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Isoscalar and isovector dipole strength distributions in nuclei and the Schiff moment

N. Auerbach”
School of Physics and Astronomy, Tel Aviv University, Tel Aviv 69978, Israel
and Department of Physics and Astronomy, Michigan State University, East Lansing, Michigan 48824, USA

Ch. Stoyanov'
Institute for Nuclear Research and Nuclear Energy, Bulgarian Academy of Science, Sofia, Bulgaria

M. R. Anders’ and S. Shlomo*
Cyclotron Institute, Texas A&M University, College Station, Texas 77843, USA
(Received 24 October 2013; revised manuscript received 10 December 2013; published 31 January 2014)

It was pointed out that the isoscalar dipole strength distribution in nuclei contributes to the Schiff moment. The
nuclear Schiff moment is essential in the mechanism that induces parity and time-reversal violations in the atom.
In this paper, we explore, theoretically, the properties and systematics of the isoscalar dipole in nuclei with an
emphasis on the low-energy strength and the inverse energy-weighted sum which determines the Schiff moment.
We also study the influence of the isovector dipole strength distribution on the Schiff moment. The influence of
large neutron excess in exotic nuclei is examined. The centroid energies of the isoscalar giant dipole resonance
and the overtone of the isovector giant dipole resonance are given for a wide range of nuclei.
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I. INTRODUCTION

The study of giant resonances is not new in nuclear physics.
However, there is continuous research on this subject as new
resonances are found and new properties of the resonances
are discovered. Moreover, it is now clear that many of the
resonances play an important role in determining the properties
of nuclear structures and reactions and contribute to the under-
standing of nuclear phenomena. For example, a whole class
of isovector giant resonances helps in the study of symmetry
energy, the determination of isospin mixing, etc. In a recent
paper [1], it was pointed out that the isoscalar dipole (ISD)
resonance [2] could have a substantial contribution to the nu-
clear Schiff moment whose operator is the same as the operator
commonly used in the study of the ISD strength distribution.
In this paper, we also consider the influence of the isovector
dipole (IVD) strength distribution on the Schiff moment. The
value of the Schiff moment is central to the measurement of
time-reversal violation in an atom [3,4]. One of the novelties in
the study of nuclear resonances is the realization that some of
the resonances have significant strength concentrated at lower
energies, away from the main peak. These are referred to as the
“pygmy resonances.” It has been known for a long time that
the ISD and the IVD have low-lying strength, around 10 MeV
of the excitation energy, in many spherical nuclei [5—12]. This
means that the inverse energy-weighted sum (IEWS) of the
strength distribution is particularly enhanced. The mechanism
considered in Ref. [1] finds that the Schiff moment in odd-even
nuclei is proportional to the IEWS of the ISD in the even-even
core and, therefore, the Schiff moment is quite large when the
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contribution of the ISD is included. The odd nucleon couples
to the 0% ground state and to the 1~ dipole strength. States
with the same angular momentum J, but opposite parity, mix
via an assumed time-reversal and parity-violating interaction.
As a result, one finds a nonzero Schiff moment. That Schiff
moment induces in the atom parity and time-reversal mixing
which, in turn, produces a static electric dipole moment of the
atom which is measured in experiment [13]. As mentioned
above, one derives an expression for the static Schiff moment
that depends linearly on the inverse energy-weighted sum of
the ISD strength in the even core (see Eq. (37) in Ref. [1]).
In the above reference, it was conjectured that some of the
ISD strength in exotic nuclei with large neutron excess and
in deformed nuclei might move to even lower energies by
enhancing the IEWS and, thus, the Schiff moment.

The commonly used operator for the ISD is defined as [1,2]

D=Z<r§— §<r2>>r,-, (1)

whereas, the isoscalar part of the Schiff operator is defined

as [3,4]
1 , 5, ‘
S= To : <ri —3 (r ))r,. 2)

Thus, the two operators, apart from normalization, are the
same. The Schiff moment is the ground-state expectation value
of the Schiff operator in an odd-even nucleus in the presence
of a time-reversal-violating interaction [1]. Hence, extensive
research on the ISD strength distribution will have an impact
on the study of the Schiff moments in nuclei. There is also the
isovector part of the Schiff operator, which is given by Eq. (2)
multiplied by the isospin operator 7,;. In this paper, we will
also consider the influence of the IVD strength distribution
and of the neutron excess on the isovector part of the Schiff
moment. This aspect was not treated explicitly in the past.
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Here, we should stress the following point. The Schiff strength
distribution that we discuss in this paper is related to the
even-even nucleus. The Schiff moment that is relevant to
the measurement of the static atomic dipole moment is the
one that is present in the odd-even nucleus. To determine
this moment, one has to introduce the weak time-reversal-
violating interaction. In Ref. [1], it was shown that, when
the ISD strength distribution is taken into account, the Schiff
moment in the odd-even nucleus is proportional to the inverse
energy-weighted sum of the ISD in the even-even nucleus. The
same also is true for the isovector Schiff moment, however,
as shown in Ref. [1], the isovector part of the Schiff moment
has other contributions that are not proportional to the strength
of the IVD but involve the amplitudes of the IVD. Therefore,
when considering the IVD strength contribution to the atomic
dipole measurements, one should keep this in mind. Apart from
the role played by the ISD and the IVD strength distributions in
the calculation of the nuclear Schiff moment, there is a general
interest in the properties of the isoscalar giant dipole resonance
(ISGDR) and the overtone of the isovector giant dipole
resonance (OIVGDR) and, in particular, in the low-energy
components the ISD and IVD strength distributions. In the
next two sections, we present a theoretical study of the ISD
and the IVD strength distributions in spherical nuclei.

II. THEORETICAL FORMULATION

We have carried out calculations within the Hartree-Fock-
(HF-) based random-phase approximation (RPA) for the
strength distributions of the ISD and IVD in a wide range
of nuclei.

A. SKkyrme-type interaction

In our HF-based RPA calculations, we have adopted the
following form for the Skyrme-type effective nucleon-nucleon
interaction [14]:

Vio = 1o(1 + xo P)8(F) — )
1 - I W Lo
+ El‘o(l +X1Pf‘2)[k122 8(F1 — 72) + 8(F1 — Pk, |

+5(1+ xzpfrz)%lﬂs(;l — Pk

1 i\ . -
+—[3(1+X3P&)pa : 2 8(ry — )

6 2
+ i Wok128(F — F2)(G1 + 62) X K12, 3)

where #;, x;, o, and W, are the parameters of the interaction,
P/, is the spin-exchange operator, 0; is the Pauli spin operator,
1212 = —i(%l — %2)/2, and ];12 = —i(%l — 62)/2 Here, the
right and left arrows indicate that the momentum operators act
on the right and on the left, respectively. The corresponding
HF single-particle potential Vyr and the total energy E of the
system are given by

SH 3
Var = —, E= | H@r)dr, )
sp

respectively, where H(r) is the Skyrme energy-density func-
tional (EDF) [15], obtained by using Eq. (3).
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B. HF-RPA calculations of strength functions

In this paper, we have carried out fully self-consistent
HF-based RPA calculations of the strength distributions of
the electric isoscalar and isovector dipole excitations in a
wide range of spherical nuclei by employing commonly used
effective Skyrme-type interactions of the form of Eq. (3)
and by adopting the numerical method for RPA described
in Refs. [15-19]. It is formulated in terms of coordinatelike
Q (time-even) and momentumlike P (time-odd) particle-hole
(p-h) operators and is adapted for a given EDF. We point
out that, to ensure self-consistency, we have carried out the
calculations by using a large p-h space and have included
all the terms of the p-h residual interaction (time-even and
time-odd) which are associated with the EDF used in the HF
calculations. No additional time-odd residual interactions were
added. For a given probing operator F, we have calculated
the strength function,

S(E) =Y [(0|FL|j)*8(E; — Ey). ©)
J

Here, |0) is the RPA ground state, and the sum is over all RPA
excited states |j) with the corresponding excitation energies
E ;. We adopt the single-particle scattering operator,

Fo=Y)" fO)Yiu(), 6)
iM

for isoscalar (T = 0) excitations and

Z N
Fr = 1 Z ) Yiun) — n Z S Yiu(p) (D
nM

pM

for isovector excitations (7 = 1). We then determine the energy
moments of the strength function,

my = /OO E*S(E)dE. (8)
0

The centroid energy Ecgn then is obtained from
mi
Ecin = —. €))
my

The energy moment m; can also be calculated by using the
HF ground-state wave function, thereby leading to an energy-
weighted sum rule (EWSR) [20,21]. For the isoscalar Fj, in
Eqg. (6), the EWSR is given by

1 2
mi(L,T =0)= Ezh—m(ZL + 1)/gL(r)p(r)4nr2dr, (10)

where p(r) is the HF ground-state matter density distribution

and

2 2

() = (ﬂ) + L+ 1)<i) . (11)
dr r

For the isovector (T = 1) operator Fj, of Eq. (7), the EWSR
is given by
NZ
m(L,T =1)= le(L,T =01+« —Kppl, (12)
where « is the enhancement factor which is due to the momen-
tum dependence of the effective nucleon-nucleon interaction
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and is given by
_ A/ +x1/2) + (1 + x2/2)]
(h*/2m)(4NZ/A?)
2 [ 8L(r)pp(r)pa(r)dmr>dr
[ gL(r)p(r)amridr
where #; and x; are the parameters of the Skyrme interaction.

The correction k,,, which arises because of the difference in
the profiles of the neutron and proton density distributions

[i.e., because p,(r) — p,(r) # %p(r)], is given by
(N—=2) A [gL)Zpu(r) — Npp(r)lamridr
A NZ [ gL p(r)amridr ’

13)

Knp =

(14)

In the results presented in this paper, for the isoscalar dipole
(T =0, L =1), we use the probing operator of Eq. (6) with

fr)=r—(5/3)(r)r, (15)

which is proportional to the Schiff operator [see Egs. (1)
and (2)]. For the isovector dipole (T = 1, L = 1), we
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FIG. 1. Self-consistent HF-based RPA results for the distribution
of the strength function S(E) of the isoscalar dipole, obtained by using
the probing operator of Egs. (6) and (15) for the **Ca, *¥Ca, °Ni, and
78Ni nuclei, calculated by using the KDEOv1 Skyrme interaction [25].
An excitation energy range of 0-60 MeV and a Lorenzian smearing
of a 2-MeV width were used in the calculation.
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use the probing operator of Eqgs. (7) and (15) and not the
usual operator linear in r. Note, for the ISD, the second
term in f(r) is added to ensure zero contribution from the
spurious state, associated with the center-of-mass motion,
which has a transition density of the form dp/dr [22,23].
We note that, in the Goldhaber-Teller model for the IVGDR,
the transition density has the form of dp/dr and, therefore,
there is no contribution to the strength function of the operator
fr)= rd— (5/3)(r)2r from the IVGDR. In a microscopic
HF-based RPA calculation, the form of the IVGDR transition
density is close to dp/dr, and thus, we only expect a small
contribution to the strength function of the IVD associated
with f(r) from the region of the IVGDR.

We have carried out fully self-consistent HF-based RPA.
We add that, in our calculations, the EWSRs, Eq. (12), are
fulfilled within better than 1% and, for the ISD, the spurious
state appears at excitation energies below 0.2 MeV.

III. RESULTS

We now present results of the HF-based RPA calculations
of the strength distribution S(E), the strength function divided
by the energy S(E)/E, and the inverse energy-weighted sum
of the strength distribution m _; of the ISD for a wide range of
nuclei. For the IVD, we only present the results for S(E) and
m_j. We should stress that the reason we present the inverse
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FIG. 2. Same as Fig. 1 but for the *°Zr, '%Zr, '*Sm, and ***Pb
nuclei.
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energy-weighted strength distribution, in addition to the
strength distribution, is the fact the Schiff moment depends on
the inverse energy-weighted sum [1,4]. We are concentrating
on the low-energy region where the S(E)/E is large. We also
include results for the centroid energies of the ISGDR and the
overtone of the OIVGDR. The calculations were carried out for
18 frequently used Skyrme-type interactions (see Ref. [16]):
SGII [24], KDEO [25], KDEOv1 [25], SKM* [26], SK255 [27],
SkI3 [28], SkI4 [28], SkI5 [28], SV-bas [29], SV-min [29], SV-
m56-0 [30], SV-m64-0 [30], SLy4 [31], SLyS5 [31], SLy6 [31],
SKMP [32], SkP [33], and SkO’ [34]. These interactions are
associated with the ranges of values of symmetric nuclear
matter (NM) properties (see Ref. [16]): The binding energy
per nucleonis E/A = 15.56-16.33 MeV, the saturation density
is pg = 0.156 — 0.165 fm 3, the incompressibility coefficient
is Knm = 201-258 MeV, the symmetry energy coefficient is
J = 26.80-37.40 MeV, the coefficients related to the slope and
curvature of the symmetry energy at the saturation density of
L =31-129 MeV, Kgym = —267-160 MeV, respectively, the
effective mass is m*/m = 0.56-1.00, and the enhancement
coefficient in the energy EWSR of the IVGDR is « =
0.08-0.71.

By using the probing operator of Egs. (6) and (15), in
Figs. 1 and 2, we present the HF-based RPA results for the

80
60
40
20

(a) %°Ca L1T1

|

80
60
40
20

(b) %8Ca L1T1

é

80 - (c)°°NilL1T1
60
40
20

S(E) (fm® MeV-!) for all graphs

:

200 1 (d) 78Ni L1T1
150

100 -
50

10 20 30 40 50 60
E (MeV)

;
)

o

FIG. 3. Same as Fig. 1 but for the IVD with the probing operator
of Egs. (7) and (15).
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strength function S(E) of the ISD in *°Ca, *8Ca, °Ni, and
78Ni (Fig. 1) and in *°Zr, '%Zr, %Sm, and 2%*Pb (Fig. 2),
calculated by using the KDEOvl Skyrme interaction [25]
that is representative of the strength distributions for the
rest of the interactions. Note the strong enhancement in the
ISD strength distributions at low energy in the neutron-rich
nuclei.

In Figs. 3 and 4, we show the HF-based RPA results for
the strength function S(E) of the IVD, obtained by using the
probing operator of Egs. (7) and (15) in *°Ca, “8Ca, °Ni, and
8Ni (Fig. 3) and in *°Zr, 1%Zr, '%*Sm, and 2%Pb (Fig. 4)
calculated by using the KDEOv1 Skyrme interaction [25].
Note the low strength in the region of the IVGDR, which
should vanish for a transition density of the form of dp/dr.
Also note the scale of the strength function compared to the
corresponding strength of the ISD.

InFigs. 5 and 6, we display the HF-based RPA results for the
strength function divided by the energy, S(E)/E, of the ISD,
obtained by using the probing operator of Egs. (6) and (15), in
40Ca, *8Ca, °Ni, and "®Ni (Fig. 5) and in *Zr, '%Zr, '4Sm,
and %8Pb (Fig. 6) calculated by using the KDEOv1 Skyrme
interaction [25]. Note the relatively large contribution to the
moment m_; from the low-energy region, in particular, in the
case of neutron-rich nuclei.
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FIG. 4. Same as Fig. 2, but for the IVD with the probing operator
of Egs. (7) and (15).
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FIG. 5. Self-consistent HF-based RPA results for the distribution
of the strength function divided by the energy, S(E)/E, of the isoscalar
dipole, obtained by using the probing operator of Eqs. (6) and (15) for
the “°Ca, *8Ca, 3°Ni, and "®Ni nuclei, calculated by using the KDEOv1
Skyrme interaction [25]. An excitation energy range of 0—-60 MeV and
a Lorenzian smearing of a 2-MeV width were used in the calculation.

In Table I, we present the values of the centroid energies
m1/mg (in MeV) for the ISGDR, obtained by using the probing
operator of Egs. (6) and (15), and the OIVGDR, obtained by
using the probing operator of Egs. (7) and (15) for a wide range
of nuclei. The KDEOv1l Skyrme interaction [25] was used
in the calculations. The ISGDR and OIVGDR are calculated
over the excitation energy ranges of 1640 and 20-60 MeV,
respectively.

In Table II, we display the HF-based RPA results for the
inverse energy moment, m_; of the ISD strength distribution,
obtained by using the probing operator of Egs. (6) and (15)
and, for the IVD, obtained by using the probing operator of
Egs. (7) and (15) in 208pp, calculated for 18 frequently used
Skyrme-type interactions (see Ref. [16]). Note that the values
of inverse energy moment m_; of the ISD are in the range of
14 000-20 000 fm® MeV~! and the corresponding values for
the IVD are only about 10%—12% of that of the ISGDR.

In Table III, we show the HF-based RPA results for the
m_y of the ISD, obtained by using the probing operator of
Egs. (6) and (15), and the IVD, obtained by using the probing
operator of Egs. (7) and (15) for the same nuclei shown in
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FIG. 6. Same as Fig. 5 but for the *°Zr, '%Zr, '*Sm, and ***Pb
nuclei.

Table I. The KDEOv1 Skyrme interaction [25] was used in the
calculations. Note the significant enhancement in the values
of the inverse energy moment m_; in neutron-rich isotopes,
which is associated with the increase in the ISD and IVD
strengths at low energy.

TABLE I. Values of the centroid energies m/mg (in MeV) for
the ISGDR, obtained by using the probing operator of Egs. (6)
and (15), and the OIVGDR, obtained by using the probing operator
of Egs. (7) and (15), for a wide range of nuclei, calculated by using
the KDEOv1 Skyrme interaction [25]. The ISGDR and OIVGDR are
calculated over the excitation energy ranges of 16—40 and 20-60 MeV,
respectively.

ISGDR OIVGDR
“Ca 279 384
8Ca 29.0 39.6
3Nj 28.5 39.5
8Nj 28.4 385
8Ni 28.2 39.6
N7r 28.0 38.2
%Zr 274 37.5
1047y 26.9 37.5
1008 27.7 385
144Sm 26.3 36.9
208pp 24.5 352
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TABLE II. Valuesof m_; (in fm® MeV~!) for the ISD, obtained
by using Egs. (6) and (15), and for the IVD, obtained by using
Egs. (7) and (15) in 2°®Pb for the following Skyrme interactions:
SGII [24], KDEO [25], KDEOv1 [25], SKM* [26], SK255 [27],
SkI3 [28], SkI4 [28], SKI5 [28], SV-bas [29], SV-min [29],
SV-m56-0 [30], SV-m64-O [30], SLy4 [31], SLy5 [31], SLy6 [31],
SKkMP [32], SKP [33], and SkO’ [34]. The excitation energy range of
0-60 MeV was used.

208pp, LITOm_, LIT1m_,
SGII 17233 1968
KDEO 17752 1858
KDEOv1 17737 1806
SKM* 18758 1999
SK255 18375 1926
SkI3 14312 1771
SkI4 16750 1678
SKI5 18207 1909
SV-bas 17386 1865
SV-min 18525 1868
SV-m56-0 16039 1561
SV-m64-0 16299 1630
SLy4 17501 1920
SLyS 17422 1909
SLy6 17650 1912
SKMP 18409 1996
SkP 19758 2020
SkO’ 19477 1937

By considering, for example, the case of 2°*Pb, we find that
the centroid energies of the ISGDR and the OIVGDR in 2%8Pb
are 24.5 and 35.2 MeV, respectively. The values of the inverse
energy moment are m_; = 177 737 and 1806 fm® MeV~! for
the ISD and the IVD in 2%8Pb, respectively. The value of m_
of the IVD is only about 10% of that of the ISD. The findings
for this nucleus are consistent with the estimate found for the
Schiff moment in Ref. [1]. By using the expressions for the
weak interaction part from the above reference, we find that
the contribution to the Schiff moment considered here is as
large as the result obtained by using the single-particle models
(see, for example, Ref. [35] and references therein).

IV. CONCLUSIONS

We have presented results of our fully self-consistent
HF-RPA calculations by using 18 commonly employed
Skyrme-type interactions [16] for the strength functions and
corresponding inverse energy moments of the ISD and IVD for
various nuclei by using a probing operator, which is the same
as the Schiff operator up to a normalization. We have seen that
the contribution of the IVD to the Schiff strength distribution in
the even-even nucleus is smaller by an order of magnitude than
that of the ISD. We find that, in exotic nuclei with large neutron
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TABLE III. Self-consistent HF-based RPA results for the inverse
energy moment m_; (fm® MeV~") of the ISD, obtained by using the
probing operator of Eqgs. (6) and (15), and of the IVD, obtained by
using the probing operator of Egs. (7) and (15) for a wide range of
nuclei, calculated by using the KDEOv1 Skyrme interaction [25]. The
excitation energy range of 0—-60 MeV was used.

L1TOm_, L1T1m_,
Ca 332 53
8Ca 499 67
3Ni 491 76
8Nj 1326 167
BNi 2030 203
NZr 1708 226
%Zr 3630 465
047y 6069 664
1005 1988 269
144Sm 5853 668
208pp 17737 1806

excess, the ISD and the IVD strength distributions are pushed
to lower energies and, thus, considerably increasing the inverse
energy moment m_; of the strength distribution. In particular,
this means that the ISD contribution to the Schiff moment
in the odd-even nucleus might be enhanced further. We also
find that the contribution of the isovector inverse energy Schiff
distribution in the even-even nucleus is smaller than that of the
isoscalar by an order of magnitude.

The distributions of low-lying dipole strength (both
isoscalar and isovector) presently are the subject of a large
number of experimental studies. Our paper provides a the-
oretical description of these distributions for a wide range
of nuclei. Moreover, the various studies in the past (except
for Ref. [1]) have not addressed the question of the relation
between the low-lying dipole strength and the Schiff moment,
a quantity that is central to atomic studies of time-reversal
violation [1,3,4,13,35]. This relation is emphasized strongly
and is discussed extensively in this paper. Future experiments
that will measure static electric dipole moments by using exotic
atoms with large neutron excess spherical nuclei will need to
use theoretical input to relate the results obtained to the limits
of time-reversal conservation. The results of the present study
will be of help in this respect.
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