts which we shall use below in developing
a semiclassical model for bremsstrahlung in α decay. Before
discussing the model, we briefly introduce the two concepts.

Given an arbitrary potential barrier V (x) in one dimension
(a framework which is also suitable for spherically symmetric
problems), confined to an interval (x1,x2), the dwell time is
given by the number of particles in the region divided by the
incident flux j :

τD =
∫ x2

x1
|�(x)|2 dx

j
. (1)
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Here �(x) is the time-independent solution of the Schrödinger
equation in the given region. The dwell time is usually defined
as the time spent in the region (x1,x2) regardless of how
the particle escaped (by reflection or transmission) and j =
� k0 /μ (where k0 = √

2μE/� with E being the kinetic energy
of the tunneling particle and μ the reduced mass) for a free
particle. When one defines the dwell time for a particle bound
in a region which either got transmitted or reflected later, the
flux j gets replaced by the transmitted or reflected fluxes, jT =
� k0|T |2/μ and jR = � k0|R|2/μ [20,22], respectively. Here
|T |2 and |R|2 are the transmission and reflection coefficients
(with |T |2 + |R|2 = 1 due to conservation of probability).
The traversal time defined by Büttiker [21] is somewhat
different and is given as

τtrav(E) =
∫ x2

x1

μ

�k(x)
dx, (2)

where k(x) = √
2μ[|V (x) − E|]/�.

III. BREMSSTRAHLUNG EMISSION IN α DECAY

Given the number of theoretical works which have appeared
on this subject over the years (as listed in the Introduction, too)
the question that probably comes to the reader’s mind here
is, Why are we proposing yet another model? We therefore
begin by stating the reasons for such an undertaking. To start
with, (i) the quantum time concepts were successfully applied
to realistic examples in nuclear and particle physics such as
locating particle resonances [23], η-mesic nuclear states [24],
and half-lives of heavy nuclei, and even in other branches like
atomic and semiconductor physics, chemistry, and biology
(see [20] and references therein). It is certainly interesting to
extend these concepts to an intriguing phenomenon in nuclear
physics. (ii) The quantum mechanical treatments are based
on the evaluation of the transition matrix involving integrals
where a separation of the space regions before, within, and
after the barrier where the photon could have been emitted
is not so obvious. Besides, while some papers simply use
a rectangular well nuclear potential [10,11], others exclude
the inner (nuclear potential) region from the integration
[2,14]. The present work will use a realistic nuclear potential
(with a double-folding model of nuclear densities and the
M3Y nucleon-nucleon interaction [25]) and verify the role
of emission in the various spatial regions. (iii) Another new
input is that the α-daughter cluster preformation probability is
incorporated in the calculation and found to be important.

A. Semiclassical model

We begin by defining an average velocity of the particle
between points b and a as

〈v〉 =
∫ b

a
|�(x)|2 v(x) dx∫ b

a
|�|2 dx

. (3)

With the wave function being stationary and hence the density
ρ = |�|2 being time independent, the continuity equation
is �∇ · �j = 0 and the current density j is constant in the
one-dimensional problem. Identifying j = ρv in the above

equation,

〈v〉 = j (b − a)∫ b

a
|�|2 dx

= b − a

τD

. (4)

Given the fact that we are interested in only those events where
the α particle was transmitted through the barrier, we choose
the constant flux j to be the transmitted flux jT = � k0|T |2/μ.
In a semiclassical picture one could consider b − a as the
distance traveled by the particle while it spent the time τD in
that region. Coming back to the α-nucleus potential, one could
then write this distance as the one between the classical turning
points times the number of assaults, N , made by the particle
before leaving that region. For example, for the potential with
the classical turning points r1, r2, and r3 defined by V (r) = E
(where E is the energy of the tunneling particle), the frequency
of assaults at the barrier, ν, can be written as the inverse of the
time required to traverse the distance back and forth between
the turning points r1 and r2 as [26]

ν = �

2μ

[∫ r2

r1

dr

k(r)

]−1

. (5)

which is the inverse of twice the traversal time [Eq. (2)] from
r1 to r2. The number of assaults made by the α in region I is
then, NI = νI τD . With νI = 1/(2τ I

trav),

NI = τ I
D

2τ I
trav

. (6)

Replacing for b − a withNI(r2 − r1) in Eq. (4) for region I and
similarly with NII(r3 − r2) for region II, the average velocity
in regions I and II can be finally written as

vI = r2 − r1

2τ I
trav

, vII = r3 − r2

2τ II
trav

. (7)

The velocity in region III, vIII, is simply the free velocity and
is given by

√
2Eα/μ. Defining the times at the turning points

r2 and r3 as t2 and t3, respectively, the velocity function can be
written as

v(t) = vI	(t2 − t) + vII	(t3 − t) 	(t − t2) + vIII	(t − t3),
(8)

where the step function 	(t0 − t) is unity for all t < t0 and
zero otherwise.

The classical formula for the photon emission probability
in α decay is given as [8,10]

dP

dEγ

= Pα

2αZ2
eff

3πEγ

|aω|2, (9)

where

aω =
∫ ∞

−∞
dt

dv

dt
e−iωt , (10)

and we have introduced a factor Pα in order to account for
the α-cluster preformation probability. Zeff is the effective
charge for dipole transitions and is given as Zeff = (2A −
4Z)/(A + 4), where A and Z are the mass and atomic numbers
of the daughter nucleus. For example, Zeff = 0.4 for 210Po
decay. Replacing for the velocity from Eq. (8) in Eq. (10) we
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obtain

aω = [vII(Q − �ω) − vI(Q)] e−iωt2 + [vIII(Q − �ω)

− vII(Q)] e−iωt3 , (11)

where we have written the energy dependence of the velocities
explicitly. Q is the Q value of the decay and �ω is the
energy of the emitted photon. This dependence appears due
to the fact that energy conservation has to be respected
(neglecting, however, the tiny recoil of the nucleus). The
energy in vIII should actually be Eα − �ω; however, for all
practical purposes, this does not lead to a big difference in the
results. t3 and t2 define the times at which the particle enters
and leaves the barrier. We choose t3 − t2 in the interference
term to be the traversal time in the barrier. Thus for a
given α-nucleus potential, the velocities and hence aω can be
calculated from the traversal times. Evaluating the dwell times
(and hence half-life) [20], the preformation factor is fixed (see
the discussion below) and finally the emission probability is
determined from Eq. (9).

B. Potential and cluster preformation factor

Starting with the standard definition of the WKB decay
width [27],

(E) = Pα

�
2

2μ

[ ∫ r2

r1

dr

k(r)

]−1

e
−2

∫ r3
r2

κ(r) dr
, (12)

where k(r) = √
2μ[E − V (r)]/� and κ(r) =√

2μ[V (r) − E]/�, the half-life of the nucleus can
be evaluated to be τ1/2 = � ln 2/. The factor Pα is
determined by comparing the experimental half-life
of the nucleus with the theoretical one. The potential
V (r) = Vn(r) + Vc(r) + �

2 (l+1/2)2

μ r2 , where Vn(r) and Vc(r) are
the nuclear and Coulomb parts of the α-nucleus (daughter)
potential, r the distance between the centers of mass of the
daughter nucleus and α and μ their reduced mass. The last
term represents the Langer modified centrifugal barrier [28].
With the WKB being valid for one-dimensional problems, the
above modification from l(l + 1) → (l + 1/2)2 is essential
to ensure the correct behavior of the WKB scattered radial
wave function near the origin as well as the validity of the
connection formulas used [29]. Another requisite for the
correct use of the WKB method is the Bohr-Sommerfeld
quantization condition, which for an α with energy E is given
as ∫ r2

r1

K(r) dr = (n + 1/2)π, (13)

where K(r) =
√

2μ
�2 |V (r) − E| and n is the number of nodes

of the quasibound wave function of α-nucleus relative motion.
The number of nodes are re-expressed as n = (G − l) /2,
where G is a global quantum number obtained from fits to
data [30,31]. We choose G = 22 for the 210Po calculations.
The folded nuclear potential is written as

Vn(r) = λ

∫
dr1 dr2 ρα(r1) ρd (r2) v(r12 = r + r2 − r1,E),

(14)
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FIG. 1. Emission probabilities for bremsstrahlung accompanying
the α decay of 210Po. The data are from Refs. [3–5].

where ρα and ρd are the densities of the α and the daughter
nucleus in a decay, and v(r12,E) is the nucleon-nucleon
interaction. |r12| is the distance between a nucleon in the α
and a nucleon in the daughter nucleus. v(r12,E) is written
using the M3Y nucleon-nucleon (NN ) interaction as in [25].
The Coulomb potential is obtained using a similar double-
folding procedure [32] with the matter densities of the α
and the daughter replaced by their respective charge density
distributions ρc

α and ρc
d .

C. Photon emission probabilities

The photon emission probabilities evaluated within the
semiclassical tunneling time model are presented in Fig. 1
for the α decay of the nucleus 210Po. One can see that
the contribution to the results from the acceleration at the
beginning of the Coulomb barrier (dashed line) is much larger
than the acceleration while leaving the barrier (dot-dashed
line). The shape of the total emission probability (solid line),
however, gets decided by the sum and interference of the
two terms. The disagreement with the data (which as such
also disagree with each other having three different slopes)
at high energies could either be caused by a limitation of
the semiclassical model or by the energy dependence of the
cluster preformation factor (which in the present work has
been chosen to be constant). It is also important to note
that we obtain Pα = 0.03 on comparing the experimental
and theoretical half-lives of 210Po and this factor is essential
for reproducing the right order of magnitude of the photon
emission probability.

To test the sensitivity of the results to the potential used,
we display in Fig. 2 the results evaluated using the realistic
potential V (r) mentioned in the previous section and a simpler
potential of the form V (r) = [2Zα/r]	(r − r0) − V0	(r0 −
r), where V0 and r0 are chosen to take the values used in
[10] for 210Po. Using V0 = 16.7 MeV and r0 = 8.76 fm as in
[10] and the Q value of 5.407 MeV, the experimental half-
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FIG. 2. Sensitivity of the photon emission probability to the
nuclear potential.

life in Eq. (12) can be reproduced only after the inclusion
of Pα = 0.03. One can also rewrite the rectangular potential
as V (r) = [2Zα/r]	(r − r0) − λ Ṽ0	(r0 − r) and adjust λ in
order to satisfy the Bohr-Sommerfeld condition. This leads
to V0 = λṼ0 = 75 MeV. It is interesting to see that such a
rectangular well brings the results closer to those with the
realistic potentials. The preformation factor, however, changes
to Pα = 0.016.

The semiclassical tunneling time model could in principle
be applied to other existing data on the decay of 214Po, 226Ra,
and 244Cu. These results are not presented here since the
qualitative behavior of the emission probabilities remains the
same. The magnitude of the results is sensitive to the input
of the preformation factor which in turn gets decided by the
strength of the nuclear potential (which is decided by the global
quantum number input). For an input G = 24, for example, the
probabilities for 226Ra and 214Po are slightly overestimated as
compared to data in the present approach.

IV. CRITICAL VIEW OF THE THEORETICAL
APPROACHES

Apart from the fact that the data on bremsstrahlung emission
in α decay are sparse, there exist contradictory conclusions
from theoretical approaches in the literature. In the present
section we try to give an overview of the results from different
approaches and a comparison of their conclusions.

A. Semiclassical approaches

One of the first papers which appeared on this topic was that
by Dyakonov and Gornyi [8], who considered the tunneling
motion of a charged particle using the semiclassical WKB
wave functions. They derived a classical formula for the
radiation spectral density in terms of the quantum mechanical

traversal time delay �t which was given by

∂E

∂ω
= 2

3π

e2

c3
ω2 v2

0 |�t |2, (15)

where the traversal time delay �t = �t(−∞) was defined as
the difference of the traversal time under the barrier and the free
traversal time in the same region. The above spectral density
is related to the experimentally measured emission probability
by a factor proportional to (4πEγ )−1 [9]. The acceleration
obtained in [8], |aDG

ω |2 = ω2v2
0 |�t |2 can be rewritten in terms

of the average velocities appearing in the present work.
Considering the fact that the authors in [8] consider a free
α particle tunneling the barrier, the only contribution to the
“delay” is finite for the region within the barrier, and elsewhere
�t = 0. Thus, �t of Eq. (10) in [8] can be rewritten as

�t =
∫ r3

r2

1

v(z)
dz − r3 − r2

vIII
, (16)

leading to |aDG
ω |2 = ω2(τ II

trav)2 (vIII − 2vII)2. This appears
somewhat similar to our expression where if we were to
retain the contribution only from the acceleration at the end
of the barrier, we would obtain |aω|2 = (vIII − vII)2. One
would, however, expect |aDG

ω |2 to grow with increasing photon
energy as compared to |aω|2 of the present work. Working
within the approach of [8] but with a different formalism [9]
to evaluate |aω|2, Dyakonov obtained exponentially falling
emission probabilities in reasonably good agreement with the
210Po data.

The discrepancy to be noted here is that (i) Kasagi et al.
[3] obtained an almost perfect agreement with the data (with a
dip around Eγ = 300 MeV) using the model proposed in [8],
(ii) the arguments presented above for |aDG

ω |2 seem to suggest
that it would be difficult to expect steeply falling probabilities
with the expression in [8], and (iii) the author of [8] using an
apparently similar formalism did obtain exponentially falling
probabilities in [9], however, with the absence of the dip and in
disagreement with the result in (i) [3]. The author mentioned a
possible reason for the disagreement to be the use of different
cutoffs of the Coulomb potential chosen in [9] and [3].

B. Quantum mechanical treatments

A fully quantum mechanical description [10] of the photon
emission accompanying α decay followed the early experi-
ments and the semiclassical theoretical approaches in [8,9].
The authors expressed the emission probability in terms of a
transition matrix involving the radial wave functions �i and
�f of the initial and final α, respectively, and treating the
photon field in the dipole approximation. The matrix element
〈�f |∂rV |�i〉 was evaluated using the following potential:
V (r) = [2Zα/r]	(r − r0) − V0	(r0 − r). The parameters V0

and r0 were fitted to obtain a half-life consistent with an
expression obtained from wave function matching. The authors
found that the main contribution to photon emission stems
from Coulomb acceleration and only a small contribution
arises from the tunneling wave function under the barrier. This
is in contrast to the findings of [11] where the authors (in
a similar kind of quantum mechanical approach involving the
calculation of the transition matrix elements with a rectangular
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nuclear potential) found the total spectrum to be a result of
the interplay between different regions. The authors in [11]
replaced the quantum mechanical Coulomb wave functions by
semiclassical ones and divided the integral into different re-
gions. They defined classical turning points and thus obtained
semiclassical integral expressions for the tunneling, mixed,
and outside regions. Whereas Ref. [10] concluded that the
soft-photon limit agrees with the classical results, Ref. [11]
found classical theories inadequate in reproducing the subtle
interference effects. In another quantum mechanical treatment
[13] of the interference of the different space regions in
tunneling, the results seemed to be in agreement with Ref. [10].

A revived interest in the topic was seen by some more
recent works [2,6,14] which studied the experimental spectra
for photon emission accompanying the 210,214Po and 226Ra α
decay. The authors in [14], for example, employed a multipole
expansion of the vector potential of the electromagnetic
field of the daughter nucleus and also took into account
the dependence on the angle between the directions of the
α-particle propagation and photon emission. They found the
contribution of the photon emission during tunneling to be
small. In their investigation of 226Ra they took into account
the deformation of the nucleus and found the results to
be different from those of the spherically symmetric case.
Even if they agreed in general with [10] that the tunneling
motion contributes little, using the potential parameters of
[10] they could not, however, reproduce the slope of the
210Po spectra.

C. Time-dependent formalisms

Finally, before ending this section we discuss two time-
dependent descriptions of the bremsstrahlung emission. In
contrast to the stationary descriptions of quantum tunneling
described so far, the authors in [12] resort to numerically solv-
ing the time-dependent Schrödinger equation. The emission
probability involves the radial momentum which is evaluated
using the time-dependent wave function. Apart from finding
the time-dependent modification of the wave function to be
important, the authors notice that the usual assumption of a
preformed α cluster in a well leads to sharp peaks at high
frequencies in the bremsstrahlung emission. These peaks are
interpreted as the manifestation of the fact that the initial

localized state has some overlap from neighboring resonant
states. Though the importance of these peaks would reduce
if the initial state were a sharp resonance (as is the case for
210Po), the authors express the need for more experimental data
on bremsstrahlung radiation by a tunneling particle in order to
understand better the preformation of clusters and the above
phenomenon of “quantum beats.”

In [15] the authors propose a numerical algorithm based
on the Crank-Nicolson method to solve the time-dependent
Schrödinger equation and thereby evaluate average position,
momentum, and acceleration in α decay. They conclude that
a big effect of the tunneling motion should be expected in the
region of hard photons. Though the authors do not compare
their results with data, they find that the contribution coming
from the tunneling motion is an order of magnitude smaller
than that from Coulomb acceleration.

V. SUMMARY

To summarize the findings of the present work, we can say
the following:

(i) We have presented a new semiclassical model based on
the concept of quantum tunneling times in order to evaluate
the photon emission probabilities in α decay of nuclei. Special
attention was paid to the use of realistic nuclear and Coulomb
potentials and the results were found sensitive to the type of
nuclear potential used.

(ii) A review of the existing theoretical literature shows that
the opinion regarding the contribution of the photon emission
during tunneling is divided among some who consider this
motion as well as subtle interference effects between regions
to be important and others who consider the Coulomb
acceleration to be the dominant one.

(iii) The existing data on 210Po are not consistent with each
other and for other nuclei are few. We emphasize here the need
for new reliable data in order to resolve the intriguing question
which we started with: Does the α particle emit radiation
during tunneling?
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