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Background: Many different shape degrees of freedom play crucial roles in determining the nuclear ground
state and saddle point properties and the fission path. For the study of nuclear potential energy surfaces, it is
desirable to have microscopic and self-consistent models in which all known important shape degrees of freedom
are included.
Purpose: By breaking both the axial and the spatial reflection symmetries simultaneously, we develop
multidimensionally-constrained relativistic mean field (MDC-RMF) models.
Methods: The nuclear shape is assumed to be invariant under the reversion of x and y axes, i.e., the intrinsic
symmetry group is V4 and all shape degrees of freedom βλμ with even μ, such as β20, β22, β30, β32, β40, . . . ,

are included self-consistently. The single-particle wave functions are expanded in an axially deformed harmonic
oscillator (ADHO) basis. The RMF functional can be one of the following four forms: the meson exchange or
point-coupling nucleon interactions combined with the nonlinear or density-dependent couplings. The pairing
effects are taken into account with the BCS approach.
Results: The one-, two, and three-dimensional potential energy surfaces of 240Pu are illustrated for numerical
checks and for the study of the effect of the triaxiality on the fission barriers. Potential energy curves of even-even
actinide nuclei around the first and second fission barriers are studied systematically. Besides the first ones, the
second fission barriers in these nuclei are also lowered considerably by the triaxial deformation. This lowering
effect is independent of the effective interactions used in the RMF functionals. Further discussions are made about
different predictions on the effect of the triaxiality between the macroscopic-microscopic and MDC-RMF models,
possible discontinuities on PES’s from self-consistent approaches, and the restoration of broken symmetries.
Conclusions: MDC-RMF models give a reasonably good description of fission barriers of even-even actinide
nuclei. It is important to include both the nonaxial and the reflection asymmetric shapes simultaneously for the
study of potential energy surfaces and fission barriers of actinide nuclei and of those in unknown mass regions
such as, e.g., superheavy nuclei.
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I. INTRODUCTION

The occurrence of spontaneous symmetry breaking leads
to nuclear shapes with a variety of symmetries [1,2]. A
lot of nuclear phenomena are connected with the nuclear
deformation, including small and large amplitude collective
motions, e.g., the rotation and the fission [3,4]. The shape of a
nucleus can be described by the parametrization of the nuclear
surface or the nucleon density distribution. The multipole
expansion of the nuclear surface is usually used in mean-field
calculations,

R(θ,ϕ) = R0

⎡
⎣1 + β00 +

∞∑
λ=2

λ∑
μ=−λ

β∗
λμYλμ(θ,ϕ)

⎤
⎦ , (1)

where βλμ’s are deformation parameters.
The majority of observed nuclear shapes is of the spheroidal

form which can be described by the axial-quadrupole de-
formation parameter β20 though in early years the Nilsson
perturbed-spheroid parameter ε2 was usually adopted for
numerical convenience [5]. The nonaxial-quadrupole (triaxial)
deformation β22 (or, equivalently, γ ) manifests itself by the
wobbling motion and chiral doublet bands [6–9], and it may
also play important roles in superheavy nuclei (SHN) [10].

The octupole shapes with λ = 3 are predicted to exist in
nuclei in several mass regions [11]. The low-lying negative
parity bands observed in actinides and some rare-earth nuclei
are related to the reflection asymmetric (RA) shapes [12–17].
In addition, reflection asymmetric shell model calculations
revealed that the observed low-energy 2− bands in N = 150
nuclei [18] are caused by the β32 deformation [19]. Indeed,
strong Y32 correlations were found in some N = 150 isotones
from multidimensionally-constrained covariant density func-
tional theories (MDC-CDFT) [20].

Deformations of higher-order multipole with λ > 3 are
important to different extents. The hexadecapole deformation,
β40 or ε4, has been included in deformed mean-field potentials
since 1960s, see, e.g., Ref. [5]. The important effects of the
higher-order deformation β60 or ε6 on the angular momentum
alignments and dynamic moments of inertia in superheavy
nuclei were also revealed [21,22].

The shape degrees of freedom are important not only for the
ground states or small amplitude collective motions, but also
for large amplitude collective motions such as fission. Since
the discovery of the nuclear fission, the description of the
fission process has been a difficult and challenging task. The
fission dynamics are mostly governed by the barriers which
prohibit the dissolving of the nucleus. In order to study the
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fission problem, one should have very accurate information
about the fission barrier, i.e., the height and width, or, more
precisely, the shape of the fission barrier [23,24]. Particularly,
to explore the island of stability of SHN, it is more and more
desirable to have accurate predictions of fission barriers of
SHN. Up to now, many popular nuclear structure models have
been employed to study nuclear fission barriers, including the
macroscopic-microscopic (MM) models [25–29], the extended
Thomas-Fermi plus Strutinsky integral (ETFSI) method [30],
the Hartree-Fock or Hartree-Fock-Bogoliubov methods with
the Skyrme force [31–38] and the Gogny force [39], and the
CDFTs [31,40–51].

Besides β20 which describes the elongation of a fissile
nucleus and β40 which is relevant to the size of a neck, many
other shape degrees of freedom are also crucial for determining
the shape of fission barriers and the fission path. Let us take
actinides as examples. Due to shell effects, actinide nuclei
are characterized by a two-humped fission barrier [52]. It has
long been known from the MM model calculations that the
inner fission barrier is lowered by the nonaxial-quadrupole
deformation [53–55] and the outer one by the reflection
asymmetric shape [56]. Later, the important roles played
by the nonaxial-quadrupole deformation and the octupole
deformation were confirmed in the nonrelativistic [57] and
relativistic [58] density functional calculations, respectively.
Therefore what is usually done is to consider the triaxial
but reflection symmetric (RS) shapes for the inner barrier
and axially symmetric (AS) but RA shapes for the outer
one [39,59,60] though in several publications, both the
nonaxial and the octupole deformations are included [61].

In recent years, the nuclear CDFT has been very successful
in the description of both ground states and excited states of the
nuclei ranging from light to superheavy regions. The CDFTs
have also been used to study the PES’s and the fission barriers
of heavy and superheavy nuclei [31,40–51]. We have devel-
oped MDC-CDFTs by breaking both the axial and reflection
symmetries simultaneously [46–48]. In these MDC-CDFTs,
all shape degrees of freedom βλμ with even μ, e.g., β20, β22,
β30, β32, β40, . . . , are included self-consistently. The covariant
density functional can be one of the following four forms:
the meson exchange or point-coupling nucleon interactions
combined with the nonlinear or density-dependent couplings.
For the particle-particle channel, either the BCS approach or
the Bogoliubov transformation has been implemented. For
convenience, we name the MDC-CDFT with the BCS ap-
proach for the pairing as the MDC-RMF models and those with
the Bogoliubov transformation as the MDC-RHB models. Due
to the heavy computational burden, MDC-RHB models have
not been used to do multidimensionally-constrained calcula-
tions yet (here “multi” means three or more). The MDC-RMF
models have been used to study the PES’s of actinide nuclei in
the (β20, β22, β30) deformation space and it was found that the
triaxiality also plays an important role upon the second fission
barriers [46]. In this paper, we will present the detailed formu-
las for MDC-RMF models and some results of actinide nuclei.

The paper is organized as follows. The formalism of MDC-
RMF models will be given in Sec. II. In Sec. III we present
the numerical details and results on the PES’s of the actinide
nuclei. A summary is given in Sec. IV.

II. FORMALISM OF MDC-RMF MODELS

In the RMF model, a nucleus is treated as a composite
of nucleons interacting through exchanges of mesons and
photons [42,62–68]. The effects of mesons are described
either by mean fields or by point-like interactions between
the nucleons [69,70]. Meanwhile, the nonlinear coupling
terms [71–73] or the density dependence of the coupling
constants [74,75] are introduced to give correct saturation
properties of nuclear matter. Accordingly, the form of the
covariant density functional can be one of the following four:
the meson exchange or point-coupling nucleon interactions
combined with the nonlinear or density dependent couplings.
Most of the computational efforts are devoted to solving the
Dirac equation and the calculation of various densities; this is
common for all these RMF models. In this section, we mainly
present the formalism of the RMF model with the nonlinear
point-couplings (NL-PC).

The starting point of the RMF model with the NL-PC is the
following Lagrangian:

L = ψ̄(iγμ∂μ − M)ψ − Llin − Lnl − Lder − LCou, (2)

where

Llin = 1

2
αSρ

2
S + 1

2
αV ρ2

V + 1

2
αT S �ρ2

T S + 1

2
αT V �ρ2

T V ,

Lnl = 1

3
βSρ

3
S + 1

4
γSρ

4
S + 1

4
γV

[
ρ2

V

]2
,

Lder = 1

2
δS[∂νρS]2 + 1

2
δV [∂νρV ]2 + 1

2
δT S[∂ν �ρT S]2 (3)

+ 1

2
δT V [∂ν �ρT V ]2,

LCou = 1

4
FμνFμν + e

1 − τ3

2
A0ρV

are the linear coupling, nonlinear coupling, derivative cou-
pling, and the Coulomb part, respectively. M is the nucleon
mass, αS , αV , αT S , αT V , βS , γS , γV , δS , δV , δT S , and δT V

are coupling constants for different channels, and e is the
electric charge. ρS , �ρT S , ρV , and �ρT V are the isoscalar density,
isovector density, time-like components of isoscalar current,
and time-like components of isovector current, respectively.
The densities and currents are defined as

ρS = ψ̄ψ, �ρT S = ψ̄ �τψ,
(4)

ρV = ψ̄γ 0ψ, �ρT V = ψ̄ �τγ 0ψ.

Starting from the Lagrangian, using the Slater determinants
as trial wave functions, and neglecting the Fock term as well as
the contribution to the densities and currents from the Dirac sea
(the no sea approximation), we can derive the RMF equation
with the variational principle,

ĥψk(r) = εkψk(r), (5)

where

ĥ = α · p + β [M + S(r)] + V (r), (6)
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is the single-particle Hamiltonian and

S = αSρS + αT S �ρT S · �τ + βSρ
2
S + γSρ

3
S

+ δS�ρS + δT S��ρT S · �τ , (7)

V = αV ρV + αT V �ρT V · �τ + γV ρ2
V ρV

+ δV �ρV + δT V ��ρT V · �τ , (8)

are the scalar and vector potentials, respectively. In the present
work we suppose that the nuclei in question are invariant
under the time-reversion, which means that all the time-odd or
vector components of the currents and the potentials vanish. In
this case the single-particle Hamiltonian has the time-reversal
symmetry which simplifies the calculation.

It is customary to solve the deformed RMF equations by
expanding the auxiliary single-particle wave functions in a
complete basis, e.g., the harmonic oscillator (HO) basis [76,77]
or the Woods-Saxon (WS) basis [78,79]. By using a basis in
a two-center harmonic oscillator potential, a reflection asym-
metric relativistic mean field (RAS-RMF) approach has been
developed [80] and used to study PES’s of even-even 146–156Sm
in which the important role of the octupole deformation on
shape phase transitions was found [81]. However, in our
MDC-CDFTs, the single-particle wave functions and various
densities are expanded in an axially deformed harmonic
oscillator (ADHO) basis. The ADHO basis consists of the
eigenstates of the Schrödinger equation [76,77,82][

− �
2

2M
∇2 + VB(z,ρ)

]
�α(rσ ) = Eα�α(rσ ), (9)

where r = (z,ρ) with ρ =
√

x2 + y2 and

VB(z,ρ) = 1
2M

(
ω2

ρρ
2 + ω2

zz
2
)

(10)

is the ADHO potential and ωz and ωρ are the oscillator
frequencies along and perpendicular to the symmetry z axis,
respectively. The solution of Eq. (9) reads

�α(rσ ) = Cαφnz
(z)Rml

nρ
(ρ)

1√
2π

eimlϕχsz
(σ ), (11)

where φnz
(z) and Rml

nρ
(ρ) are the harmonic oscillator wave

functions,

φnz
(z) = 1√

bz

1

π1/4
√

2nznz!
Hnz

(
z

bz

)
e
− z2

2bz , (12)

Rml
nρ

(ρ) = 1

bρ

√
2nρ!

(nρ + |ml|)!
(

ρ

bρ

)|ml |
L|ml |

nρ

(
ρ2

b2
ρ

)
e
− ρ2

2b2
ρ .

(13)

χsz
is a two-component spinor and Cα is a complex number

introduced for convenience. Harmonic oscillator lengths bz

and bρ are related to the frequencies by bz = 1/
√

Mωz

and bρ = 1/
√

Mωρ . The corresponding eigenenergy Eα =
ωρ(2nρ + |ml| + 1) + ωz(nz + 1/2) and the major quantum
number Nα = 2nρ + |ml| + nz.

These basis states are also eigenstates of the z component
of the angular momentum ĵz with eigenvalues Kα = ml + ms .

For any state �α(rσ ), the time-reversal state is defined as
�ᾱ(rσ ) = T �α(rσ ), where T = iσyK̂ is the time-reversal
operator and K̂ is the complex conjugation operator. Ap-
parently, we have Kᾱ = −Kα and πᾱ = πα , where πα = ±1
is the parity. The deformation of the basis βbasis is defined
through the relations ωz = ω0 exp(−√

5/4πβbasis) and ωρ =
ω0 exp(

√
5/16πβbasis), where ω0 = (ωzω

2
ρ)1/3 is the frequency

of the corresponding spherical oscillator.
These basis states form a complete set for expanding

any two-component spinors. For a Dirac spinor with four
components,

ψi(rσ ) =
(∑

α f α
i �α(rσ )∑

α gα
i �α(rσ )

)
, (14)

where the sum runs over all the possible combination of
the quantum numbers α = {nz,nρ,ml,ms} and f α

i and gα
i

are the expansion coefficients. In practical calculations the
summations in Eq. (14) have to be truncated. Following
Ref. [83], for the large component of the Dirac wave function,
the states satisfying [nz/Qz + (2nρ + |ml|)/Qρ] � Nf are
included in the expansion where Qz = max(1,bz/b0) and
Qρ = max(1,bρ/b0) are constants related to the oscillator
lengths b0 ≡ 1/

√
Mω0, bz, and bρ . For the expansion of the

small component, the truncation is made up to Ng = Nf + 1
major shells in order to avoid the spurious states [76].

If a nucleus is invariant under the rotation around the
symmetry z axis and the spatial reflection, the angular mo-
mentum projection on the z axis and the parity are conserved
and the RMF equation (5) can be decomposed into blocks
characterized by the quantum numbers Kα and πα . Usually
only half of the space with Kα > 0 is considered due to the
time-reversal symmetry.

Now let us turn to the general case that the axial symmetry
as well as the spatial reflection symmetry are broken. Since
we still expand the spinors in the ADHO basis, components
with different K and π are mixed together; thus, we must
diagonalize a larger single-particle Hamiltonian matrix with
nonzero matrix elements between two basis states with
different K and π . Nevertheless, even in this case, we still have
one symmetry operator that makes the Hamiltonian matrix
block-diagonal. Due to the axial symmetry of the basis, it
is convenient to introduce the simplex operator Ŝ = ie−iπĵz .
Note that for a fermionic system with a half-integer spin, Ŝ is
a Hermitian operator and Ŝ2 = 1. This operator corresponds
to the rotation by π around the z axis, thus leaving the nuclear
mean-field invariant. The eigenvalue of Ŝ, S, is also a good
quantum number for the basis, Ŝ�α = S�α = (−1)Kα−1/2�α ,
which means that the basis �α with Kα = +1/2, −3/2,
+5/2, −7/2, . . . span the subspace with S = 1, while their
time-reversal states span the one with S = −1. Note that
now the blocks with K = +1/2, −3/2, +5/2, −7/2, . . . are
mixed. Remember that for a nucleus with the time-reversal
symmetry, only the basis with S = 1 is used in the expansions;
for such a basis state, we set Cα = 1 [cf. Eq. (11)] when
expanding the large component and Cα = i for the small one.
The basis states with Sα = −1 are obtained by simply applying
T on those with Sα = 1. Furthermore, for systems with the
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time-reversal symmetry, it is only necessary to diagonalize
the matrix with S = 1 and the other half is obtained by a
time-reversal operation on the obtained single-particle wave
functions.

For deformed nuclei with the V4 symmetry, we expand the
potentials V (r), S(r), and the densities in Eq. (4) in terms of
the Fourier series,

f (ρ,ϕ,z) =
∞∑

μ=−∞
fμ(ρ,z)

1√
2π

exp(iμϕ). (15)

Applying the symmetry conditions, it is easy to see that fμ =
f ∗

μ = fμ̄ and fn = 0 for odd n. Thus the expansion (15) can
be simplified as

f (ρ,ϕ,z) = f0(ρ,z)
1√
2π

+
∞∑

n=1

fn(ρ,z)
1√
π

cos(2nϕ),

(16)
where

f0(ρ,z) = 1√
2π

∫ 2π

0
dϕf (ρ,ϕ,z), (17)

fn(ρ,z) = 1√
π

∫ 2π

0
dϕf (ρ,ϕ,z) cos(2nϕ) (18)

are real functions of ρ and z. The details for calculating the
matrix elements of the Dirac Hamiltonian and various densities
and their derivatives are given in the Appendices.

For open shell nuclei the pairing interaction becomes
crucial and must be included. It has been shown that fission
barriers depend very much on the form and strength of
the effective pairing interactions [84]. Several methods have
been developed to treat the pairing effects, e.g., the BCS
approach, the Bogoliubov transformation, and the particle
number conserving method [85–89]; all of them have been
used in the study of PES’s and fission barriers. Since we
use the BCS approach in our MDC-RMF calculations, we
only show the formulas for the BCS approximation. In the
particle-particle channel, the gap equation reads [2]

�k =
∑
k′>0

1

2
V

pp

kk̄k′ k̄′
�k′√

ε̃2
k′ + �2

k′

, (19)

where ε̃k = εk − λ and λ is the Fermi energy. The total pairing
energy is

Epair = 1

4
V0

∫
d3rκ∗(r)κ(r). (20)

In our models, either the δ force or the finite-range separable
force [90] is implemented.

To obtain a PES one can perform a constraint calculation
which is equivalent to adding an external potential during the
iteration [2]. The quadratic constraint method is usually used,

E′ = ERMF +
∑
λμ

1

2
Cλμ(Qλμ − mλμ)2, (21)

where Cλμ is the spring constant and mλμ’s are desired
moments. With this method the calculation always converges

to a deformation point on the PES other than the desired one.
To overcome this shortcoming and to get a PES with equally
distributed points, we use a modified linear constraint method.
The Routhian reads

E′ = ERMF +
∑
λμ

1

2
CλμQλμ, (22)

where the variables Cλμ’s change their values during the
iteration through the following relation:

C
(n+1)
λμ = C

(n)
λμ + kλμ

(
β

(n)
λμ − βλμ

)
, (23)

where βλμ is the desired deformation, kλμ is a constant, and
C

(n)
λμ is the value at the nth step. This constraint method works

well in our multidimensional calculations.
The total energy of the nucleus reads

Etotal =
∫

d3r

{∑
k

v2
kψ

†
k (α · p + βM) ψk

+ 1

2
αSρ

2
S + 1

2
αV ρ2

V + 1

2
αT Sρ

2
T S + 1

2
αT V ρ2

T V

+ 1

3
βSρ

3
S + 1

4
γSρ

4
S + 1

4
γV ρ4

V

+ 1

2
δSρS�ρS + 1

2
δV ρV �ρV

+ 1

2
δT SρT S�ρT S + 1

2
δT V ρT V �ρT V + 1

2
eρCA

}

+ Epair + Ec.m., (24)

where Ec.m. is the center-of-mass correction. Depending on the
effective interactions used in the RMF functional, Ec.m. can be
calculated either in the oscillator approximation,

Ec.m. = − 3
4 × 41A1/3 MeV, (25)

or from the quasiparticle vacuum,

Ec.m. = − 〈P̂ 2〉
2 MA

, (26)

where P̂ is the total linear momentum and A is the nuclear
mass number.

The intrinsic multipole moments are calculated from the
density by

Qλμ =
∫

d3rρV (r)rλYλμ(�), (27)

where Yλμ(�) is the spherical harmonics. The deformation
parameter βλμ is obtained from the corresponding multipole
moment by

βλμ = 4π

3NRλ
Qλμ, (28)

where R = 1.2 × A1/3 fm is the nuclear radius and N is the
number of protons, neutrons, or nucleons.
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III. RESULTS AND DISCUSSIONS

A. Numerical details

In this section we present the numerical details and
some illustrative calculations of MDC-RMF models. The
potentials and densities are calculated in a spatial lattice [cf.
Eqs. (15), (17), and (18) and Appendix B] in which mesh points
in the ρ and z directions are designed in a way that the Gaussian
quadrature can be made and those for the azimuthal angle φ
are equally distributed. Since we keep the mirror reflection
symmetry with respect to the x = 0 or y = 0 planes, only
mesh points with positive x and y are considered. For the
azimuthal angle φ, more than 10 mesh points for light nuclei
and about 20 mesh points for heavy nuclei are used, which
are enough for most of practical applications. In two special
cases the number of mesh points can be further reduced: (1)
for axially symmetric nuclei the azimuthal degree of freedom
vanishes and (2) for reflection symmetric nuclei the mesh
points with z < 0 can be omitted. With these choices the values
of the localized fields and potentials in the full lattice space
can be simply obtained by symmetry transformations such as
rotations or the spatial reflection. The Coulomb field must be
treated carefully due to its long-range nature. In the pairing
channel, we use a density-independent δ force with a smooth
cutoff. The pairing strength parameters are Vn = −349.5 MeV
fm3 and Vp = −330.0 MeV fm3 which are obtained by fitting
the average pairing gaps [91,92].

The calculated physical observables should converge as the
truncation Nf → ∞. In Fig. 1 we show the potential energy
curve of 240Pu calculated with different truncations, Nf = 16,
18, and 20. The effective interaction PC-PK1 [92] is used;
accordingly, Ec.m. is calculated with Eq. (26). As is found
in most of earlier calculations, the results show a typical
two-humped structure. To see more clearly the truncation
errors we have amplified the figure near four important points,
i.e., the ground state, the top of the inner barrier, the isomeric
state, and the top of the outer barrier. In these four subfigures,
the results with Nf = 22 are also shown and we can investigate
in more details the convergence properties of our model. When
Nf increases from 16 to 20, the binding energy changes
differently for different points in the potential energy curve; the
largest changes are near the ground state and about 0.3 MeV.
Around the ground state and the second minimum, 240Pu is
axially deformed; the energy obtained from calculations with
Nf = 20 and 22 are almost the same. This means a good
convergence; in the present work, we use Nf = 20 in axially
symmetric calculations. Around the two fission barriers, the
triaxial deformation is very important. One finds that for the
inner barrier, the results from Nf = 20 and 22 are also almost
identical; for the outer one, the difference between the barrier
heights from calculations with Nf = 20 and 22 is about several
tens keV. It is very time consuming to make calculations with
both axial and reflection symmetries broken. In our systematic
calculations presented in this paper, Nf = 20 is used around
the ground state and the first saddle point, Nf = 16 is used
around the fission isomer and the second saddle point. As a
result, the inner barrier height is described with an accuracy of
∼0.15 MeV and the outer one with an accuracy of ∼0.4 MeV.
If in future calculations, Nf = 20 can also be used around the

FIG. 1. (Color online) The potential energy curve of 240Pu from
MDC-RMF calculations with different truncations of the ADHO ba-
sis. Both triaxial (TA) and reflection asymmetric (RA) deformations
are allowed. The results calculated with Nf = 16, 18, and 20 are
depicted by dashed, dotted, and solid curves, respectively. The four
subfigures show the detailed structure of the potential energy curve
near the ground state (A), the inner barrier (B), the isomeric state
(C), and the outer barrier (D). The results calculated with Nf = 22
(dot-dashed curves) are also included in the subfigures. The width of
each subfigure is 0.1 and the height is 1 MeV.

second barrier, the accuracy for its height should be within
0.2 MeV.

Next we show how the results depend on the deformation
of the ADHO potential which is used to generate the ADHO
basis; for brevity, we will call it the basis deformation and
label it with βbasis. In Fig. 2 we depict the calculated mean
field energy of 240Pu as a function of the basis deformation.
Note that Ec.m. is not included in Fig. 2. In principle, if the
basis space is complete, the results should not change when
the basis deformation changes. Near the ground state, β20 =
0.3, the calculated energies are rather stable against the basis
deformation. Furthermore, the results with Nf = 16, 18, and
20 almost coincide with each other. This conclusion holds
also for the second barrier, β20 = 1.3, except that two points
with small basis deformations and Nf = 16 are very high. For
even larger deformations, β20 = 2.0, the results with Nf = 16
deviate a bit from those with Nf = 18 and 20; the differences
between the results with Nf = 18 and 20 are still very small.
In the present work, the basis deformation is chosen in the
following way: βbasis = β20 for β20 < 0.3 and βbasis = β20/2
for 0.3 < β20 < 2.0.
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FIG. 2. (Color online) Mean field energy (i.e., Ec.m. is not
included) of 240Pu calculated by using basis with different basis
deformation βbasis and different Nf . The results calculated with
Nf = 16, 18, and 20 are denoted by red diamonds, green squares, and
blue dots, respectively. The deformation is constrained to β20 = 0.3,
1.3, and 2.0, respectively.

When the basis is not complete, the calculated single-
particle energies contain the contributions from the other levels
in both the Fermi sea and the Dirac sea. This causes the
“variational collapse” problem [93,94]. As shown in Fig. 3, if
we fix the truncation for the small component Ng and increase

FIG. 3. (Color online) Mean field energy (i.e., Ec.m. is not
included) of 240Pu calculated with different truncations on large
(upper panel) and small component (lower panel). In the calculations
for the upper panel, Ng are fixed to 23, while the calculations for
the lower panel are preformed with Nf = 10. The deformation is
constrained to β20 = 0.3.

FIG. 4. (Color online) The potential energy curve of 240Pu
calculated by using basis with different oscillator frequency �ω0.
The axial symmetry is imposed and Nf = 20 is used. The results
calculated with R ≡ �ω0/(41A−1/3 MeV) = 0.8, 0.9, 1.0, 1.1, and 1.2
are depicted by dotted, dashed, solid, dot-dashed, and dash-dot-dotted
curves, respectively. The four subfigures show the detailed structure
of the potential energy curve near the ground state (A), the inner
barrier (B), the isomeric state (C), and the outer barrier (D). The
width of each subfigure is 0.1 and the height is 2 MeV.

Nf alone, the nucleus becomes more and more bound. Note
that we have to set Nf < Ng to prohibit the occurrence of
the spurious states, as we mentioned earlier. However, if we
fix the truncation for the large component Nf and increase
Ng alone, the nucleus becomes less and less bound. Thus, as
more basis states are included in the expansion, the binding
energy may not change monotonically; this is different from
the nonrelativistic calculations.

In the calculations, the oscillator length or, equivalently,
the frequency of the oscillator potential �ω0 for the ADHO
basis should also be chosen carefully. The dependence of
the binding energy of 240Pu on �ω0 has been investigated in
detail. As shown in Fig. 4, when R ≡ �ω0/(41A−1/3 MeV)
increases from 0.8 to 1.2, the binding energy of 240Pu in
the whole potential energy curve varies by less than 1 MeV
(0.05% of the absolute value). Moreover, when �ω0 is around
41A−1/3 MeV, the binding energy changes very slightly. So,
we set �ω0 = 41A−1/3 MeV in all calculations.

B. Three-dimensional PES of 240Pu

The double-humped fission barriers of actinide nuclei are
usually used as a benchmark for theoretical models, see, e.g.,
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Refs. [35,40,43,44,57,58,95–101]. As a nucleus evolves from
the ground state to the fission configurations, many shape
degrees of freedom play important and different roles in
determining the heights of the inner and outer barriers. It has
long been known that the inner barrier is lowered when the
triaxial deformation is allowed [53–55], while for the outer
barrier, the reflection asymmetric shape is favored [56]. We
have shown that the reflection asymmetric outer barrier may
be further lowered by including the nonaxial shape degrees
of freedom [46]. In this section we show some results of
multidimensional PES’s for actinides. We will first present
detailed results about the three-dimensional PES of 240Pu,
then display systematic results of the actinide nuclei. In these
calculations, the effective interaction PC-PK1 [92] is used.

In Figs. 5 and 6 is shown the calculated three-dimensional
PES of 240Pu. In these calculations, both nonaxial and
reflection asymmetric shapes are allowed and Nf = 16 is
used. In each subfigure we fix the value of β20 and display
the energy as a function of β22 and β30. In other words, we
have made three-dimensional constraints on the corresponding
multipole moments. Note that other shape degrees of freedom
βλμ with even μ, e.g., β32, β40, β42, β44, β50, . . . , are also
included in the calculations self-consistently. The MDC-RMF
equations are solved for each point on the deformation
lattice (β20,β22,β30) in which β20 runs from 0.25 to 1.70

with a step size of 0.05, β22 from 0 to 0.25 with a step
size of 0.01, and β30 from 0 to 0.50 with a step size of
0.05. The points with β22(β30) < 0 are obtained through
the relation E(β20,β22,β30) = E(β20,|β22|,|β30|). That is, for
each subfigure, 26 (for β22) × 11 (for β30) = 286 points
are calculated, and there are totally 286 × 30 (for β20) =
8580 points in Figs. 5 and 6. This deformation lattice
covers the shape space of the most interest for 240Pu,
from the ground state to the isomeric state and fission
configurations.

Now we examine the first three subfigures with β20 = 0.25,
0.30, and 0.35. It is clear that the ground state with β20 ∼ 0.3 is
both axially symmetric and reflection symmetric, though it is a
little soft against the octupole distortion. When the nucleus is
stretched by the quadrupole constraining potential, it becomes
softer against the triaxial as well as the octupole distortions.
From the subfigures with β20 = 0.40–0.65 one finds that
two symmetric minima with nonzero triaxial deformation
β22 appear and the corresponding fission paths are much
more favored than the axially symmetric one, which is
consistent with earlier calculations [45]. Although β30 = 0
for all minima in these subfigures, the softness against the
octupole distortion changes as the nucleus is elongated. The
inner fission barrier locates near the deformation β20 ∼ 0.60.
For the last six subfigures in Fig. 5 with β20 = 0.70–0.95,

FIG. 5. (Color online) Sections of the three-dimensional potential energy surface, E = E(β20,β22,β30), of 240Pu around the ground state,
the inner barrier, and the fission isomer from MDC-RMF calculations. In each subfigure the energy is shown as a function of the deformation
parameters β22 and β30 when β20 is fixed at a certain value. The energies are normalized with respect to the binding energy of the ground state.
The contour interval is 1 MeV.
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FIG. 6. (Color online) Sections of the three-dimensional potential energy surface, E = E(β20,β22,β30), of 240Pu around the fission isomer
and the outer barrier from MDC-RMF calculations. In each sub-figure the energy is shown as a function of the deformation parameters β22

and β30 when β20 is fixed at a certain value. The energies are normalized with respect to the binding energy of the ground state. The contour
interval is 1 MeV.

the situation becomes much simpler, where the nucleus
becomes axially symmetric and reflection symmetric again.
Nevertheless, the trend to become softer against the octupole
distortion can be seen from these subfigures, which indi-
cates that the reflection asymmetric shape becomes more
relevant.

As the deformation β20 becomes larger, the second mini-
mum and the second saddle point of the PES appear. From
the last three subfigures of Fig. 5 and the first three subfigures
of Fig. 6 we see that, the nucleus keeps reflection symmetric
near the fission isomeric state with β20 ∼ 0.95, but it becomes
softer against the β30 distortion. Note that the scales of the β30

axes are different in Figs. 5 and 6. At β20 = 1.15, two minima
corresponding to reflection asymmetric shapes appear. Here
the effect of the nonaxial deformation is not apparent, but
along the β22 direction the PES becomes softer. At β20 = 1.2
the energy of the reflection asymmetric shape is lower by about
1 MeV than that of the reflection symmetric one. Interestingly,
when β20 increases further, around the top of the second barrier,
each reflection asymmetric minimum splits into two minima
with nonzero β22. This is the lowering effects of triaxiality on
the outer barrier found in Ref. [46]. Around the second barrier,
the largest energy gain due to the triaxial distortion is about
1 MeV. The nucleus becomes axially symmetric again when
β20 > 1.6.

From the above discussions, we can draw the following
conclusions for 240Pu: (i) Both the ground state and the
fission isomeric state are axial and reflection symmetric;
(ii) Around the first fission barrier it assumes triaxial and
reflection symmetric shapes; (iii) Around the second fis-
sion barrier both triaxial and octupole deformations are
important.

C. PES’s of even-even actinide nuclei around
two fission barriers

The self-consistent three-dimensionally constrained calcu-
lations are very time-consuming, we have only performed
such calculations for 240Pu. From this benchmark study we
learned many experiences about the important roles played by
various shape degrees of freedom in different regions of the
deformation space, including the conclusions listed in the end
of Sec. III B. These experiences are used in a systematic study
of even-even actinide nuclei.

Since around the inner barrier an actinide nucleus assumes
triaxial but reflection symmetric shapes, we can make a
one-dimensional constraint calculation with the triaxial de-
formation allowed and the reflection symmetry imposed. In
Fig. 7 we present potential energy curves of even-even actinide
nuclei around the ground state and the first fission barrier from
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FIG. 7. (Color online) Potential energy curves of even-even actinide nuclei around the ground states and the first fission barriers from
MDC-RMF calculations. The axially symmetric results are displayed by dotted curves, while those from the triaxial calculations are shown by
solid curves. The binding energy is normalized with respect to that of the ground state of each nucleus. The empirical values of fission barriers
are taken from Ref. [102] and shown by red dots.

MDC-RMF calculations. The axially symmetric results are
displayed by dotted curves and those from triaxial calculations
are shown by solid curves. The empirical values of fission
barrier heights are taken from Ref. [102] and shown with
red dots. We also list in Table I the heights of the first and
second fission barriers of actinide nuclei from MDC-RMF
calculations compared with the empirical values. It is clearly
seen that the triaxial deformation lowers the inner barrier of
these actinide nuclei by about 1−4 MeV and this is consistent
with Ref. [45]. The agreement of our calculation results with
the empirical ones is good for most of the nuclei studied
here with exceptions in the two thorium isotopes and 238,240U.
We have discussed possible reasons for these discrepancies in
Ref. [46].

It is more complicated to determine the second fission
barrier height because more shape degrees of freedom become
important and there are often two or more fission paths. What
we have done is the following [46]: (i) The axial symmetry is
assumed and a two-dimensional constraint calculation in the
(β20,β30) plane is made; (ii) From the two-dimensional calcu-
lation, the lowest fission path β lowest

30 (β20) is approximately
identified; (iii) Along this fission path, a one-dimensional
β20-constrained calculation is performed with the triaxial
and octupole deformations allowed and at each point with
β20 fixed, the initial deformations are taken as β ini.

22 = 0
and β ini.

30 = β lowest
30 (β20); (iv) In this one-dimensional potential

energy curve, the second saddle point is located and the second
barrier height is extracted.

Potential energy curves of even-even actinide nuclei around
the fission isomer and the second fission barrier from MDC-
RMF calculations are shown in Fig. 8. In addition, the
experimental values of the energies for fission isomers [103]
are also shown by short horizontal lines. For 244Pu, a suggested
isomeric energy range (1.6 MeV to 2.6 MeV) from systematics
was shown. From Fig. 8 and Table I one finds that for
most of the nuclei investigated here, the triaxiality lowers
the second barrier by about 0.5–1 MeV (about 10–20 %
of the barrier height) [46]. The calculation results with the
triaxiality included agrees well with the empirical values for
all actinide nuclei shown in Fig. 8. In Ref. [46], we have
found that for 248Cm, the height of the second barrier without
the triaxial deformation included is already smaller than the
empirical value. From Table I it is seen that this is also
the case for 250Cm and 250,252Cf. For these four nuclei, it
is difficult to find the second saddle point when the triaxial
deformation is included. Therefore the heights of the second
barriers with the triaxial deformation included are not listed
for them. The reason for these discrepancies may be related to
a strong competition between the two or among more fission
paths and the assumption on the barrier width made when the
empirical value of the barrier height is evaluated, as discussed
in Ref. [46].
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FIG. 8. (Color online) Potential energy curves of even-even actinide nuclei around the fission isomers and the second fission barriers from
MDC-RMF calculations. The reflection asymmetric shapes are allowed in the calculations. The axially symmetric results are displayed by
dotted curves, while those from the triaxial calculations are shown by solid curves. The binding energy is normalized with respect to that of the
ground state of each nucleus. The empirical values of fission barriers are taken from Ref. [102] and shown by red dots. Experimental values of
energies of fission isomers are taken from Ref. [103] and shown by green horizontal lines. For 244Pu, only an energy range was given for the
isomer.

D. Parameter dependence of the effect of triaxiality
around the second barrier

From the above detailed studies of PES’s of actinide nuclei
in the (β20, β22, β30) space, it is clear that the triaxiality plays
an important role upon the second fission barriers of actinide
nuclei. We have studied the parameter dependence of the effect
of triaxiality on the second barrier height and some results can
be found in Refs. [46–48]. In Table II are listed the second
barrier heights of 234U calculated with different parameter sets,
including meson-exchange ones NL3* [104], NL-Z2 [105],
DD-ME2 [106], and point-coupling ones PC-PK1 [92] and
DD-PC1 [107]. One finds that the second barrier height may
differ by a few MeV with different effective interactions,
but in all cases the barriers are lowered considerably by the
nonaxial deformations. For this specific nucleus, the lowering
effect with different effective interactions is about 0.5 MeV to
0.9 MeV which are clearly larger than the possible errors from
the basis truncations discussed in Sec. III A.

E. Further discussions

A systematic study of fission barriers has been performed
for even-even superheavy nuclei with Z = 112–120 by using

CDFTs and the outer fission barriers are found to be consider-
ably affected by the triaxiality [49]. However, in a recent work
within the MM model, it was found that the influence of the
triaxiality on the second fission barriers is negligible [108].
This raises an open problem: What are the main reasons for
the different effects of the triaxiality on the second fission
barriers predicted by the MM model and CDFTs? It would be
interesting to make more investigations with different models,
especially, with the nonrelativistic DFTs.

One of the problems concerning the PES calculated
from self-consistent approaches is that there may exist
unexpected discontinuities on PES’s [60]. This is mainly
due to the complexity of multidimensional PES’s. When a
high-dimensional PES is projected onto a low-dimensional
one, the minimizing procedure incorporated implicitly in
the self-consistent approaches may cause a sudden change
in the total energy at some points in the low-dimensional
deformation space. This may result in spurious saddle points.
In our MDC-RMF calculations, we have tried some ways to
avoid discontinuities on the PES’s and to exclude spurious
saddle points [46]. To be completely free of discontinuities
or spurious saddle points, one certainly should carry out
multidimensionally constraint calculations with higher-order
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TABLE I. Heights of the first and second fission barriers of some
even-even actinide nuclei from MDC-RMF calculations compared
with the empirical values (“Emp”) which are taken from Ref. [102].
The calculation results with and without the axial symmetry imposed
are denoted by “AS” (axially symmetric) and “TA” (triaxial),
respectively. Note that around the first barrier, the reflection symmetry
is assumed and for the second barrier, the octupole deformation is
included. The height is in MeV.

Nucleus Z N A First barrier Second barrier

AS TA Emp AS TA Emp

230Th 90 140 230 5.03 3.96 6.10 6.80 6.37 6.50
232Th 90 142 232 4.94 4.12 5.80 6.70 6.18 6.70
232U 92 140 232 5.71 4.81 4.90 6.20 5.64 5.40
234U 92 142 234 6.15 5.09 4.80 6.20 5.55 5.50
236U 92 144 236 6.40 5.11 5.00 6.15 5.31 5.70
238U 92 146 238 6.54 5.03 6.30 6.20 5.42 5.50
240U 92 148 240 6.58 4.96 6.10 6.38 5.43 5.80
238Pu 94 144 238 7.72 5.96 5.60 6.05 5.56 5.10
240Pu 94 146 240 7.98 5.92 6.05 6.24 5.60 5.20
242Pu 94 148 242 8.05 5.77 5.85 6.43 5.74 5.10
244Pu 94 150 244 7.85 5.40 5.70 6.26 5.49 4.90
246Pu 94 152 246 7.37 4.76 5.40 5.84 4.96 5.30
242Cm 96 146 242 8.80 6.49 6.65 5.72 4.85 5.00
244Cm 96 148 244 9.04 6.34 6.18 5.90 4.88 5.10
246Cm 96 150 246 8.89 5.84 6.00 5.40 4.62 4.80
248Cm 96 152 248 8.43 5.35 5.80 4.10 — 4.80
250Cm 96 154 250 7.77 4.79 5.40 2.60 — 4.40
250Cf 98 152 250 8.87 5.70 5.60 2.40 — 3.80
252Cf 98 154 252 8.41 5.26 5.30 1.20 — 3.50

multipole deformations included. In Ref. [109] the authors
analyzed the origin of the discontinuities and proposed a
numerical method to identify them. It will be useful to
implement this method in the present MDC-RMF calculations;
this will be one of our topics in the future.

Since many symmetries are broken in mean field calcu-
lations, quantum numbers related to these symmetries are
no longer conserved [2]. For example, the total angular
momentum or nuclear spin J is not a good quantum number
when β20 is not zero; similarly, the projection of the total
angular momentum on the symmetry axis K is also not
conserved if a nucleus is triaxially deformed [110]. When the

TABLE II. Height of the second barrier of 234U calculated from
MDC-RMF models with different parameter sets. The results with
and without nonaxial deformations included and their difference are
denoted by BAS, BTA, and �B, respectively.

Parameter set BAS (MeV) BTA (MeV) �B (MeV)

NL3* 7.54 6.85 0.69
NL-Z2 4.83 3.91 0.92
PC-PK1 6.20 5.55 0.65
DD-ME2 8.19 7.51 0.68
DD-PC1 6.13 5.64 0.49

reflection symmetry is broken, the parity is not a good quantum
number. In our three-dimensionally constraint calculations,
all these quantum numbers are not good ones. One may
introduce techniques of projection to restore the broken
symmetries [2]. In recent years, the importance of various
projections on the PES’s and fission barriers have been
investigated [39,88,111,112].

IV. SUMMARY

We developed multidimensionally-constrained relativistic
mean-field (MDC-RMF) models. In these models, the nuclear
shape is assumed to be invariant under the reversion of x and
y axes, i.e., the intrinsic symmetry group is V4 and all shape
degrees of freedom βλμ with even μ (β20, β22, β30, β32, β40, . . .)
are included self-consistently. The RMF functional can be one
of the following four forms: the meson exchange or point-
coupling nucleon interactions combined with the nonlinear
or density-dependent couplings. We solve the Dirac equation
in an axially deformed harmonic oscillator (ADHO) basis.
The convergence of the calculated results against the basis
truncation, the oscillator length, and the basis deformation is
studied and it is shown that reasonably large ADHO basis is
able to provide a desired accuracy.

Three-dimensional potential energy surface in the (β20,
β22, β30) plane is obtained for 240Pu and potential energy
curves of even-even actinide nuclei around the first and second
fission barriers are studied systematically. It is found that the
triaxiality is crucial in determining the height of both the first
and the second fission barriers. Taking 234U as an example,
we have studied the parameter dependence of the effects of
triaxiality on the second barrier height and found that the
height of the second barrier may differ by a few MeV with
different effective interactions, but in all cases the barriers are
lowered considerably by the nonaxial deformations.

We conclude that it is important to include both the nonaxial
and the spatial reflection asymmetric shapes simultaneously
for the study of potential energy surfaces and fission barriers
of actinide nuclei and of those in unknown mass regions such
as, e.g., superheavy nuclei.
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APPENDIX A: MATRIX ELEMENTS
OF THE DIRAC HAMILTONIAN

In the ADHO basis, the Dirac equation (5) is transformed
into a matrix eigenvalue problem,∑

α′
〈α|M+(r)|α′〉f α′

i +
∑
α′

〈α|σ · p|α′〉gα′
i = εif

α
i ,

∑
α′

〈α|σ · p|α′〉f α′
i +

∑
α′

〈α|M−(r)|α′〉gα′
i = εig

α
i

with M± = ±M + V ± S.
In the cylindrical coordinate system the kinetic energy

operator σ · p reads

σ · p = −i

(
∂z e−iϕ(∂ρ − iρ−1∂ϕ)

eiϕ(∂ρ + iρ−1∂ϕ) −∂z

)
.

The matrix elements of the kinetic energy operator σ · p can
be calculated as

〈α|σ · p|α′〉 = 〈nz,nρ,ml,ms |σ · p|n′
z,n

′
ρ,m

′
l ,m

′
s〉

= −iC∗
αCα′δK,K ′

[
δml,m

′
l
δnρ,n′

ρ
δms,m′

s
Aαα′

+ δms,− 1
2
δm′

s ,
1
2
δnz,n′

z
(Bαα′ − m′

lCαα′ )

+ δms,
1
2
δm′

s ,− 1
2
δnz,n′

z
(Bαα′ + m′

lCαα′ )
]
, (A1)

where the integrals read

Aαα′ =
∫

dzφnz
∂zφn′

z
, (A2)

Bαα′ =
∫

dρRml
nρ

ρ∂ρR
m′

l

n′
ρ
, (A3)

Cαα′ =
∫

dρRml
nρ

R
m′

l

n′
ρ
. (A4)

The matrix elements of the potentials U (r) ≡ M±(r) are
calculated by expanding U (r) into a Fourier series,

U (r) = U (z,ρ,ϕ) = 1

2π

∞∑
μ=−∞

U (μ)(z,ρ)eiμϕ, (A5)

where the components U (μ)(z,ρ) are calculated by the inverse
Fourier transformation,

U (μ)(z,ρ) =
∫ 2π

0
dϕU (z,ρ,ϕ)e−iμϕ, (A6)

where the integral over ϕ is performed on uniformly distributed
mesh points. From the symmetry conditions one finds

U (μ) = U (−μ) = (−1)μU (−μ). (A7)

Thus the Fourier series is abbreviated as

U (r) = 1

2π

(
U (0)(z,ρ) + 2

∞∑
n=1

U (2n)(z,ρ) cos(2nϕ)

)
.

(A8)

Finally the matrix element of U (r) reads

〈α|U |α′〉 = 〈nz,nr ,ml,ms |U |n′
z,n

′
r ,m

′
l ,m

′
s〉

= δms,m′
s
C∗

αCα′
1

2π

[
δK,K ′D

(0)
αα′

+
∞∑

n=1

(δK ′−K,2n + δK−K ′,2n)D(2n)
αα′

]
, (A9)

where we have performed the integrals over ϕ and

D
(μ)
αα′ =

∫ ∞

−∞
dz

∫ ∞

0
ρdρU (μ)(z,ρ)φnz

φn′
z
Rml

nρ
R

m′
l

n′
ρ
, (A10)

are performed numerically by using the Gaussian quadrature.
For axially symmetric potentials only the first term survives,
while for triaxially deformed nucleus we must calculate
additional terms with n �= 0.

APPENDIX B: DENSITIES AND THEIR DERIVATIVES

After solving the Dirac equation, we can calculate the
densities from the wave functions. All the densities are linear
combinations of the quantities ρf (r,τ ) and ρg(r,τ ) which are
the contributions to the vector density from the large and small
components, respectively. τ represents the isospin. For vector
potential we have

ρV (r) =
N∑

i=1

v2
i

∑
p=f,g

ψ
p†
i ψ

p
i

=
∑

p=f,g

∑
αα′

(
N∑

i=1

v2
i p

α
i pα′

i

)
�†

α�α′ . (B1)

Note that the factors with ϕ in �α and �α′ are in an exponential
form, rearranging the terms, ρV (r) can be written as

ρV (r) = 1

2π

(
ρ

(0)
V (z,ρ) + 2

∞∑
n=1

ρ
(2n)
V (z,ρ) cos(2nϕ)

)
,

(B2)
where the components

ρ
(μ)
V =

∑
p=f,g

∑
αα′

[(
N∑

i=1

v2
i p

α
i pα′

i

)
δK ′−K,μδms,m′

s

×C∗
αCα′φnz

φn′
z
Rml

nρ
R

m′
l

n′
ρ

]
(B3)

are calculated with the wave functions f α
i and gα

i .
The scalar density ρS(r) can be calculated similarly. The

isovector densities are just the linear combinations of the
corresponding densities of protons and neutrons.

The derivatives of the vector density reads

∇2ρV (r) =
∑

p=f,g

∑
αα′

(
N∑

i=1

v2
i p

α
i pα′

i

)
∇2(�†

α�α′), (B4)

where the derivatives of the basis can be calculated as

∇2(�†
α�α′ ) = Iαα′ + 2Jαα′ + I ∗

α′α, (B5)

014323-12



MULTIDIMENSIONALLY-CONSTRAINED RELATIVISTIC . . . PHYSICAL REVIEW C 89, 014323 (2014)

with Iαα′ and Jαα′ defined later. First, from Eq. (9) we get

∇2�α = −2M [Eα − VB(z,ρ)] �α, (B6)

thus

Iαα′ ≡ �†
α∇2�α′ = −2M [Eα − VB(z,ρ)] δms,m′

s
C∗

αCα′

×φnz
φn′

z
Rml

nρ
R

m′
l

n′
ρ

× 1

2π
ei(m′

l−ml )ϕ. (B7)

Second,

Jαα′ ≡ ∇�†
α · ∇�α′ = δms,m′

s
C∗

αCα′

×
[
φnz

φn′
z

(
∂ρR

ml
nρ

∂ρR
m′

l

n′
ρ

+ mlm
′
l

1

ρ2
Rml

nρ
R

m′
l

n′
ρ

)

+Rml
nρ

R
m′

l

n′
ρ
∂zφnz

∂zφn′
z

]
× 1

2π
ei(m′

l−ml )ϕ. (B8)

Substituting them into Eq. (B5) and combining the same
exponentials of ϕ, we get

∇2ρV (r) = 1

2π

(
ρ̃

(0)
V (z,ρ) + 2

∞∑
n=1

ρ̃
(2n)
V (z,ρ) cos (2nϕ)

)
,

(B9)

in which

ρ̃
(μ)
V =

∑
p=f,g

∑
αα′

(
N∑

i=1

v2
i p

α
i pα′

i

)
δK ′−K,μδms,m′

s

×C∗
αCα′

{
Dαα′(z,ρ)φnz

φn′
z
Rml

nρ
R

m′
l

n′
ρ

+ 2φnz
φn′

z
∂ρR

ml
nρ

∂ρR
m′

l

n′
ρ

+ 2Rml
nρ

R
m′

l

n′
ρ
∂zφnz

∂zφn′
z

}
,

(B10)

are the Fourier components and

Dαα′(z,ρ) = 2mlm
′
l

ρ2
− 2M[Eα′ + Eα − 2VB(z,ρ)]. (B11)
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