
PHYSICAL REVIEW C 89, 014322 (2014)

Transverse wobbling: A collective mode in odd-A triaxial nuclei
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The wobbling motion of a triaxial rotor coupled to a high-j quasiparticle is treated semiclassically. Longitudinal
and transverse coupling regimes can be distinguished depending on, respectively, whether the quasiparticle
angular momentum is oriented parallel or perpendicular to the rotor axis with the largest moment of inertia.
Simple analytical expressions for the wobbling frequency and the electromagnetic E2 and M1 transition
probabilities are derived assuming rigid alignment of the quasiparticle with one of the rotor axes and harmonic
oscillations (HFA). Transverse wobbling is characterized by a decrease of the wobbling frequency with increasing
angular momentum. Two examples for transverse wobbling, 163Lu and 135Pr, are studied in the framework of
the full triaxial particle-rotor model and the HFA. The signature of transverse wobbling, decreasing wobbling
frequency, and enhanced E2 interband transitions, is found in agreement with experiment.
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I. INTRODUCTION

Textbooks on classical mechanics (see, e.g., [1]) discuss
the motion of a rigid rotor with three different moments
of inertia (MoI). Uniform rotation about the axis with the
largest MoI corresponds to the lowest energy for given
angular momentum (a.m.). For slightly larger energy, this
axis executes harmonic oscillations about the space-fixed a.m.
vector. The frequency of these oscillations is proportional
to the rotational frequency of the rotor. For quantal systems
these oscillations appear as equidistant excitations. They were
first observed in molecular spectra, and theoretically analyzed
in Ref. [2]. Bohr and Mottelson applied the concept to triaxial
nuclei and introduced the name “wobbling” for the excitations.
Figure 1 shows a triaxial rotor spectrum. With increasing spin
I , the lowest excitations above the yrast states become more
and more equidistant. This is the classical wobbling regime,
which is characterized by an increasing wobbling frequency
with I . Such wobbling spectra have rarely been observed in
nuclei. The reason is that stable triaxial ground states are very
uncommon. Figure 2 shows the best example identified so far.

The wobbling mode has been extensively studied for nuclei
in the triaxial strongly deformed (TSD) region around N = 94,
where a significant gap opens in the neutron levels at high spins
for TSD shapes with ε ≈ 0.4 and γ ≈ 20◦ [5,6]. Wobbling
bands have been identified in 161,163,165,167Lu [3–8] and 167Ta
[9], which are built on configurations that contain an odd i13/2

proton. As discussed in Ref. [10], the highly aligned odd proton
plays a pivotal role in generating the wobbling excitations. The
presence of an odd i13/2 proton drives the nuclear shape toward
large deformation thereby stabilizing a TSD shape. In addition
it causes a general lowering of the wobbling frequency. This
decrease made it possible to observe the one- and two-phonon
wobbling excitations as individual bands, because it prevented
them from being immersed among the numerous particle-hole
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excitations. A typical band spectrum of the odd-A wobblers is
shown in Fig. 3. The wobbling frequency decreases with the
spin I , in contrast to the simple wobblers shown in Figs. 1
and 2.

Following the discovery of the first wobbling structure
in 163Lu [3], the quasiparticle triaxial rotor (QTR) model
was used to describe the wobbling mode, see Refs. [11–14].
Subsequent microscopic RPA calculations were able to repro-
duce experimental results, see Refs. [16–20]. In particular, the
large ratios B(E2)con/B(E2)in of interband to intraband E2
transitions could be described in both approaches. However,
the calculated wobbling frequencies of the QTR model with
the assumptions of Refs. [11,12] about the three MoI distinctly
disagreed with experiment. Instead of the experimentally
observed decrease, the wobbling frequency increased with the
spin I (c.f. Fig. 3). The same was found for all the other cases
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FIG. 1. (Color online) Rotational band structures calculated for
the triaxial rotor Hamiltonian, Eq. (1). The inset shows a blow up of
the energies of the lowest excited bands (n = 1–4 ) relative to the yrast
line (n = 0). Full black dots belong to the states of signature α = 0
and empty blue dots to signature α = 1. The red dashed line displays
the separatrix. The ratios of the rotational parameters are A1 = 6A3

and A2 = 3A3. The energies are scaled such that E(2+
1 ) = 0.1 MeV.

0556-2813/2014/89(1)/014322(12) 014322-1 ©2014 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.89.014322
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FIG. 2. (Color online) Experimental energies of the two lowest
wobbling bands n = 1, 2 relative to the n = 0 yrast sequence
(interpolated by a cubic spline) in 112Ru. Data from [15].

from the TSD region (c.f. Ref. [10]). The RPA calculations,
on the other hand, were able to reproduce the decrease of the
wobbling frequency with I [16–20].

In this paper we readdress the wobbling mode in the frame-
work of the QTR model. In Sec. II we carry out a semiclassical
analysis of the QTR model assuming that the a.m. of the odd
particle is rigidly aligned with one of the principal axes. This
leads to the concept of a “transverse wobbler” and explains
why its wobbling frequency decreases with I , in contrast to
the “simple wobbler” usually considered. Staying within the
frozen alignment approximation, simple analytical expressions
for the energies and transition matrix elements are derived in
Sec. III, which generalize the well known expressions for
the simple wobbler. In Sec. IV we present detailed QTR
calculations for 163Lu and 135Pr. We assume an arrangement
of the MoI with respect to the principal axes that differs
from the one in the previous QTR calculations [11–14]. We
shall demonstrate that this “transverse” arrangement, which
is consistent with microscopic calculations, results in both
large inter-band to in-band B(E2) ratios and a decrease of the
wobbling frequency with spin. The results account well for the
experimental findings.
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FIG. 3. (Color online) Experimental energies of the two lowest
wobbling bands n = 1, 2 relative to the πi13/2 n = 0 sequence
(interpolated by a cubic spline) in 163Lu. Data from [3].

II. SIMPLE, TRANSVERSE, AND LONGITUDINAL
WOBBLERS

First, we review the semiclassical analysis of the familiar
triaxial rotor, which we denote “simple rotor”, to distinguish it
from the cases to be discussed below. Bohr and Mottelson [21]
discussed the rotational motion and pointed out the possible
existence of wobbling excitations at high spin. They started
from the Hamiltonian of a rigid triaxial rotor, which in the
body fixed frame is given by

H = A3Ĵ
2
3 + A1Ĵ

2
1 + A2Ĵ

2
2 , (1)

where Jk are the a.m. components and Ak the rotational
parameters with respect to the principal axes k = 1,2,3.
Correspondingly, the moments of inertia Jk are given by the
relation

Jk = �
2

2Ak

. (2)

The motion of the a.m. vector �J = (J1,J2,J3) can be con-
veniently visualized by considering the classical orbits of �J .
These orbits are determined by the conservation of a.m.

J 2 = J 2
1 + J 2

2 + J 2
3 = I (I + 1) (3)

and energy

E = A3J
2
3 + A1J

2
1 + A2J

2
2 . (4)

The classical orbit of �J is the intersection of the a.m.
sphere (3) with the energy ellipsoid (4). Let us assume that
the axes are chosen such that A1 > A2 > A3 or accordingly
J1 < J2 < J3.

Figure 4 illustrates three types of orbits for a given a.m.
value J , which is the radius of the a.m. sphere (3). We assume
for the rotational parameters A1 = 6A3 and A2 = 3A3 and use
the value A3 as energy scale. The size of the energy ellipsoid
increases with the energy E. The yrast line corresponds to
touching between the surfaces (3) and (4) at the point J3 = J .
The nucleus rotates uniformly about the three-axis with the
maximal MoI at the energy E(J ) = A3J

2. The upper panel
shows an orbit just above the yrast line, which represents
the harmonic wobbling motion as discussed by Bohr and
Mottelson. The middle panel shows the orbit called separatrix.
It has the energy of the unstable uniform rotation about the
two-axis with the intermediate MoI. The frequency of this
orbit is zero, because it takes infinitely long time to get to
or to depart from the point of the labile equilibrium (uniform
rotation about the two-axis). The orbits with larger energy than
the one of the separatrix revolve the one-axis. The lower panel
shows one example.

The wobbling excitations are small amplitude oscillations
of the a.m. vector (J1,J2,J3) about the three-axis of the
largest MoI. Their energy is given by a harmonic spectrum
of wobbling quanta [21]

H = A3I (I + 1) + (
n + 1

2

)
�ωw, (5)

where n is the number of wobbling quanta and the wobbling
frequency �ωw is equal to

�ωw = 2I [(A1 − A3)(A2 − A3)]1/2. (6)

014322-2



TRANSVERSE WOBBLING: A COLLECTIVE MODE IN . . . PHYSICAL REVIEW C 89, 014322 (2014)

(a)

(b)

(c)

FIG. 4. (Color online) Classical a.m. sphere and energy ellipsoid
for a simple triaxial rotor with the rotational parameters A1 = 6A3

and A2 = 3A3. The intersection line is the classical orbit of the a.m.
vector relative to the body fixed frame. The three panels (a), (b), and
(c) correspond to the orbits 1, 4, and 6 in Fig. 3.

Quantum mechanically one has to take into account the
invariance of the rotor with respect to rotations by π/2 about
its principal axes. It has the consequence that the states have
a signature quantum number α = mod(I ,2) = I + even,
which is fixed by the quantum number I of the a.m. In
even-even nuclei the signature alternates between 0 and 1,
starting with 0 for the yrast line. The first wobbling band
(n = 1) has α = 1. Above the separatrix, there are two classical
orbits with the same energy, which revolve the positive and
negative one-half axes. The corresponding quantal states are
symmetric and antisymmetric combinations with signature 0
and 1, respectively. Figure 1 illustrates how the separatrix
divides the quantal spectrum into the two types of states
that correspond to classical orbits revolving the three- and
one-axes. The inset shows how the harmonic wobbling mode
emerges with increasing a.m. I .

In order to describe quantitatively the motion of �J we
introduce the canonical variables J3 and φ,

J1 = J⊥cosφ, J2 = J⊥sinφ, J⊥ =
√

J 2 − J 2
3 , (7)

where φ is the angle of the 1-axis with the projection of �J onto
the 1-2 plane. Inserting the definitions (7) into Eqs. (3),(4)
gives the following equation for the orbits:

φ(J3) = arcsin

√
E − A1

(
J 2 − J 2

3

) − A3J
2
3

(A2 − A1)
(
J 2 − J 2

3

) . (8)

The phase space for the one-dimensional motion on the a.m.
sphere is −π � φ � π and −J � J3 � J . Figure 5 shows a
series of orbits in the phase space. The stable minimum lies at
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FIG. 5. (Color online) Classical orbits (blue lines) of the a.m.
vector for a simple triaxial rotor with the rotational parameters A1 =
6A3 and A2 = 3A3. The a.m. is J = 2. The series of the orbits 1–9
corresponds to the energies E = 6,8, . . . ,22 in terms of the energy
unit A3.

the point where J3 = J (here equal 2 � ). Below, for a better
comparison with the cases when a particle is present, we use the
particle a.m. j as the unit for the total a.m. Orbit 1 corresponds
to wobbling about the three-axis. Orbit 4 is the separatrix. Orbit
7 corresponds to wobbling about the one-axis. According to
classical mechanics, the period of the orbit is T = 2πdS/dE,
where S is the phase space area enclosed by the orbit. The orbits
in Fig. 5 are calculated for an equidistant set of energies. As
seen, the difference �S is maximal near the separatrix, which
means there the period T has a maximum and the frequency
ω = 2π/T has a minimum. In classical mechanics the energy
increases continuously, and the frequency of the separatrix
goes to zero, as mentioned above. In quantum mechanics the
increase of the energy is discrete, such that �S = 2π�, i.e., the
energy distance between adjacent levels has a minimum at the
separatrix. For comparison we present in Fig. 1 the complete
series of quantal band structures as calculated for the triaxial
rotor with the same rotational parameters as in Fig. 5.

Now we discuss the wobbling excitations in odd-A triaxial
nuclei. In order to account for the presence of a high-j odd
quasiparticle, the triaxial rotor Hamiltonian must be replaced
by the quasiparticle triaxial rotor (QTR) Hamiltonian

H = hdqp + A3(Ĵ3 − ĵ3)2 + A1(Ĵ1 − ĵ1)2 + A2(Ĵ2 − ĵ2)2,

(9)

where ĵk is the a.m. of the odd quasiparticle and Ĵk the
total a.m. The term hdqp describes the coupling of the odd
quasiparticle to the triaxial core. Qualitatively, the coupling
aligns the �j of a high-j particle with the short (s) axis, because
this orientation corresponds to maximal overlap between the
density distribution of the particle and the triaxial core, which
minimizes the attractive short range core-particle interaction.
Likewise, the coupling aligns the �j of a high-j hole with
the long (l) axis, because this orientation corresponds to
minimal overlap between the density distribution of the hole
and the triaxial core, which minimizes the repulsive short
range core-hole interaction. The coupling aligns the �j of
a quasiparticle from a half-filled high-j orbital with the
medium (m) axis. These coupling schemes can be verified
by microscopic calculation within the frame of the cranking
model.
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The coupling of the high-j quasiparticle to the triaxial rotor
considerably modifies the motion of the a.m. vector �J with
respect to the body fixed frame. To carry out the semiclassical
analysis we assume that the a.m. of the odd quasiparticle is
rigidly aligned with one of the principal axes of the triaxial
rotor. This “Frozen Alignment” (FA) approximation idealizes
the above discussed tendency of the quasiparticle to align its
a.m. with one of the principal axes according to its particle-hole
character. In the following we assume that the alignment is
along the three-axis. Again, the motion of the a.m. vector is
visualized by the classical orbits of �J , which are determined
by the conservation of a.m. and the energy. The classical orbits
of �J are the intersection of the a.m. sphere (3) with the shifted
energy ellipsoid

E = A3(J3 − j )2 + A1J
2
1 + A2J

2
2 . (10)

Accordingly, in Eq. (8) for the orbit φ(J3) the term A3J
2
3 has

to be replaced by the shifted term A3(J3 − j )2.
As discussed above, the triaxial shape of the rotor de-

termines the orientation of quasiparticle with respect to its
principal axes. However, it also determines the ratios between
the three MoI, which are of the hydrodynamic type: The
MoI of the medium (m) axis is always the largest. This
can be inferred from a simple argument that holds for both
the hydrodynamic and quantal systems. The MoI is zero for
rotation about a symmetry axis and increases with the deviation
from axial symmetry of the axis. The triaxial shape deviates
most strongly from axial symmetry with respect to the m-axis,
which results in the largest MoI. Microscopic calculation based
on the cranking model typically give the order Jl < Js < Jm

using again the notation l,s and m for the long, short, and
medium axes, respectively. The microscopic ratios deviate
from the hydrodynamic ones. In particular, for γ = 30◦ one
still has Jl < Js < Jm in contrast to the hydrodynamic ratios
Jl = Js < Jm (see Table I below).

One must distinguish between the quasiparticle a.m. vector
�j being aligned with the m-axis with the largest MoI, which
we refer to as the longitudinal case, and the vector �j being
perpendicular to the m-axis, which we refer to as the transverse
case. A quasiparticle with predominantly particle character,
which emerges from the bottom of a deformed j shell, aligns
its �j with the s-axis. It combines with the triaxial rotor (TR) to
a transverse QTR system. A quasiparticle with predominantly

TABLE I. Deformation parameters and moments of inertia (in
�

2/MeV) used in the QTR and HFA calculations. The letters m,s,l

denote the medium, short, long axes of the triaxial potential and
charge distribution.

Nucleus ε γ (deg) Model Jm Js Jl

135Pr 0.16 26 fit 21 13 4
0.16 26 hydrodyn 20 6 4
0.16 26 cranking 17 7 3

163Lu 0.4 20 fit 64 56 13
0.4 20 hydrodyn 68 29 8
0.4 20 cranking 59 51 13
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FIG. 6. (Color online) Classical orbits (blue lines) of the a.m.
vector for a longitudinal triaxial rotor with a high-j particle. The
rotational parameters are A1 = 6A3 and A2 = 3A3. The a.m. is J = 2
in units of the particle a.m. j . The topmost orbital has E = 2 in terms
of the energy unit A3j

2 and beneath the energy is increasing in steps
of 2.

hole character, which emerges from the top of a deformed j

shell, aligns its �j with the l-axis. It couples with the TR to a
transverse QTR too. A quasiparticle, which emerges from the
middle of the j shell and tends to align with the m-axis, couples
with the TR to a longitudinal QTR. The Coriolis force tends
to realign �j from the s- or l- axes toward the m-axis. It may
overcome the coupling to the deformed potential, resulting in
a change from the transverse to the longitudinal mode.

The longitudinal QTR is similar to the simple rotor, only
that the energy ellipsoid, Eq. (10), is shifted upwards by j .
The yrast line corresponds to uniform rotation about the three-
axis and the lowest excited states represent wobbling about
this axis as shown in the upper panel of Fig. 4. The orbits
in phase space are shown in Fig. 6. The wobbling bands in
this odd-A case have alternating signature α = ± mod(j ,2),
starting with α = mod(J ,2) at the yrast line. The wobbling
frequency increases with a.m.. We mention that the “reversed
arrangement” (as compared to the hydrodynamic one) of the
MoI used in Refs. [11,12] for the description of wobbling
bands in the Lu isotopes corresponds to a longitudinal QTR.
This arrangement is inconsistent with above discussed natural
order Jl < Js < Jm, because the odd i13/2 quasiproton has
particle character and as such aligns its �j with the s-axis, to
which the maximal MoI is assigned.

For the analysis of the transverse QTP, we assume the
quasiparticle to be particle-like, i.e., the three-axis is the s-axis.
Further, we assign the two-axis to the m-axis with the largest
MoI and the one-axis to the l-axis with the smallest MoI. (The
axes 2 and 3 are exchanged compared to the discussion of the
simple TR and the longitudinal QTR.) The pertinent figures are
generated with the rotational parameters A1 = 6A2, A2 = A2,
and A3 = 3A2. As illustrated by Fig. 7, the resulting yrast line
consists of two pieces. At low a.m. it corresponds to rotation
about the three-axis. The energy ellipsoid touches the a.m.
sphere at the point J3 = J on the three-axis and the yrast
energy is E = A3(J − j )2. The low energy orbits above yrast
represent wobbling about the three-axis. Figure 8 displays the
intersection line of the lowest orbit in Fig. 10, which shows the
orbits in phase space. At the critical a.m. Jc = jA3/(A3 − A2)
the rotational axis of the yrast line flips to the direction of
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FIG. 7. (Color online) Energy E of the yrast line and the sep-
aratrix (S) for the transverse rotor with the rotational parameters
A1 = 6A2 and A3 = 3A2. The unit of the a.m. J is j , and the energy
unit is A2j

2.

the point J1 = 0, J2 = √
J 2 − J 2

c , J3 = Jc, where the energy
ellipsoid touches the a.m. sphere from inside. This means, the
axis of uniform rotation is tilted into the s-m plane. Quantum
mechanically, rotation about such a tilted axis corresponds to
merging of the two signatures into a �I = 1 band. The upper
panel of Fig. 9 displays the intersection of the energy ellipsoid
with a.m. sphere for a slightly higher energy, which is the
first orbit enclosing the touch point (φ = π/2, J3 = 3/2j ) in
Fig. 11.

The separatrix, which is illustrated in the middle panel of
Fig. 9, lies at E = A3(J − j )2. Above the separatrix the orbits
revolve the three-axis as shown in the lower panel of Fig. 9.

For J < Jc the yrast line is E = A3(J − j )2. It continues as
separatrix for J > Jc. As discussed above for the simple rotor,
the classical frequency of the separatrix is zero. Analogously
for the transverse QTR the frequency of the small-amplitude
wobbling goes to zero at J = Jc, where uniform rotation about
the three-axis becomes unstable, and the new branch of the
yrast line starts.

Quantum mechanically, the yrast states have signature α =
mod(j ,2) for J < Jc, and the first wobbling state has opposite
signature −α. It encloses the fixed area 2π� in phase space,
which means its energy decreases with J . It merges with the
yrast line, which becomes a �I = 1 sequence for J > Jc. In
case of the longitudinal rotor, there is no bifurcation of the

FIG. 8. (Color online) Angular momentum sphere and energy
ellipsoid for a transverse QTR with the rotational parameters A1 =
6A2 and A3 = 3A2. The intersection line is the classical orbit of the
a.m. vector relative to the body fixed frame. This line corresponds to
the lowest energy orbit in Fig. 10.

(a)

(b)

(c)

FIG. 9. (Color online) Angular momentum sphere and energy
ellipsoid for a transverse QTR with the rotational parameters A1 =
6A2 and A3 = 3A2. The intersection line is the classical orbit of
the a.m. vector relative to the body fixed frame. The three panels
(a), (b), and (c) correspond to the orbits with the smallest energy,
the separatrix, and the next orbit with higher energy, respectively, in
accordance with the orbits shown in Fig. 11.

yrast line, which is reflected by a continuous increase of the
wobbling frequency with J .

III. HARMONIC WOBBLING MODEL

Now we consider small amplitude wobbling vibrations
about the three-axis. We retain the FA approximation, i.e., the
a.m. of the odd quasiparticle is assumed to be firmly aligned
with the three-axis and can be considered as a number. Then

-1

0

1

J 3

π0 π/2−π/2−π

FIG. 10. (Color online) Classical orbits (blue lines) of the a.m.
vector for a transverse triaxial rotor with the rotational parameters
A1 = 6A2 and A3 = 3A2. The a.m. is J = 1.25j being below the
critical a.m. Jc. The a.m. unit is j . The energy increases from the top
to the bottom. The energy difference between the orbits is 1, where
the energy unit is A2j

2. The separatrix is located in the lower part of
the figure right above the closed orbits at φ = 0, ± π .
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J 3

FIG. 11. (Color online) Classical orbits (blue lines) of the a.m.
vector for a transverse triaxial rotor with the rotational parameters
A1 = 6A2 and A3 = 3A2. The a.m. is J = 3 which is above the
critical a.m. Jc. The a.m. unit is j . The energy difference between the
orbits is 4, where the energy unit is A2j

2. The dot indicates the yrast
“orbit”, from where the energy increases.

the QTR Hamiltonian becomes

H = A3(Ĵ3 − j )2 + A1Ĵ
2
1 + A2Ĵ

2
2 , (11)

where j is a number. We use the second-order expansion

Ĵ3 =
√

J 2 − Ĵ 2
1 − Ĵ 2

2 ≈ J − 1

2

(
Ĵ 2

1

J
+ Ĵ 2

2

J

)
, (12)

where J = √
I (I + 1). The Hamiltonian becomes in harmonic

FA (HFA) approximation

H = A3(J − j )2 + (A1 − Ā3)Ĵ 2
1 + (A2 − Ā3)Ĵ 2

2 , (13)

where

Ā3 = A3(J ) = A3

(
1 − j

J

)
. (14)

This Hamiltonian has the form of the simple TR Hamilto-
nian, except that A3 is replaced by the J -dependent rotational
parameter Ā3(J ) = A3(1 − j/J ). Therefore, one can carry
over the expressions given by Bohr and Mottelson [21]
replacing A3 by Ā3(J ).1 The wobbling frequency becomes

�ωw = 2J [(A1 − Ā3(J ))(A2 − Ā3(J ))]1/2. (15)

Correspondingly, the E2-transition probabilities are [21]

B(E2,n,I → n,I ± 2) = 5

16π
e2Q2

2, (16)

B(E2,n,I → n − 1,I − 1)

= 5

16π
e2 n

J
(
√

3Q0x −
√

2Q2y)2, (17)

B(E2,n,I → n + 1,I + 1)

= 5

16π
e2 n + 1

J
(
√

3Q0y −
√

2Q2x)2, (18)

1Reference [21] uses the arrangement J1 > J2 > J3, which differs
from the arrangement in this paper. In taking over the expression one
has to relabel the axes accordingly.

where[
x

y

]
=

(
1

−sign(β)

)[
1

2

(
α

�ωw

± 1

)]1/2

, (19)

α = (A1 + A2 − 2Ā3(J ))J, β = (A1 − A2)J (20)

and Q0 and Q2 are the quadrupole moments of the triaxial
charge density relative to the three-axis. The transition prob-
abilities B(M1) can be derived analogously to the B(E2) in
Ref. [21] by assuming that the aligned quasiparticle generates
a magnetic moment component μ3 = (gj − gR)j . One finds

B(M1,n,I → n − 1,I − 1) = 3

4π

n

J
[j (gj − gR)x]2, (21)

B(M1,n,I → n + 1,I + 1) = 3

4π

n + 1

J
[j (gj − gR)y]2.

(22)

The harmonic approximation is valid as long as J 2
1 + J 2

2 �
J 2. For the first wobbling excitation this leads to the condition
[21]

3(A1 + A2 − 2Ā3)

2(A1 − Ā3)1/2(A2 − Ā3)1/2
� J. (23)

Let us discuss the wobbling energy, Eq. (15), in more detail.
It can be rewritten as

�ωw = j

J3

[(
1 + J

j

(J3

J1
− 1

))(
1 + J

j

(J3

J2
− 1

))]1/2

.

(24)

For the longitudinal QTR, the relation J3 > J1,J2 holds.
Both bracketed terms in Eq. (15) are positive, and the wobbling
frequency increases with a.m.

In case of the transverse QTR with an odd particle one has
J3 > J1 but J3 < J2. Then, the factor 1 + J (J3/J2 − 1)/j
in Eq. (24) decreases with J , and the wobbling energy will
also decrease for sufficiently large J . It reaches zero at Jc =
jJ2/(J2 − J3), which is the previously discussed critical a.m.
where the separatrix bifurcates from the yrast line. There the
yrast and the wobbling bands will merge into a single �I = 1
sequence, reflecting the fact that the rotational axis is tilted
into the s-m plane. Figures 13 and 14 show examples. The
initial increase of the wobbling frequency in the case of 163Lu
is caused by the factor 1 + J (J3/J1 − 1)/j in Eq. (24), which
increases with J . It is characteristic for a situation when Jm is
only slightly larger than Js but both are much larger than Jl .

The transverse QTR with an odd hole has typically
J3 < J1,J2. Then, both factors 1 + J (J3/J2 − 1)/j and
1 + J (J3/J1 − 1)/j in Eq. (24) decrease with J , and the
wobbling energy will always decrease with J .

The prerequisite (23) for the small amplitude approximation
is violated near the instability of the transverse QTR, which
means that HFA cannot be applied there. The assumption
of frozen alignment will become invalid at a certain a.m.,
when the inertial forces overcome the coupling of the odd
quasiparticle to the TR. Then the quasiparticle �j will realign
with the m-axis and the QTR will change from the transverse
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to the longitudinal mode. Nevertheless, the set of equations
(15)–(21) obtained from the HFA model provides an easily
manageable tool for investigating the properties of the QTR
system. In particular, it is the analytic form of these relations
which allows us to qualitatively interpret the results of
experiment and more sophisticated calculations.

The previous studies of the Lu isotopes with the QTR model
[11–14] were based on the assumption A3 < A1,A2 (J3 >
J1,J2) together with the quasiparticle alignment �j along
the three-axis, which in our terminology is the longitudinal
wobbler. Thus, the energies of the excited wobbling bands
relative to the lowest πi13/2 band must increase with spin,
which is the opposite trend observed in Fig. 3. We suggest
that the observed wobbling excitations are of the transverse
type, i.e., we adopt the arrangement A2 < A3 < A1, which
corresponds to the natural order Jm > Js > Jl obtained in
microscopic cranking calculations.

Tanabe and Sugawara-Tanabe [13,14] considered a less
restrictive approximation to the QTR than HFA. It assumes that
the odd particle is not rigidly fixed to the core. Its a.m. may
execute small amplitude oscillations. They find a moderate
coupling between the two oscillators, such that the lowest
states may be classified as being predominantly a wobbling
mode of the core or a vibrational excitation of the odd particle.
Our discussion above concerns only the first type, the wobbling
modes. Naturally, their approach better reproduces the exact
QTR results than our HFA, which however comes at the
expense of rather complicated expressions.

IV. QTR CALCULATIONS

A. Model parameters

Below we present the results of our calculations for the
transverse wobblers 135Pr and 163Lu obtained by means of
the QTR model. The results will be compared with with
the HFA and the experiment. Our QTR calculations have
been carried out by using the core-quasiparticle-coupling
(CQM) formalism [23], which at variance with usual QTR
Hamiltonian (9) is formulated in the laboratory frame of
reference. The CQM Hamiltonian is given by

H = hsqp + Hcore − κ
∑

μ

q∗
μQμ, (25)

where hsqp accounts for the presence of the spherical potential
and the monopole pair field, and Hcore describes the collective
motion of the TR core as given by Eq. (1). The third
term realizes the quadrupole-quadrupole coupling between
quasiparticles and the core. For completeness, we show in
the Appendix the equivalence of the CQM Hamiltonian (25)
with the more familiar QTR Hamiltonian (9).

The Hamiltonian (25) is diagonalized within the KKDF
framework, which combines the equations of motion of
Kerman and Klein [24] with the projection technique of Dönau
and Frauendorf [23]. The CQM proved to be a flexible method
for coupling any model for the collective quadrupole mode
of the even-even core with one quasiparticle to describe the
spectral properties of the considered odd-A nucleus. In our
case the cores of 135Pr and 163Lu are assumed to be triaxial

rotors, and the results of our CQM are equivalent with the
ones of a QTR calculation in a deformed basis, as, e.g., the
calculations in Refs. [4,11,12]. In a first step, the simple TR
problem is numerically solved, which provides the matrices
Hcore and Qμ. Since we consider the coupling to pure h11/2

and i13/2 quasiprotons, respectively, the term hsqp contains
only the gap parameter � and the difference ε − λ between
the spherical single particle level ε and the chemical potential
λ. In the considered nuclides we assume the odd quasiparticles
to be totally particle-like by taking ε − λ = 6 and 10 MeV in
135Pr and 163Lu, respectively. The chosen value � = 1 MeV of
the gap is then unessential for the results of our calculations.

The input parameters needed for specifying the properties
of the rigid triaxial rotor core are summarized in Table I. The
deformation parameters ε and γ are taken from the energy
minima of the total Routhian surfaces calculated with the
micro-macro method. Actually, for 163Lu we extracted the
deformations from Fig. 1 in Ref. [4]. The deformations of 135Pr
are identified with the minimum values in the total Routhian
surface shown in Fig. 12, which we calculated with the tilted
axis cranking (tac) code [22]. As discussed in Ref. [20], the
deformation parameters as well as the MoI obtained from
cranking mean field calculations moderately depend on spin.
This dependence is neglected, and the parameters in Table I
are to be considered as average values. We are studying the
consequences of the spin dependence of the core parameters
in the frame work of the QCM and will report the results
in a forthcoming paper. We investigated three parameter sets
for the MoI. The first set was obtained by freely adjusting of
the MoI to achieve optimal agreement with the experimental
energies of the wobbling bands. For the second set we adopted
to ratios of the MoI obtained by means of the tac model
[22]. For the third set we used the calculated triaxiality γ
in order to determine the ratios between the MoI according
to hydrodynamic model Jk=1,2,3 = Jo sin2(γ − 2πk/3). For
both the second and third set the scaling factor Jo for the MoI
was determined recursively by adapting Jo to the energies of
the n = 0 zero-phonon band of the wobbler. The results of the
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FIG. 12. (Color online) Potential energy surface E(ε,γ ) of 135Pr
calculated with the Strutinsky micro-macro method using the tilted
axis cranking model [22]. The energies attached to the equipotential
lines are in MeV.
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FIG. 13. (Color online) Excitation energies of the n = 1 and
n = 2 wobbling bands in 163Lu. Solid blue lines and full dots: QTR
calculation with fitted MoI. Dotted blue line and open dots: HFA
calculation for the n = 1 band with fitted MoI. Black lines and full
diamonds: Experimental data.

QTR calculations are presented in Figs. 13–19 and Table II.
They are compared with the available experimental data and
in some cases with the HFA.

B. Quality of the HFA

Figures 13, 17, and 19 compare QTR energies and transition
probabilities for 163Lu with the HFA approximation. The HFA
reproduces the full QTR in a fair way. Figure 14 shows that the
differences between the QTR and HFA are more significant
for 135Pr. This is expected, because the �j of the odd proton
is less firmly aligned with the s-axis in 135Pr, which has a
small deformation (ε = 0.16), compared to 163Lu, which has a
much larger deformation (ε = 0.4). Although the scale of the
wobbling frequency in 135Pr is substantially overestimated,
the instability of the transverse wobbler in HFA lies close
to the minimum of the wobbling frequency of the QTR
calculation. The merging of the zero- and one-phonon bands
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FIG. 14. (Color online) Excitation energies of the n = 1 and
n = 2 wobbling bands in 135Pr. Solid blue lines and full dots:
QTR calculation with fitted MoI. Dotted blue lines and open dots:
HFA calculation with fitted MoI. Black line and full diamonds:
Experimental data.
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FIG. 15. (Color online) Excitation energies of the n = 1 and
n = 2 wobbling bands in 163Lu. Solid red lines and full dots: QTR
with cranking MoI, solid green lines and full dots: QTR with
hydrodynamic MoI. Dotted lines and open dots: HFA with cranking
and hydrodynamic MoI, respectively.

into a �I = 1 band after the HFA instability does not occur
for the QTR calculation. Instead, the relatively weakly coupled
proton realigns with the m-axis, and the wobbler changes
from the transverse into the longitudinal mode. Figure 15 also
shows the QTR calculation for 163Lu using the hydrodynamic
ratios between the MoI. As expected from Eq. (24), the larger
ratio of Js/Jm = 2.34 (as compared to 1.14 for the cranking
ratios) down shifts the instability to I = 20. In the spin range
20 < I < 30 the two signature sequences are very close in
energy. The larger deformation of 163Lu delays the realignment
of the odd proton to higher a.m., whereas in the less deformed
nuclide 135Pr it occurs already at the instability. For n = 1, the
HFA for the ratio B(E2,I→I−1)/B(E2,I→I−2) somewhat
overestimates the scale of the QTR values but nicely follows
the down trend with I . For n = 2 the HFA estimate (two times
the n = 1 value) largely overestimates the QTR values (see
Fig. 17).
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FIG. 16. (Color online) Excitation energies of the wobbling band
in 135Pr. Solid red lines and full dots: QTR with cranking MoI, solid
green lines and full dots: QTR with hydrodynamic MoI. Dashed
lines and open dots: HFA with cranking and hydrodynamic MoI,
respectively.
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FIG. 17. (Color online) B(E2) ratios of the connecting to in-band
transitions n = 1,2 → n = 1,0 of the wobbling bands in 163Lu. Solid
blue line and full dots: QTR with fitted moments of inertia, dashed
blue line and open dots: HFA with fitted moments of inertia. Black:
Experimental data. The numbers indicate the actual transition n → n′.

C. Comparison with experiment

The decreasing experimental wobbling frequency classifies
both 163Lu and 135Pr as transverse wobblers. 163Lu has a quite
long band with an almost linear fall-off of the frequency.
The sequence in 135Pr is short, and the wobbling frequency
turns up at its end. As already discussed, the difference is the
consequence of the different deformation ε. The considered
bands in 163Lu are based on a highly deformed shape with
ε = 0.4. The bands in 135Pr belong to a weakly deformed shape
with ε = 0.16. This results in a factor of three between the size
of the moments of inertia and consequently in the scale of the
a.m. Accordingly, one expects the strongly deformed 163Lu to
be a better case than the less deformed 135Pr for describing the
wobbling motion in terms of a rigid triaxial rotor.

The general trend of the decreasing wobbling frequency
is reproduced in our calculations with the QTR and the HFA
model. According to the HFA approximation, the wobbling
band terminates at the critical spin value where the a.m. of the
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FIG. 18. (Color online) B(E2) ratios of the connecting to in-band
transitions n = 1 → n = 0 of the wobbling band in 135Pr. Solid blue
line: QTR calculated with fitted moments of inertia, red (green)
line: with cranking (hydrodynamic) moments of inertia. Black:
Experimental data (cf. Table II).
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FIG. 19. (Color online) B(M1,I → I − 1) of the connecting
transitions n = 1 → n = 0 of the wobbling band in 163Lu. Solid
blue line and full dots: QTR with fitted moments of inertia, dashed
blue line and open dots: HFA with fitted moments of inertia. Black:
Experimental data.

triaxial rotor changes from principal axis to tilted axis rotation.
One notices that this change of the a.m. coupling is born out
by the QTR calculations. The observed kink of the band in
135Pr at I = 29/2 can be related to the transition. In 163Lu the
predicted end of transverse wobbling regime at I = 103/2 has
not been reached at I = 83/2 in experiment.

Figures 13, 15–17 compare the excitation energies of the
wobbling bands in 163Lu and 135Pr obtained from QTR model
with cranking and hydrodynamic MoI with the ones obtained
with the MoI adjusted to best agreement with experiment (cf.
Table I). In the case of 163Lu, the microscopically calculated
cranking MoI are very close to the fitted values and give
a satisfactory agreement with the experimental data. The
cranking model works well in the high spin region of well
deformed nuclei. In contrast, the hydrodynamic MoI lead to
a much too early instability at I = 20, where the wobbling
frequency starts increasing again. As discussed in Sec. IV B,

TABLE II. B values and ratios rM1 = B(M1)con/B(E2)in and
rE2 = B(E2)con/B(E2)in of the wobbling states in 135Pr. The suffices
in and con refer to the in-band �I = 2 and �I = 1 transitions that
connect the bands, respectively. The B values and the calculated ratios
rcal result from our QTR calculations with the fitted MoI. The tentative
experimental ratios rexp were made available prior publication by
Matta et al. [26].

Spin I B(E2)cal
in B(E2)cal

con B(M1)cal
con

17/2 0.637 0.488 0.243
21/2 0.744 0.399 0.187
25/2 0.838 0.331 0.167
29/2 0.930 0.267 0.167
33/2 1.023 0.194 0.155
Spin I rcal

M1 r
exp
M1 rcal

E2 r
exp
E2

17/2 0.381 – 0.767 –
21/2 0.252 0.130 ± 0.011 0.536 0.92 ± 0.03
25/2 0.199 0.021 ± 0.004 0.395 0.535 ± 0.01
29/2 0.180 0.010 ± 0.002 0.288 0.28 ± 0.01
33/2 0.151 – 0.190 –
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this is the consequence of the large ratio of Jm/Js =
2.34. In 135Pr the calculations with the cranking MoI and
with the hydrodynamic MoI give a too small critical spin
(minimum), which reflects the large ratio Jm/Js = 2.4 and
3.3, respectively. The ratio 1.6 between the fitted MoI places
the minimum at the right value of I . The QTR reproduces the
observed increase of the wobbling frequency above I = 14.
It is caused by the reorientation of the odd proton from being
aligned with the short axis toward the medium axis, which
corresponds to a transition from transverse to longitudinal
wobbling (c.f. discussion in Sec. IV B). Experimentally, the
minimum is more pronounced than in the QTR calculations.
One reason is that the experimental function I (ω) of the yrast
band shows a back bend at I = 14, which is not accounted for
by the TR core of the QTR.

The two-phonon (n = 2) wobbling band has been identified
in 163Lu, which the QTR calculation places close at the
observed excitation energy. The light convex bending of
both the one- and two-phonon bands obtained by the QTR
calculation is not seen in the experimental sequences of 163Lu.
No candidate for a two-phonon has been found in 135Pr.

As can be seen in Fig. 13, the QTR energy of the
two-phonon is about twice the energy of the one-phonon
bands for I < 30, whereas this ratio is considerably lower
in the experimental band. So far, we have no explanation
for this discrepancy. For larger values of I , the QTR ratio
increases. This is explained as follows. The one-phonon band
has opposite signature than the zero-phonon band. Because
of their different symmetry the two bands may approach and
even cross. The two-phonon band has the same signature as
the zero-phonon band, and the two bands can mix and repel
each other. The onset of the repulsion is seen around I = 50.
The experiment also shows an increasing of the ratio of the
two- and one-phonon energies.

The ratios B(E2,I→I−1)/B(E2,I→I−2) for the transi-
tions connecting the bands (con) and the in-band transitions
(in) in 163Lu are shown in Fig. 17. The QTR calculations
reproduce the strong connecting E2 transitions observed in
experiment, which are the evidence for the collective nature
of wobbling excitations. The calculated ratios 0.3–0.2 are in
accordance with experiment [25]. However, the experimental
ratio is weakly increasing within the observed spin interval I =
31/2 − 63/2, whereas the QTR calculation gives a slightly
decreasing ratio. The HFA shows the same tendency as QTR.
The measured ratio B(E2,I→I−1)/B(E2,I→I−2) = 0.5
± 0.15 at I = 45/2 is about twice as large as the ratio of the
corresponding n = 1 to n = 0 transition which supports the
two-phonon nature of the upper band. In the QTR calculation
the corresponding ratio between n = 2 and n = 1 out-of-band
transitions is with about 1.3 too low for a clear two-phonon
structure of the calculated n = 2 band.

The ratios B(E2,I→I−1)/B(E2,I→I−2) shown in
Fig. 18 for 135Pr are obtained with the QTR model using
the three parameter sets for the MoI in Table I. The ratios
slope down with increasing spin. The calculation with the
fitted moments of inertia predicts the strongest interband E2
transitions, corresponding to a ratio of 0.5–0.3 within the spin
interval I = 10–14. The tentative experimental ratios [26] are
larger and decrease more rapidly.

Figure 19 displays the B(M1) values of the connecting
transitions I→ I−1 of the one-phonon wobbling band in
163Lu. The measurements [25] found very small M1 admix-
tures to the nonstretched E2 transitions. The QTR and the
HFA calculation also predict only a weak M1 admixture.
However, the relatively flat curve with a minimum of about
0.2 μ2

N overestimates the measured B(M1) values by more
than a factor of 10. The QTR calculations with the cranking
and hydrodynamic moments of inertia gave similar B(M1)
values. The QTR calculations for the wobbling band in 135Pr
predict B(M1,I→I − 1) ≈ 0.2 μ2

N for each of the three sets of
MoI. The recent experiment by Matta et al. [26] provided the
tentative ratios rM1 = B(M1)out/B(E2)in in Table II, which
are a factor of 10 smaller than the calculated ones. These
ratios suggest that the M1 strength obtained with QTR is too
large for 135Pr as well.

The reproduction of the very small B(M1) values is a
problem for the QTR description of transverse wobbling. The
mechanism for generating the M1 radiation is simple in the
HFA. The magnetic moment �μ = gj

�j of the high-j particle
is aligned with the s-axis. It wobbles together with the rotor
generating the M1 radiation. The transition rate is given by
the squared amplitude of this oscillation, which is determined
by the wobbling amplitude of the rotor and the length of �μ. As
seen in Fig. 19, the HFA gives somewhat larger B(M1) than
QTR, which can be attributed to the HFA assumption of rigid
alignment of the high-j particle with the s-axis. In the case
of QTR, the coupling of the high-j particle is not rigid. Its
�μ does not completely follow the motion of the rotor, which
reduces the amplitude of its own wobbling motion and, as a
consequence, the intensity of the M1 radiation. Hence, the
B(M1) values of QTR reflect the degree of alignment of the
high-j particle with the short axis, i.e., the transverse character
of the wobbling motion. We assume that the experimental
B(M1) values are substantially smaller than the calculated
ones, because there are additional couplings between the rotor
core and the quasiparticle that the QTR does not take into
account (The CQP model considers only the coupling to the
deformed quadrupole field.) This conjecture is supported by
our study of transverse wobbling in the framework of QRPA
in a forthcoming paper [27].

V. SUMMARY

Studying the classical orbits of the angular momentum
vector of a triaxial rotor we have demonstrated that the
presence of a high-j quasiparticle, which rigidly aligns its
angular momentum �j with one of the principal axes, drastically
changes the motion of the coupled system. Two types of
wobbling motion appear: the longitudinal and the transverse,
depending, respectively, on whether the quasiparticle �j is
aligned with the axis of the largest MoI (longitudinal wobbler)
or is oriented perpendicular to this axis (transverse wobbler).
The assumption that the quasiparticle �j is rigidly aligned with
one of the principal axes (frozen alignment—FA) allowed
us to derive simple analytical expressions for the wobbling
frequency and E2 and M1 transition rates in analogy to the
well-known formulas obtained by applying the harmonic ap-
proximation to the motion of the triaxial rotor [21] (harmonic
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FA—HFA). Our simple HFA expressions help to understand
why for the longitudinal alignment the wobbling frequency
monotonically increases with the total angular momentum
whereas it decreases for transverse alignment. There is a
critical angular momentum where the transverse wobbling
regime ends and the one- and zero-phonon bands merge into
one �I = 1 sequence. The simple HFA expressions provide a
classification scheme for the wobbling motion and a qualitative
understanding of the results obtained in the framework of the
more realistic quasiparticle+triaxial rotor (QTR) model. All
strongly deformed wobbling bands observed at high spin in the
Lu and Tm isotopes carry the signature of transverse wobbling.

We studied the excitation energies and the electromagnetic
E2 and M1 transition rates of transverse wobbling states in
163Lu and 135Pr in the framework of the QTR. The deformation
parameters of the rotor were calculated by means of the
micro-macro method. The three moments of inertia of the
rotor were considered as free parameters, which were adjusted
to fit the experimental energies of the zero- and one-phonon
wobbling bands. Good agreement with the measured energies
and E2 strengths was found for the high spin wobbling
bands in 163Lu, which has a strongly deformed triaxial shape.
The signature of transverse wobbling, the decrease of the
wobbling frequency with angular momentum, was reproduced.
In accordance with experiment, the predicted critical spin
of I ≈ 50 of the transverse wobbling band is higher than
the observed spins. The ratios between the three moments
of inertia determined by the fit turned out to be close the
ones calculated by means the cranking model. Assuming the
ratios for irrational flow resulted in a much too low critical
spin. Because the moments of inertia of the weakly deformed
135Pr are smaller by a factor of about three, the wobbling
bands appear lower spin. Fair agreement agreement of the
QTR results with the measured energies and E2 strengths was
found as well. At low spin the wobbling mode is transverse. At
the critical spin of I = 29/2 the wobbling mode changes from
transverse to longitudinal, which is caused by a realignment
of the of the h11/2 proton from the short to the medium axis.
The ratios between the fitted moments of inertia did not agree
with the ones obtained by assuming irrotational flow nor with
the ones calculated by means the 3D-cranking model, both of
which gave a too low critical spin. However for all three ways
of determining the moments of inertia, the medium axis has
the largest one, followed by the short axis, and the long axis.

In summary, the concept of transverse wobbling provides a
natural explanation for the decrease of the wobbling frequency
with increasing angular momentum and the enhanced E2
transitions between the wobbling bands. It is decisive that the
ratios between the three moments of inertia of the triaxial
rotor and the orientation of the odd quasiparticle are in

qualitative agreement with microscopic calculations based on
the cranking model.
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APPENDIX

The relation between the QTR Hamiltonians in the lab-
oratory and intrinsic frames of reference is established by
transforming the coupling term

∑
μ q∗

μQμ to the principal axis
system of the core. Because this term is rotational invariant we
obtain ∑

μ

q∗
μQμ = q̄0Q̄0 + (q̄2 + q̄−2)Q̄2. (A1)

where Q̄0 and Q̄2 are the nonzero core quadrupole moments
of the triaxial core. They can up to a scaling factor f be
parametrized in terms of ε and γ as Q̄0 = f ε cos γ and Q̄2 =
f ε cos γ /

√
2. Defining the particle quadrupole moments as

qμ = r2 Y 2
μ the coupling term takes the familiar form of a

triaxially deformed potential∑
μ

q∗
μQμ = f r2

(
ε cos γ Ȳ 2

0 + ε cos γ /
√

2
(
Ȳ 2

2 + Ȳ 2
−2

))
.

(A2)

The appropriate scaling factor f for obtaining the standard
form of the deformed potential in the resulting Hamiltonian
(9) is given by

κ f = 2

3

√
4π

5
�ω◦ ≈ 1.057 �ω◦, (A3)

where �ω◦ = 41A−1/3 MeV is the oscillator energy constant.
Inserting the resulting coupling term in Eq. (25) we obtain
the deformed quasiparticle term hdqp of the QTR Hamiltonian
(9). Expressing in the core part Hc the core angular momentum
�R = �J − �j in terms of the total a.m. and the particle a.m. gives

the QTR Hamiltonian (9). The explicit transformation of the
wave functions between the laboratory and intrinsic frames
can be found in [21]. The coupling strength κ is related to the
deformations ε and γ of the quasiparticle-core system by

κ〈0||Q||2〉 = �ω◦ε cos γ, (A4)

where 〈0||Q||2〉 means the reduced matrix element of the core
quadrupole operator taken between the 0+ ground state and
the first 2+ state of the core.
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